跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.110) 您好!臺灣時間:2025/09/28 10:45
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林廷叡
研究生(外文):Lin, Ting-Jui
論文名稱:單一與混合High-κ材料應用於矽太陽能電池之鈍化研究
論文名稱(外文):Silicon Solar Cells Passivated with Simple and Compound High-κ dielectric Materials
指導教授:曾孝明曾孝明引用關係黃惠良黃惠良引用關係
指導教授(外文):Tseng, Shiao-MinHwang, Huey-Liang
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電子工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:65
中文關鍵詞:原子層化學氣相沉積High-κ鈍化層
外文關鍵詞:ALDHigh-κPassivation layer
相關次數:
  • 被引用被引用:0
  • 點閱點閱:183
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在本篇論文中,使用原子層化學氣相沉積(Atomic layer chemical deposition,簡稱ALD),去鍍製不同高介電常數(High-κ)材料的薄膜當作太陽能電池的鈍化層。使用混合的方式,是想嘗試去找出能產生比Al2O3 更多固定電荷量或更好的界面狀態的混合比例。上述兩者特性都能有效地降低表面複合,並增加載子的生命週期,進而提昇開路電壓Voc ,其為影響太陽能電池效率的重要因素。
我們製作樣品分析之後,設定不同的鈍化條件,像是沒有任何的High-κ鈍化、只有正面有Al2O3、正反面有Al2O3、正面Al2O3背面混合Al2O3與HfO2以及正反面都使用HfO2。沒有High-κ鈍化的太陽能電池效率為5.637%、Jsc為31.394mA/cm2,、Voc為0.43V和 FF為0.417。但是使用Al2O3做正面鈍化效率可以改進到10.352%、Jsc為32.121mA/cm2,、Voc為0.51V和 FF為0.631。使用正反面Al2O3,則Voc可以改進到0.57V,效率有14.353%、Jsc和FF分別為35.624mA/cm2以及 0.707。而使用正面Al2O3背面使用Al2O3+HfO2時,Voc改進到0.58V、效率為14.957%、Jsc為36.31 mA/cm2、FF of 0.71。最後正反面都使用HfO2做為鈍化層,效率可以增加到15.542%、Voc改進到0.59V。High-κ材料鈍化層確實可以幫助太陽能電池提升Voc。

In this thesis, we investigated simple and compound high-κ materials deposited by ALD as passivation layer for silicon solar cells. Silicon solar cells were fabricated with different passivation conditions such as without any high-κ passivation, with passivation only in the front end with Al2O3 (8Å), with passivation using Al2O3 (8Å) at the front end as well as at the rear end, with passivation using Al2O3 (8Å) at the front end and using Al2O3+HfO2 (8Å) at the rear end and with passivation using HfO2 (8Å) at the front end as well as at the rear end. Solar cell efficiency obtained for the cell without any high-κ passivation was 5.637% with a Jsc of 31.394mA/cm2, Voc of 0.43V and FF of 0.417. But with front end passivation using Al2O3 (8Å), cell efficiency improved to10.352% with a Jsc of 32.121mA/cm2, Voc of 0.51V and FF of 0.631. With passivation using Al2O3 (8Å) at the front end as well as at the rear end, Voc improved to 0.57V and efficiency was 14.353%. Jsc and FF obtained for this cell were 35.624mA/cm2 and 0.707, respectively. With passivation using Al2O3 (8Å) at the front end and using Al2O3+HfO2 (8Å) at the rear end, Voc improved to 0.58V and efficiency to 14.957% with a Jsc of 36.31 mA/cm2 and FF of 0.71. Finally with passivation using HfO2 (8Å) at the front end as well as at the rear end, efficiency of the cell increased to 15.542% while Voc improved to 0.59V.
