跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.176) 您好!臺灣時間:2025/09/06 12:49
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳鈞彥
研究生(外文):CHEN, JUN-YAN
論文名稱:磷化銦微透鏡及高速砷化銦鋁/砷化銦鎵結構雪崩型檢光二極體研製與分析
論文名稱(外文):Fabrication and Measurement of High-speed InAlAs/InGaAs Avalanche Photodiode and InP Micro Lens
指導教授:何文章何文章引用關係
指導教授(外文):HO, WEN-JENG
口試委員:何文章李三良宋嘉斌羅俊傑
口試委員(外文):HO, WEN-JENGLEE, SAN-LIANGSONG, JIA-BINLUO,JUN-JIE
口試日期:2019-07-18
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:光電工程系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:97
中文關鍵詞:砷化铟鋁砷化铟鎵磷化銦雪崩型檢光二極體崩潰電壓增益頻寬微透鏡
外文關鍵詞:InAlAsInGaAsInPAPDMicro-lens
相關次數:
  • 被引用被引用:0
  • 點閱點閱:235
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在過去幾十年雪崩型檢光二極體(APD)已廣泛應用在長距離光纖通訊系統,而最近幾年高速率雪崩型檢光二極體在長及短距離光纖通訊、雷射測距儀、雷射光電感測器等應用,越來越受到重視。在雪崩層材料選擇方面;砷化銦鋁(In0.52Al0.48As)的晶格常數與砷化铟鎵(In0.53Ga0.47As)和磷化銦(InP)是匹配外,另外 In0.52Al0.48As具有比InP較大的電子游離係數,可獲得較低的超額雜訊及高的增益頻寬乘積等特性,因此InAlAs材料層比InP材料更適合作為雪崩層材料。本論文研製具有吸收層、漸變層、電荷層與雪崩層分離結構(SAGFM) 背向入光之砷化铟鋁-砷化銦镓雪崩型檢光二極體及探討如何將InP微透鏡於APD元件的背面。
本論文包括: (1) APD磊晶結構之設計,利用電場分布計算出最佳磊晶結構;(2)APD元件光罩設計、元件製程,(3)APD元件背面製作出微透鏡,(4)APD元件直流測量與特性分析;包含電容、崩潰電壓、擊穿電壓、暗電流、增益、及響應度;(4)APD元件交流測量與特性分析,包含頻率響應(f3dB)、眼圖分析。
所研製出之微透鏡如下:透鏡直徑70 μm,透鏡高度 8.61 μm,焦距為110.19 μm ,曲率半徑為75.43 μm。也透過ASAP光學模擬軟體計算出之焦距為109.31 μm, Beam width為17.36 μm。另外,所研製出之高速率砷化銦鋁/砷化銦鎵結構APD晶粒特性:崩潰電壓為27.6V,擊穿電壓為16.5V,在0.9 VBR時暗電流為67.9 nA,增益為8.87,電容為0.204 pF。在頻響特性的部分,輸入1 µW的光功率及增益為5時,3-dB頻寬為6.39 GHz。在眼圖量測的部分,輸入0.1 mW的功率及位元速率10 Gb/s時;眼圖上升時間為62.5 ps。

In the past few decades, avalanche photodiodes (APDs) have been widely used in long distance fiber-optic communication systems. In recent years, which more high-speed avalanche photodiodes are used in long or short distance fiber optic communication and laser rangefinder. The application of APD device is getting more and more attention. In terms of avalanche layer material selection, the lattice constant of indium aluminum arsenide (In0.52Al0.48As; InAlAs) is matched with indium gallium arsenide (In0.53Ga0.47As; InGaAs) and indium phosphide (InP), and InAlAs has a larger electron free coefficient than InP, which can obtain lower excess noise and higher gain bandwidth product. Therefore, the InAlAs material layer is more suitable as an avalanche layer material than InP material. In this paper, we developed an InAlAs/InGaAs APD with an absorber layer, graded layer, field-control layer, and an avalanche layer separation structure (SAGFM), and we discussed how to fabricate the InP microlens on the back-side of APD devices.
This study includes: (1) Design of APD epitaxial structure, using simulation software to calculate electric field distribution to obtain the optimal epitaxial structure; (2) APD device mask design and device processing, (3) InP microlens fabrication on the back-side of APD device, (4) DC measurement and characteristic analysis; including capacitance, breakdown voltage, dark current, gain, and responsiveity; (5) AC measurement and characteristic analysis, including frequency response (f3dB) and eye diagram analysis.
