跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.188) 您好!臺灣時間:2026/01/16 04:07
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:黃俊源
研究生(外文):Chun Yuan Huang
論文名稱:以下顎枝矢狀截骨術的觀點,比較正常、下顎後縮和下顎前突病人的下顎神經管路
論文名稱(外文):Comparison of the Mandibular Canal in Patients with Normal Jaw Relation, Retrognathism and Prognathism: Relevance to the Sagittal Split Ramus Osteotomy
指導教授:廖郁芳
指導教授(外文):Y. F. Liao
學位類別:碩士
校院名稱:長庚大學
系所名稱:顱顏口腔醫學研究所
學門:醫藥衛生學門
學類:牙醫學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:英文
論文頁數:71
中文關鍵詞:下齒槽神經下顎神經管下顎前突下顎後縮下顎枝矢狀截骨
外文關鍵詞:Inferior alveolar nervemandibular canalprognathismretrognathismsagittal split ramus osteotomy
相關次數:
  • 被引用被引用:0
  • 點閱點閱:142
  • 評分評分:
  • 下載下載:5
  • 收藏至我的研究室書目清單書目收藏:0
研究背景及目的: 下顎枝矢狀截骨術是在矯正下顎後縮,下顎前突很重要的術式。然而在執行下顎枝矢狀截骨術時,下齒槽神經很容易受傷。因此了解下齒槽神經的走向對執行正顎手術的醫師很重要。

方法: 本研究是以錐狀射束電腦斷層影像來比較台灣人正常、下顎後縮、下顎前突三種型態的下顎神經管路。每組各32人,從下顎枝小舌開始至第一大臼齒遠心側牙根測量左右邊下顎神經管外側與下顎內側皮質骨的最短距離,以單因子變異數分析方法比較三組有沒有差異。

結果: 左側或右側下顎神經管路徑及下顎神經管與下顎內側皮質骨相接觸或融合的發生率在正常、下顎後縮、下顎前突三種型態都沒有統計上的差異。當左側下顎枝小舌處的下顎神經管與下顎內側皮質骨的最短距離大於2.1 mm時,下顎神經管便不會是接觸或融合型態;當右側此最短距離大於2.7 mm時,下顎神經管便不會是接觸或融合型態。下齒槽神經與下顎內側皮質骨最接近的區段是在下顎枝小舌與下顎枝前緣之間一半的地方。

結論: 測量在下顎枝小舌處的下顎神經管與下顎內側皮質骨的最短距離即可預測下顎神經管不會是接觸或融合型態。在執行下顎枝矢狀截骨術時在下顎枝小舌與下顎枝前緣之間一半的地方必須特別小心,以免傷到下齒槽神經。

Background/Purpose: The purpose of this study was to determine the position of the mandibular canal in relation to the buccal cortical bone in Chinese patients with the three dentofacial relationships: normal dentition, retrognathism, and prognathism.

Methods: Cone-beam computed tomography and lateral cephalograms of patients with normal dentation, retrognathism, and prognathism (n = 32 each group) were reviewed. Measurements of the shortest distance from the outer/buccal edge of the mandibular canal to the inner surface of the buccal cortex, and the distance from the lingula of the ramus to the distal root of the first molar were recorded. One-way ANOVA was performed to compare the three groups.

Results: No significant difference was observed between the three groups in the distribution of contact or fusion of the mandibular canal, or in the course of the mandibular canal on the right or left side. When the shortest distance at the lingula on the left side was > 2.1 mm, no instances of contact or fusion were observed. On the right side, 100% of the patients had no contact or fusion when the shortest distance was > 2.7 mm at the lingual. The mandibular canal was nearest the cortical bone at the point halfway between the lingula and the anterior ramus border.