致謝 i
摘要 ii
Abstract iv
Table of Contents v
List of Figures vii
List of Tables x
Chapter 1 Introduction 1
1.1. Background 1
1.2. Motivation 3
1.3. Objectives of this thesis 5
Chapter 2 Theory of Solar Cells and ALD Mechanism 6
2.1. The nature of sunlight 6
2.2. The solar cell 8
2.3. The I-V curve characteristics of solar cells 9
2.3.1. Dark and short circuit currents 10
2.3.2. Open circuit voltage 11
2.3.3. Fill factor 11
2.3.4. Efficiency 12
2.3.5. Series resistance and shunt resistance 12
2.4. Recombination in solar cell 13
2.4.1. Recombination through defect levels 14
2.4.2. Lifetime 15
2.4.3. Diffusion length 16
2.4.4. Surface recombination 17
2.5. ALD (Atomic Layer Deposition) 19
2.5.1. Principle of ALD 19
2.5.2. Precursor chemistry of ALD 22
Chapter 3 Experimental Methods 24
3.1. Experimental process flow for CV sample 24
3.1.1. Fabrication of high-κ thin film 25
3.1.2. Oxygen-gas-annealing 27
3.1.3. Deposition of the front electrode 28
3.1.4. Deposition of the back electrode 30
3.1.5. Analysis and measurement 31
3.2. Experimental process flow for the fabrication of solar cell cells 38
3.2.1 Si samples with pyramid textures 39
3.2.2 RCA clean 39
3.2.3 Doping of the Si samples by diffusion 40
3.2.4 Deposition of high-κ film (8-Å) 40
3.2.5 High-κ film anneal 41
3.2.6 Deposition of the front metal electrode 41
3.2.7 Deposition of the rear metal electrode 42
3.2.8 Deposition of ARC 42
Chapter 4 Results and Discussion 43
4.1. The results of CV and lifetime measurement 43
4.1.2. Lifetime measurement of Al2O3-HfO2 films 49
4.1.3. The oxygen-gas-annealing 50
4.2. Characteristics of the solar cells 54
Chapter 5 Conclusion and Future Works 62
5.1. Conclusion 62
5.2. Future works 63
References 64

[1] BJM. Vries, DP. Vuuren, and MM. Hoogwijk, Energy Policy 35, 2590–610, 2007.
[2] R. Govinda, Timilsinaa, L. Kurdgelashvilib,A. Patrick, and Narbel, Renewable and Sustainable Energy Reviews 16, 2012.
[3] KRI Report NO.8: Solar Cells, February, 2005.
[4] H. Sugimoto and M. Tajima, Jpn. J. Appl. Phys. 46, 2007.
[5] B. Pantchev, P. Danesh, E. Liarokapis, B. Schmidt, J. Schmidt, and D. Grambole, Jpn. J. Appl. Phys. 43, 2004.
[6] T. Lauinger, J. Schmid, A. G. Aberle, and R. Hezel, Appl. Phys. Lett. 68, 1996.
[7] S. K. Dhungel, J. Yoo, K. Kim, S. Ghosh, S. Jung, and J. Yi: Mater, Sci. Eng, B 134 , 2006.
[8] B. Hoex, S. B. S. Heil, E. Langereis, M. C. M. van de Sanden, and W. M. M. Kessels, Appl. Phys. Lett. 89, 2006.
[9] B. Hoex , J. Appl. Phys. 104 113703, 2008.
[10] W.M.M. Kessels, J.A. van Delft, G. Dingemans, and M.M. Mandoc, Dept. of Applied Physics, Eindhoven University of Technology (TU/e), The Netherlands, 2011.
[11] M. Planck, Annalen der Physik 4, pp. 553-563, 1901.
[12] J. E. Parrott, Solar Energy 51(3), pp. 195-195, 1993.
[13] National Renewable Energy Laboratory, Reference Solar Spectral Irradiance: Air Mass 1.5, http://rredc.nrel.gov/solar/spectra/am1.5/.
[14] PV Workshop, A collection of resources for the photovoltaic educator, http://www.pveducation.org/.
[15] J. Nelson, The Physics of Solar Cells 11, 2003.
[16] K. Kita, and A. Toriumi, Appl. Phys.Lett 9, 2009.
[17] PV Workshop, Types of Recombination, http://www.pveducation.org/pvcdrom/pn-junction/types-of-recombination
[18] Laboratory of Inorganic and Analytical Chemistry, Helsinki University of Technology, P.O. Box 6100, 02015 Espoo, Finland, 2004.
[19] T. S. Suntola, A. J. Pakkala, and S. G. Lindfors, US Patent 4, 413 022, 1983.
[20] A. W. Ott, J. W. Klaus, J. M. Johnson, and S. M. George, Thin Solid Films 292, 135, 1997.
[21] M. Tiitta, and L. Niinistö, Chem. Vap. Deposition 3, 167, 1997.
[22] Department of Materials Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan, 2009.
[23] D. K. Schroder, Semiconductor Material and Device Characterization, Wiley, New York, 2nd ed., p. 356, 1998.
[24] The University Of Texas At El Paso, Fabrication: Facilities and Techniques.
[25] MEMS & Nanotechnology Exchange.
[26] M. J. Cristea, Proc. IEEE International Semiconductor Conf. CAS. International, Vol. 2, Sinaia, pp. 481-484, Oct. 2007.
[27] R. A. Sinton, and A. Cuevas, Appl. Phys.Lett 69, 1996.
[28] A. Metz, and R. Hezel,Conf. Record of the Twenty-Sixth IEEE Photovoltaic Specialists Conference, pp.283-286, 1997.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top