The InP micro lens fabricated and measured as follows: lens diameter is 70 μm, lens height is 8.61 μm, focal length is 110.19 μm, and radius of curvature is 75.43 μm. The focal length and beam width calculated by the ASAP optical simulation software are 109.31 μm and 17.36 μm, respectively.
In addition, the performance of high-speed InAlAs/InGaAs structure APD: the breakdown voltage is 27.6V, the paunch-through voltage is 16.5V. The dark current is 67.9 nA and the gain is 8.87, and the capacitance is 0.204 pF, which APD was biased at 0.9 VBR. In the frequency response, the 3-dB bandwidth is 6.39 GHz when the laser input power is 1 μW and the gain at 5. In the part of the eye diagram measurement, when the laser input power of 0.1 mW and the bit rate of 10 Gb/s; the eye diagram analysis showed that the rise time is 62.5 ps.

摘要 i
ABSTRACT iii
致謝 v
目錄 vi
表目錄 viii
圖目錄 ix
第一章 簡介 11
1.1背景及目的 12
1.2 微透鏡製作背景 14
1.3 研究動機 16
第二章 高台型SAGFM雪崩型檢光二極體之工作原理 18
2.1 工作原理 18
2.2 暗電流工作機制 19
2.3 元件內部電場計算 22
2.4 雪崩增益Multiplication gain)的物理機制 27
2.5 元件電容工作機制 29
2.6 眼圖分析 31
2.7 頻率響應分析 33
第三章 磷化銦微透鏡製作原理與模擬 36
3.1 磷化銦微透鏡光學原理與製作方法 36
3.1.1 透鏡光學原理 36
3.1.2 磷化銦微透鏡製作方法 39
3.2 微透鏡光學模擬軟體ASAP介紹 43
第四章 元件結構與製程 44
4.1 實驗架構 46
4.1.1 論文架構 46
4.1.2 交流特性量測架構 46
4.1.2.1 頻響量測架構 46
4.1.2.2 眼圖量測架構 47
4.2 高速率SAGFM-APD磊晶結構設計 48
4.3 高速率SAGFM-APD晶粒製作流程 50
4.4 InP微透鏡製作 52
4.4.1 InP微透鏡光罩設計 52
4.4.2 Micro-Lens微透鏡製程 54
第五章 結果與討論 60
5.1 高速率雪崩型SAGFM-APD元件特性 60
5.1.1暗電流-電壓、照光電流-電壓及增益 60
5.1.2順向-電壓分析 62
5.1.3電容-電壓分析 64
5.1.4頻率響應分析 65
5.1.5眼圖分析 66
5.2磷化銦微透鏡特性分析 68
5.2.1微透鏡外觀分析 68
5.2.2光學模擬ASAP分析 75
第六章 結論與未來工作 89
6.1 結論 89
6.2 未來工作 90
參考文獻 92

[1]J. C. Campbell, “Recent advances in telecommunications avalanche photodiodes,” Journal of Lightwave Technology, vol. 25, no. 1, 2007, pp. 109–121.
[2]Y. L. Goh, D. J. Massey, A. R. J.Marshall, J. S. Ng, C. H. Tan, W. K. Ng, G. J. Rees, M. Hopkinson, J. P. R. David, S. K. Jones, “Avalanche Multiplication in InAlAs,” IEEE Transactions on Electron Devices, vol. 54, no. 1, 2007, pp. 11–16.
[3]S. Xie, S. Zhang, C. Tan, “InGaAs/InAlAs avalanche photodiode with low dark current for high-speed operation,” IEEE photonics technology letters, vol. 27, Issue 16, 2015, pp. 1745-1748.
[4]M. Nouri, A. Ghadimi, ”Reduction of dark current and gain increase in InAs avalanche photodiode with AlGaAs blocking layer,” Optical, vol. 148, 2017, pp. 268-274.
[5]E. Ishimura, E. Yagyu, M. Nakaji, S. Ihara, K. Yoshiara, T. Aoyagi, Y. Tokuda, and T. Ishikawa, “Degradation mode analysis on highly reliable guardring-free planar InAlAs avalanche photodiodes,” Journal of Lightwave Technology, vol. 25, no. 12, 2007, pp. 386–393.
[6]B. F. Levine, R. N. Sacks, J. Ko, M. Jazwiecki, J. A.Valdmanis, D. Gunther, and J. H. Meier, “A new planar InGaAs–InAlAs avalanche photodiode,” IEEE Photonics Technology Letters, vol. 18, no. 18, 2006, pp. 1898-1900.