Conclusions: The shortest distance from the outer/buccal edge of the mandibular canal to the inner surface of the buccal cortex, measured at the lingual, can predict contact or fusion. During sagittal split ramus osteotomy, surgeons should be very careful at the point halfway between the lingula and the anterior ramus border where the mandibular canal is nearest the cortical bone.
指導教授推薦書
口試委員會審定書
摘要 iii
Abstract iv
Chapter 1 Introduction 1
Chapter 2 Systematic Review 3
2.1 Introduction 3
2.2 Methods 4
2.2.1 Search Strategy 4
2.2.2 Selection Criteria 4
2.2.3 Data Collection and Analysis 4
2.3 Results 5
2.3.1 Fusion of the Medial and Lateral Cortical Plates of Ramus 5
2.3.2 Contact between the Mandibular Canal and the External Cortical Bone 6
2.3.3 IAN Course 6
2.3.4 Quality Analysis 7
2.4 Discussion 7
2.4.1 Fusion of the Medial and Lateral Cortical Plates of Ramus 8
2.4.2 Contact between the Mandibular Canal and the External Cortical Bone 8
2.4.3 IAN Course 9
2.5 Conclusions 9
Chapter 3 Aims and Hypotheses 11
3.1 Aims 11
3.2 Hypotheses 11
Chapter 4 Materials and Methods 12
4.1 Patients 12
4.2 CBCT Scans Setups 12
4.3 Distance Measurements 13
4.4 Method Error Analysis 13
4.5 Statistical Analysis 14
Chapter 5 Results 15
5.1 Study Population 15
5.2 Method Error Analysis 15
5.3 Lingula Tip to Ramus Notch and Fusion of Buccal and Lingual plates 15
5.4 Mandibular Canal and IAN Course 16
5.5 Contact or Fusion of Mandibular Canal 17
5.6 ROC Analysis 17
Chapter 6 Discussion 19
6.1 Minimum Distance from Lingula Tip to Fusion of the Buccal and Lingual Platese 19
6.2 IAN Course 19
6.3 Contact or Fusion of Mandibular Canal 20
6.4 Clinical Implications 21
6.5 Limitations of This Study 21
Chapter 7 Conclusions 23
References 24
Tables 2.1 through 5.1 29
Figures 4.1 through 5.4 38
Appendix 50

LIST OF TABLES
Table 2.1 Exclusion criteria and number of excluded articles for medial osteotomy and the sagittal split ramus osteotomy 30
Table 2.2 Exclusion criteria and number of excluded articles for osteotomy and mandibular canal 31
Table 2.3 Summarized data of the four studies regarding fusion of the medial and lateral cortical plates of ramus 32
Table 2.4 Summarized data of the six studies regarding contact between the mandibular canal and the external cortical bone 33
Table 2.5 Summarized data of the three studies regarding IAN course 35
Table 2.6 Quality analysis of the 13 included studies 36
Table 5.1 Comparisons of subjects with normal jaw relation,
retrognathism, and prognathism 37

LIST OF FIGURES
Figure 4.1 Point A-nasion-point B (ANB) angle measurement 39
Figure 4.2 Orientation of three planes of the image 40
Figure 4.3 Axial view: slice thickness 41
Figure 4.4 Measurement for the nerve canal 42
Figure 4.5 Measurement in panoramic view 43
Figure 4.6 Classification of the mandibular canal 44
Figure 4.7 Measurement for the lingula 45
Figure 5.1 Comparison of the inferior alveolar nerve course 46
Figure 5.2 Inferior alveolar nerve course with contact or fusion 47
Figure 5.3 Receiver operating characteristic (ROC) analyses 48
Figure 5.4 Comparison of the shortest distance at the lingula 49

