|
[1] A. Anderson, R. Kumar, A. Tomkins, and S. Vassilvitskii. The dynamics of repeat consumption. In Proceedings of the 23rd international conference on World wide web, pages 419–430. ACM, 2014. [2] D. Bahdanau, K. Cho, and Y. Bengio. Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473, 2014. [3] D. G. M. Barbara E. Kahn, Manohar U. Kalwani. Measuring variety-seeking and reinforcement behaviors using panel data. Journal of Marketing Research, 23(2):89–100, 1986. [4] A. R. Benson, R. Kumar, and A. Tomkins. Modeling user consumption sequences. In Proceedings of the 25th International Conference on World Wide Web, pages 519–529. International World Wide Web Conferences Steering Committee, 2016. [5] W. Chan, N. Jaitly, Q. V. Le, and O. Vinyals. Listen, attend and spell. arXiv preprint arXiv:1508.01211, 2015. [6] J. Chen, C. Wang, and J. Wang. Will you” reconsume” the near past? fast prediction on short-term reconsumption behaviors. In AAAI, pages 23–29, 2015. [7] J. K. Chorowski, D. Bahdanau, D. Serdyuk, K. Cho, and Y. Bengio. Attentionbased models for speech recognition. In Advances in Neural Information Processing Systems, pages 577–585, 2015. [8] T. Di Noia, V. C. Ostuni, J. Rosati, P. Tomeo, and E. Di Sciascio. An analysis of users’ propensity toward diversity in recommendations. In Proceedings of the 8th ACM Conference on Recommender systems, pages 285–288. ACM, 2014. [9] M. Glanzer. Curiosity, exploratory drive, and stimulus satiation. Psychological Bulletin, 55(5):302, 1958. [10] K. M. Hermann, T. Kocisky, E. Grefenstette, L. Espeholt, W. Kay, M. Suleyman, and P. Blunsom. Teaching machines to read and comprehend. In Advances in Neural Information Processing Systems, pages 1693–1701, 2015. [11] Y. Hijikata, T. Shimizu, and S. Nishida. Discovery-oriented collaborative filtering for improving user satisfaction. In Proceedings of the 14th international conference on Intelligent user interfaces, pages 67–76. ACM, 2009. [12] G. Hinton, N. Srivastava, and K. Swersky. Lecture 6a overview of mini–batch gradient descent. Coursera Lecture slides https://class.coursera.org/neuralnets-2012-001/lecture,[Online. [13] S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural computation, 9(8):1735–1780, 1997. [14] K. Kapoor, K. Subbian, J. Srivastava, and P. Schrater. Just in time recommendations: Modeling the dynamics of boredom in activity streams. In Proceedings of the Eighth ACM International Conference on Web Search and Data Mining, pages 233–242. ACM, 2015. [15] K. Kapoor, M. Sun, J. Srivastava, and T. Ye. A hazard based approach to user return time prediction. In Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and data mining, pages 1719–1728. ACM, 2014. [16] M.-T. Luong, H. Pham, and C. D. Manning. Effective approaches to attention-based neural machine translation. arXiv preprint arXiv:1508.04025, 2015. [17] N. Srivastava, G. E. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov. Dropout: a simple way to prevent neural networks from overfitting. Journal of Machine Learning Research, 15(1):1929–1958, 2014. [18] S. Sukhbaatar, J. Weston, R. Fergus, et al. End-to-end memory networks. In Advances in neural information processing systems, pages 2440–2448, 2015. [19] L. White, R. Togneri, W. Liu, and M. Bennamoun. How well sentence embeddings capture meaning. In Proceedings of the 20th Australasian Document Computing Symposium, page 9. ACM, 2015. [20] K. Xu, J. Ba, R. Kiros, K. Cho, A. C. Courville, R. Salakhutdinov, R. S. Zemel, and Y. Bengio. Show, attend and tell: Neural image caption generation with visual attention. CoRR, abs/1502.03044, 2015. [21] M. Zhang and N. Hurley. Avoiding monotony: Improving the diversity of recommendation lists. In Proceedings of the 2008 ACM Conference on Recommender Systems, RecSys ’08, pages 123–130, New York, NY, USA, 2008. ACM. [22] C.-N. Ziegler, S. M. McNee, J. A. Konstan, and G. Lausen. Improving recommendation lists through topic diversification. In Proceedings of the 14th international conference on World Wide Web, pages 22–32. ACM, 2005.
|