[7]M. Nada, Y. Muramoto, H. Yokoyama, T. Ishibashi and H. Matsuzaki, “Triple-mesa avalanche photodiode with inverted p-down structure for reliability and stability,”Journal of Lightwave Technology, vol. 32, no. 8, 2014, pp. 1543–1548.
[8]B. Li, Q. Q. Lv, R. Cui, W. H. Yin, X. Yang, Q. Han, “A low dark current mesa-type InGaAs/InAlAs avalanche photodiode,” IEEE Photonics Technology letters, vol. 27, no. 1, 2015, pp. 34-37.
[9]S. Miura, H. Kuwatsuka, T. Mikawa, and O. Wada, “Planar embedded InP/ GaInAs p-i-n photodiode for very high-speed operation,” Journal of Lightwave Technology, vol. 5, 1987, pp. 1371-1376.
[10]G. C. Chi, D. J. Muehlner, F. W. Ostermayer, J. M. Fruend, K. J. O’Brien, R. Pawelek, R. J. McCoy, R. C. Smith, Vincent D. Mattera, “Planar InP/InGaAsP three-dimensional graded-junction avalanche photodiode,” IEEE Transactions on Electron Devices, vol. 34, 1987, pp. 2265-2269.
[11]Y. Matsushima, N. Seki, S. Akiba, Y. Kushiro, “Receiver sensitivity of InGaAsP/InP heterostructure avalanche photodiode with InGaAsP buffer layer at 1.5-1.6 um region,” Electron Letters, vol. 19, 1983, pp. 845-846.
[12]S. Miura, H. Kuwatsuka, T. Mikawa, O. Wada, “Planar embedded InP/GaInAs p-i-n photodiode for very high-speed operation,” Journal of Lightwave Technology, vol. LT-5, no.10, 1987, pp. 1371-1376.
[13]S. Hwang, J. Shim, K. Yoo, “A 10-Gb/s planar InGaAs/InP avalanche photodiode with a thin multiplication layer fabricated by using recess-etching, and single-diffusion processes,” Journal of the Koeran Physical Society, vol. 49, no. 1, 2006, pp. 253-260.
[14]J. Kim, Q. Le, M. Lee, H. Yoo, D. S. Lee, C.S. Park, “Compact 2.5 Gb/s Burst-Mode Receiver with Optimum APD Gain for XG-PON1 and GPON Applications,” Journal of Electronics and Telecommunications Research Institute, vol. 31, 2009, pp. 622-624.
[15]X. Yin, X.-Z. Qiu, J. Gillis, J. Put, J. Verbrugghe, J. Bauwelinck, J. Vandewege, H. Krimmel, D. van Veen, P. Vetter, and F. Chang, “Experiments on a 10 Gb/s fast-settling high-sensitivity burst-mode receiver with on-chip auto-reset for 10G-GPONs,” Journal of Optical Communications and Networking , vol. 4, Issue11, 2012, pp. 68-76.
[16]J. Burm, J. Y. Choi, S. R. Cho, M. D. Kim, S. K. Yang, J. M. Baek, D. Y. Rhee, H. Y. Kang, D. H. Jang, “Edge gain suppression of a planar-type InGaAs-InP avalanche photodiodes with thin multiplication layers for 10-Gb/s applications,” IEEE Photonics Technology letters, vol. 16, 2004, pp.1721-1723..
[17]Y. Zhao, “Impact ionization in absorption grading charge and multiplication layers of InP/InGaAs SAGCM apds with a thick charge layer,” IEEE Transationsom on. Electron Devices, vol. 60, Issue 10, 2013, pp. 3493-3499.
[18]N. Li, R. Sidhu, X. Li, F. Ma, X. Zheng, S. Wang, G. Karve, S. Demiguel, A. L. Holmes Jr. and J. C. Campbell, “InGaAs-InAlAs avalanche photodiode with undepleted absorber,” Appled Physics letters, vol. 82, 2003, pp. 2175-2177.
[19]J. Wei, J. C. Dries, H. Wang, M. L. Lange, G. H. Olsen, and S. F. Forrest, “Optimization of 10-Gb/s long-wavelength floating guard ring InGaAs-InP avalanche photodiodes,” IEEE Photonics Technology letters, vol. 14, 2002, pp. 9779-9791.