Agbaje JO, Sun Y, De Munter S, Schepers S, Vrielinck L, Lambrichts I, et al. 2013. CBCT-based predictability of attachment of the neurovascular bundle to the proximal segment of the mandible during sagittal split osteotomy. Int J Oral Maxillofac Surg 42:308-15.
Aizenbud D, Ciceu C, Hazan-Molina H, Abu-El-Naaj I. 2012. Relationship between inferior alveolar nerve imaging and neurosensory impairment following bilateral sagittal split osteotomy in skeletal Class III cases with mandibular prognathism. Int J Oral Maxillofac Surg 41: 461-8.
Al-Bishri A, Barghash Z, Rosenquist J, Sunzel B. 2005. Neurosensory disturbance after sagittal split and intraoral vertical osteotomy: As reported in questionnaires and patients’ records. Int J Oral Maxillofac Surg 34: 247-51.
Angel JS, Mincer HH, Chaudhry J, Scarbecz M. 2011. Cone-beam computed tomography for analyzing variations in inferior alveolar canal location in adults in relation to age and sex. J Forensic Sci 56: 216-9.
Antczak AA, Tang J, Chalmers TC. 1986. Quality assessment of randomized control trials in dental research I. Methods. J Periodontal Res 21:305–14.
Ballrick JW, Palomo JM, Ruch E, Amberman BD, Hans MG. 2008. Image distortion and spatial resolution of a commercially available cone-beam computed tomography machine. Am J Orthod Dentofacial Orthop 134: 573-82.
Chadwick JW, Lam EW. 2010. The effects of slice thickness and interslice interval on reconstructed cone beam computed tomographic images. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 110: e37-e42.
Frydman WL. 1997. Nerve injuries. Oral Max-illofac Surg Clin North Am 9: 207-18.
Gowgiel JM. 1992. The position and course of the mandibular canal. J Oral Implantol 18: 383-5.
Hassan BA, Payam J, Juyanda B, van der Stelt P, Wesselink PR. 2012. Influence of scan setting selections on root canal visibility with cone beam CT. Dentomaxillofac Radiol 41: 645-8.
Huang CS, Syu JJ, Ko EW, Chen YR. 2013. Quantitative evaluation of cortical bone thickness in mandibular prognathic patients with neurosensory disturbance after bilateral sagittal split osteotomy. J Oral Maxillofac Surg 71:2153.e1-10.
Hwang K, Lee DK, Lee WJ, Chung IH, Lee SI. 2004. A split ostectomy of mandibular body and angle reduction. J Craniofac Surg 15(2):341-6.
Jadad AR, Moore RA, Carroll D, Jenkinson C, Reynolds DJ, Gavaghan DJ, McQuay HJ. 1996. Assessing the quality of reports of randomized clinical trials: is blinding necessary? Control Clin Trials 17:1-12.
Kamburoğlu K, Kiliç C, Ozen T, Yüksel SP. 2009. Measurements of mandibular canal region obtained by conebeam computed tomography: a cadaveric study. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 107: e34-e42.
Kim HJ, Lee HY, Chung IH, Cha IH, Yi CK. 1997. Mandibular anatomy related to sagittal split ramus osteotomy in Koreans. Yonsei Med J 38:19-25.
Kim TS, Caruso JM, Christensen H, Torabinejad M. 2010. A comparison of cone-beam computed tomography and direct measurement in the examination of the mandibular canal and adjacent structures. J Endod 36: 1191-4.
Kumar Potu B, Jagadeesan S, Bhat KM, Rao Sirasanagandla S. 2013. Retromolar foramen and canal: a comprehensive review on its anatomy and clinical applications. Morphologie 97: 31-7.
Kuroyanagi N, Miyachi H, Ochiai S, Kamiya N, Kanazawa T, Nagao T, et al. 2013. Prediction of neurosensory alterations after sagittal split ramus osteotomy. Int J Oral Maxillofac Surg 42: 814-22.
Lagravère MO, Low C, Flores-Mir C, Chung R, Carey JP, Heo G, et al. 2010. Intraexaminer and interexaminer reliabilities of landmark identification on digitized lateral cephalograms and formatted 3-dimensional cone-beam computerized tomography images. Am J Orthod Dentofacial Orthop 137: 598-604.
Lee JG, Kim IS, Kim YW, Park JT, Hu KS, Kim HG, et al. 2011. Morphometric analysis of the Korean mandibular ramus for distraction osteogenesis using micro-computed tomography. J Craniofac Surg 22:306-18.