[20]S. An, M.J. Deen, A.S. Vetter, W.R. Noel, J.P. Clark, F.R. Shpherd, “Effect of mesa overgrowth on low-frequency noise in planar separate absorption, grading, charge, and multiplication avalanche photodiodes,” IEEE Journal of Quantum Electronics, vol. 35, 1999, pp.1192-1202.
[21]S. Di, R. –X. Du, “The controlling of microlens contour by adjusting developing time in thermal reflow method,” Proceedings of SPIE- The International Society for Optical Engineering, vol. 7381, 2009, 7381-D.
[22]H. Yang, C. K. Chao, C. P. Lin, S. C. Shen, “Micro-ball lens array modeling and fabrication using thermal reflow in two polymer layers,” Journal of Micromechanics and microengineering, vol. 14, Issue 2, 2004, pp. 277-282..
[23]K. Totsu, K. Fujishiro, S. Tanaka, M. Esashi, “Fabrication of three-dimensional microstructure using maskless gray-scale lithography,” Sensors and Actuators A: Physical, vol. 30-131, 2006, pp. 387-392.
[24]C. C. Chen, M.H. Li, C. Y. Chang, G. C. Chi, J. Y. Chang, W. T. Cheng, J. H. Yeh, C. Wu, “Fabrication of high-NA GaN diffractive microlenses,” Optical mems, 2002, pp. 67-68.
[25]C. C. Chiu, Y. C. Lee, “Excimer laser micromachining of aspheric microlens array based on optimal contour mask design and laser dragging method,” Optics Express, vol. 20, 2012, pp. 5922-5935.
[26]B. McCall, G. Birch, M. Descour, T. Tkaczyk, “Fabrication of plastic microlens array for array microscopy by diamond milling techniques,” Proceedings of SPIE-The International Society for Optical Engineering, vol. 7590, 2010, 75900A.
[27]M. Lahrichi, G. Glastre, E. Derouin, D. Carpentier, N. Lagay, J. Decobert, M. Achouche,“240-GHz gain-bandwidth product back-side illuminated AlInAs avalanche photodiodes,” IEEE Photonics Technology letters, vol. 22, no. 18, 2010, pp. 1373–1375.
[28]S. M Sze, Physics of semiconductor devices: physics and technology, Wiley, 1985.
[29]A. Bandyopadhyay, M. J. Deen, L. ETarf, W. Clark,“A simplified approach to time domain modeling of avalanche photodiode,” IEEE Journal of Quantum Electron, vol. 34, 1998, pp. 691-699.A. Aoki, G. Nogami, J. Electrochem. Soc. 143, 191–193 (1996).
[30]K. S. Hyun, C. Y. Park, “Breakdown characteristics in InP/InGaAs avalanche photodiode with p-i-n multiplication layer structure,” Journal of Applied Physics, vol. 81, 1997, pp. 974-984.
[31]I. Umebu, A. N. M. M. Choudhury, P. N. Robson, “Ionization coefficients measured in abrupt InP junction,” Applied Physics Letters, vol. 36, 1980, pp. 302-303.
[32]S. R. Forrest, O. K. Kim, and R. G. Smith, “Optical response time of In0.53Ga0.47As/InP avalanche photodiodes,” Applied Physics Letters, vol. 41, 1992, pp. 95-98.
[33]J. C. Campbell, W. T. Tsang, G. J. Qua, and B. C. Johnson,“Frequency response of InP/InGaAsP/InGaAs avalanche photodiodes with separate、absorption、grading and multiplication region,” IEEE Journal of Quantum Electronics, Vol. 21, 1985, pp. 1743-1746.
[34]J. C. Campbell, W. T. Tsang, G. J. Qua, B. C. Johnson,“High-speed InP/InGaAsP/InGaAs avalanche photodiodes grown by chemical beam Exitaxy,”IEEE Journal of Quantum Electronics, vol. 24, 1998, pp. 496-500.
[35]O. S. Abdulwahid, J. Sexton, l. Kostakis, K. Lan, M. Missous,“physical modelling and experimental characterisation of InAlAs/InGaAs avalanche photodiode for 10 Gb/s data rates and higher,“ IET Optoelectronics, vol 12, Issue 1 , 2018, pp. 5-10.
[36]S. R. Forrest, O. K. Kim, R. G. Smith, “Optical response time of In0.53Ga0.47As/InP avalanche photodiodes,” Applied Physics Letters, vol. 4, 1982, pp. 95-98.
[37]http://ccf.ee.ntu.edu.tw/~ypchiou/Intro_EO/Ch0_RayOptics.pdf
[38]林坤億,利用接觸式曝光與立體光罩製作微針陣列模仁之研究,碩士論文,國立台灣科技大學機械工程所,台北,2012。
[39]林哲平,以微影製程開發新型光學微透鏡陣列模仁之研究,博士論文,國立台灣科技大學機械工程所,台北,2004。
[40]A. Romano, R. Cavaliere,theory and design of astronomical optical system using mathematica,Birkhauser,2010,pp. 14-17.。
[41]O. Wada, “Ion-beam etching of InP and its application to the fabrication of high radiance InGaAsP/InP light emitting diodes,” J. Electrochem. Soc.: Solid-State Science and Technology, vol. 131, no. 10, 1984, pp. 2373-2380.
[42]R. Congxin, X. Deyuan, C. Guoliang, L. Xianghuai, Z. Shichang, ”Fabrication of bifocal microlenses on InP and Si by Air ion beam etching,” Nuclear Inst. and Methods in Physics Research, B, vol 96, Issue 1, 1995, pp. 401-404.
[43]J. Kim, K. M. Kim, S. K. Jeon, M. Kim, E. H. Park, Y. S. Kwon, “Successively dry-wet etched InP microlens for bell shaped LED,” International Conference on Indium Phosphide and Related Materials, vol. 7769454, 2003, pp. 175-177.
[44]S. J. Cho, J. Kim, H. Kim, H. Y. Yang, Y. S. Kwon “Heterojunction bipolar phototransistor with monolithic integrated microlens,” Japanese Journal of. Applied Physics, vol. 45, no. 8A, 2006, pp. 6285-6287.
[45]T. Chino, M. Ishino, M. Kito, and Y. Matsui, “High reliable InGaAsP buried heterostructure laser diode fabricated by Cl2/N2-RIBE and MOVPE,” International Conference on Indium Phosphide and Related Materials, vol. 6188759, 2000, pp. 709-712.
[46]E.-H. Park and Y.-S. Kwon, “Chemical etching of InGaAsP/InP using HBr-H3PO4-K2Cr2O7 and its application to microlens array,” International Conference on Indium Phosphide and Related Materials, vol. 6703325, 2000, pp. 190-192.
[47]J. L.Weyher, R. Fornari, T. Görög, J. J. Kelly, and B.Erné, “HBr-K2Cr2O7-H2O etching system for lnP”, J. Cryst. Growth, vol. 141, 1994, pp. 57-67.
[48]林世穆譯,ASAPTM 8.0 Primer入門指南/簡介,US Breault Oranization,2003。

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
1. 覆晶式高台型砷化銦鋁/砷化銦鎵SAGFM-結構雪崩檢光二極體研製與分析
2. 結合下轉移及上轉換光譜轉換螢光粉層於平面結構薄矽太陽能電池特性提升之研究
3. 利用單層銦奈米粒子埋覆於雙抗反射層及含鉺摻雜螢光粉近紅外上轉換於金字塔結構矽太陽能電池以提升光電流與效率之研究
4. 高速率平面型磷化銦/砷化銦鎵雪崩檢光二極體研製與分析
5. 金屬電極圖型設計及高台型砷化銦鋁雪崩層結構之高速率雪崩檢光二極體研製與分析
6. InGaAs/InP雪崩二極體單光子感測系統於蓋格模式下的單光子檢測特性探討
7. InGaAs/InP雪崩光二極體工作在蓋格模式單光子檢測特性
8. 利用多層上轉換螢光粉光譜轉換層於金字塔表面結構矽太陽能電池特性提升之研究
9. 大光窗平面型磷化銦/砷化銦鎵雪崩型檢光二極體研製與分析
10. 利用含鉺摻雜之近紅外上轉換螢光粉應用於矽太陽能電池之研究
11. 單接面砷化鎵太陽能電池效率提升之研究
12. 結合上轉換與金屬粒子表面電漿誘導下轉移光譜轉換層於矽太陽能電池特性之研究
13. 以中高齡使用者觀點探討臺北市鄰里公園體健設施用後評估
14. 混和多種銪摻雜矽酸鹽螢光粉光譜轉換層及結合銀奈米粒子與光譜轉換層結構之平面型矽太陽能電池特性提升之研究
15. 製作與量測MOS結構矽太陽能電池在SOI基板及光伏偏壓下