Muto T, Shigeo K, Yamamoto K, Kawakami J. 2003. Computed tomography morphology of the mandibular ramus in prognathism: effect on the medial osteotomy of the sagittal split ramus osteotomy. J Oral Maxillofac Surg 61:89-93.
Muto T, Takahashi M, Akizuki K. 2012. Evaluation of the mandibular ramus fracture line after sagittal split ramus osteotomy using 3-dimensional computed tomography. J Oral Maxillofac Surg 70: e648-52.
Nagadia R, Tay AB, Chan LL, Chan ES. 2011. The spatial location of the mandibular canal in Chinese: a CT study. Int J Oral Maxillofac Surg 40: 1401-5.
Naitoh M, Nakahara K, Suenaga Y, Gotoh K, Kondo S, Ariji E. 2010. Comparison between cone-beam and multislice computed tomography depicting mandibular neurovascular canal structures. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 109: e25-e31.
Panula K, Finne K, Oikarinen K. 2004. Neurosensory deficits after bilateral sagittal split ramus osteotomy of the mandible--influence of soft tissue handling medial to the ascending ramus. Int J Oral Maxillofac Surg 33: 543-8.
Plooij JM, Naphausen MT, Maal TJ, Xi T, Rangel FA, Swennnen G, et al. 2009. 3D evaluation of the lingual fracture line after a bilateral sagittal split osteotomy of the mandible. Int J Oral Maxillofac Surg 38: 1244-9.
Santos Tde S, Gomes AC, de Melo DG, Melo AR, Cavalcante JR, de Araújo LC, et al. 2012. Evaluation of reliability and reproducibility of linear measurements of cone-beam-computed tomography. Indian J Dent Res 23: 473-8.
Schultze-Mosgau S, Krems H, Ott R, Neukam FW. 2001. A prospective electromyographic and computer-aided thermal sensitivity assessment of nerve lesions after sagittal split osteotomy and Le Fort I osteotomy. J Oral Maxillofac Surg 59: 128-39.
Sekerci AE, Sahman H. 2014. Cone beam computed tomographic analyses of the position and course of the mandibular canal: relevance to the sagittal split ramus osteotomy. Biomed Res Int 2014:945671.
Smith BR1, Rajchel JL, Waite DE, Read L. 1991. Mandibular ramus anatomy as it relates to the medial osteotomy of the sagittal split ramus osteotomy. J Oral Maxillofac Surg 49(2):112-6.
Tom WK, Martone CH, Mintz SM. 1997. A study of mandibular ramus anatomy and its significance to sagittal split osteotomy. Int J Oral Maxillofac Surg 26: 176-8.
Tsuji Y, Muto T, Kawakami J, Takeda S. 2005. Computed tomographic analysis of the position and course of the mandibular canal: relevance to the sagittal split ramus osteotomy. Int J Oral Maxillofac Surg 34: 243-6.
William. K. Tom, C H. Martone, S. M. Mintz. 1997. A study of mandibular ramus anatomy and its significance to sagittal split osteotomy. Int. J. Oral Maxillofac. Surg 26: 176-178.
Wittwer G, Adeyemo WL, Beinemann J, Juergens P. 2012. Evaluation of risk of injury to the inferior alveolar nerve with classical sagittal split osteotomy technique and proposed alternative surgical techniques using computer-assisted surgery. Int J Oral Maxillofac Surg 41: 79-86.
Yamamoto R, Nakamura A, Ohno K, Michi KI. 2002. Relationship of the mandibular canal to the lateral cortex of the mandibular ramus as a factor in the development of neurosensory disturbance after bilateral sagittal split osteotomy. J Oral Maxillofac Surg 60: 490-5.
Yamauchi K, Takahashi T, Kaneuji T, Nogami S, Yamamoto N, Miyamoto I, et al. 2012. Risk factors for neurosensory disturbance after bilateral sagittal split osteotomy based on position of mandibular canal and morphology of mandibular angle. J Oral Maxillofac Surg 70 :401-6.
Yoshida T, Nagamine T, Kobayashi T, Michimi N, Nakajima T, Sasakura H, et al. 1989. Impairment of the inferior alveolar nerve after sagittal split osteotomy. J Craniomaxillofac Surg 17: 271-7.
Yoshioka I, Tanaka T, Khanal A, Habu M, Kito S, Kodama M, et al. 2010. Relationship between inferior alveolar nerve canal position at mandibular second molar in patients with prognathism and possible occurrence of neurosensory disturbance after sagittal split ramus osteotomy. J Oral Maxillofac Surg 68: 3022-7.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top