[1]J. C. Campbell, “Recent advances in telecommunications avalanche photodiodes,” Journal of Lightwave Technology, vol. 25, no. 1, 2007, pp. 109–121.
[2]Y. L. Goh, D. J. Massey, A. R. J.Marshall, J. S. Ng, C. H. Tan, W. K. Ng, G. J. Rees, M. Hopkinson, J. P. R. David, S. K. Jones, “Avalanche Multiplication in InAlAs,” IEEE Transactions on Electron Devices, vol. 54, no. 1, 2007, pp. 11–16.
[3]S. Xie, S. Zhang, C. Tan, “InGaAs/InAlAs avalanche photodiode with low dark current for high-speed operation,” IEEE photonics technology letters, vol. 27, Issue 16, 2015, pp. 1745-1748.
[4]M. Nouri, A. Ghadimi, ”Reduction of dark current and gain increase in InAs avalanche photodiode with AlGaAs blocking layer,” Optical, vol. 148, 2017, pp. 268-274.
[5]E. Ishimura, E. Yagyu, M. Nakaji, S. Ihara, K. Yoshiara, T. Aoyagi, Y. Tokuda, and T. Ishikawa, “Degradation mode analysis on highly reliable guardring-free planar InAlAs avalanche photodiodes,” Journal of Lightwave Technology, vol. 25, no. 12, 2007, pp. 386–393.
[6]B. F. Levine, R. N. Sacks, J. Ko, M. Jazwiecki, J. A.Valdmanis, D. Gunther, and J. H. Meier, “A new planar InGaAs–InAlAs avalanche photodiode,” IEEE Photonics Technology Letters, vol. 18, no. 18, 2006, pp. 1898-1900.
[7]M. Nada, Y. Muramoto, H. Yokoyama, T. Ishibashi and H. Matsuzaki, “Triple-mesa avalanche photodiode with inverted p-down structure for reliability and stability,”Journal of Lightwave Technology, vol. 32, no. 8, 2014, pp. 1543–1548.
[8]B. Li, Q. Q. Lv, R. Cui, W. H. Yin, X. Yang, Q. Han, “A low dark current mesa-type InGaAs/InAlAs avalanche photodiode,” IEEE Photonics Technology letters, vol. 27, no. 1, 2015, pp. 34-37.
[9]S. Miura, H. Kuwatsuka, T. Mikawa, and O. Wada, “Planar embedded InP/ GaInAs p-i-n photodiode for very high-speed operation,” Journal of Lightwave Technology, vol. 5, 1987, pp. 1371-1376.
[10]G. C. Chi, D. J. Muehlner, F. W. Ostermayer, J. M. Fruend, K. J. O’Brien, R. Pawelek, R. J. McCoy, R. C. Smith, Vincent D. Mattera, “Planar InP/InGaAsP three-dimensional graded-junction avalanche photodiode,” IEEE Transactions on Electron Devices, vol. 34, 1987, pp. 2265-2269.
[11]Y. Matsushima, N. Seki, S. Akiba, Y. Kushiro, “Receiver sensitivity of InGaAsP/InP heterostructure avalanche photodiode with InGaAsP buffer layer at 1.5-1.6 um region,” Electron Letters, vol. 19, 1983, pp. 845-846.
[12]S. Miura, H. Kuwatsuka, T. Mikawa, O. Wada, “Planar embedded InP/GaInAs p-i-n photodiode for very high-speed operation,” Journal of Lightwave Technology, vol. LT-5, no.10, 1987, pp. 1371-1376.
[13]S. Hwang, J. Shim, K. Yoo, “A 10-Gb/s planar InGaAs/InP avalanche photodiode with a thin multiplication layer fabricated by using recess-etching, and single-diffusion processes,” Journal of the Koeran Physical Society, vol. 49, no. 1, 2006, pp. 253-260.
[14]J. Kim, Q. Le, M. Lee, H. Yoo, D. S. Lee, C.S. Park, “Compact 2.5 Gb/s Burst-Mode Receiver with Optimum APD Gain for XG-PON1 and GPON Applications,” Journal of Electronics and Telecommunications Research Institute, vol. 31, 2009, pp. 622-624.
[15]X. Yin, X.-Z. Qiu, J. Gillis, J. Put, J. Verbrugghe, J. Bauwelinck, J. Vandewege, H. Krimmel, D. van Veen, P. Vetter, and F. Chang, “Experiments on a 10 Gb/s fast-settling high-sensitivity burst-mode receiver with on-chip auto-reset for 10G-GPONs,” Journal of Optical Communications and Networking , vol. 4, Issue11, 2012, pp. 68-76.
[16]J. Burm, J. Y. Choi, S. R. Cho, M. D. Kim, S. K. Yang, J. M. Baek, D. Y. Rhee, H. Y. Kang, D. H. Jang, “Edge gain suppression of a planar-type InGaAs-InP avalanche photodiodes with thin multiplication layers for 10-Gb/s applications,” IEEE Photonics Technology letters, vol. 16, 2004, pp.1721-1723..
[17]Y. Zhao, “Impact ionization in absorption grading charge and multiplication layers of InP/InGaAs SAGCM apds with a thick charge layer,” IEEE Transationsom on. Electron Devices, vol. 60, Issue 10, 2013, pp. 3493-3499.
[18]N. Li, R. Sidhu, X. Li, F. Ma, X. Zheng, S. Wang, G. Karve, S. Demiguel, A. L. Holmes Jr. and J. C. Campbell, “InGaAs-InAlAs avalanche photodiode with undepleted absorber,” Appled Physics letters, vol. 82, 2003, pp. 2175-2177.
[19]J. Wei, J. C. Dries, H. Wang, M. L. Lange, G. H. Olsen, and S. F. Forrest, “Optimization of 10-Gb/s long-wavelength floating guard ring InGaAs-InP avalanche photodiodes,” IEEE Photonics Technology letters, vol. 14, 2002, pp. 9779-9791.
[20]S. An, M.J. Deen, A.S. Vetter, W.R. Noel, J.P. Clark, F.R. Shpherd, “Effect of mesa overgrowth on low-frequency noise in planar separate absorption, grading, charge, and multiplication avalanche photodiodes,” IEEE Journal of Quantum Electronics, vol. 35, 1999, pp.1192-1202.
[21]S. Di, R. –X. Du, “The controlling of microlens contour by adjusting developing time in thermal reflow method,” Proceedings of SPIE- The International Society for Optical Engineering, vol. 7381, 2009, 7381-D.
[22]H. Yang, C. K. Chao, C. P. Lin, S. C. Shen, “Micro-ball lens array modeling and fabrication using thermal reflow in two polymer layers,” Journal of Micromechanics and microengineering, vol. 14, Issue 2, 2004, pp. 277-282..
[23]K. Totsu, K. Fujishiro, S. Tanaka, M. Esashi, “Fabrication of three-dimensional microstructure using maskless gray-scale lithography,” Sensors and Actuators A: Physical, vol. 30-131, 2006, pp. 387-392.
[24]C. C. Chen, M.H. Li, C. Y. Chang, G. C. Chi, J. Y. Chang, W. T. Cheng, J. H. Yeh, C. Wu, “Fabrication of high-NA GaN diffractive microlenses,” Optical mems, 2002, pp. 67-68.
[25]C. C. Chiu, Y. C. Lee, “Excimer laser micromachining of aspheric microlens array based on optimal contour mask design and laser dragging method,” Optics Express, vol. 20, 2012, pp. 5922-5935.
[26]B. McCall, G. Birch, M. Descour, T. Tkaczyk, “Fabrication of plastic microlens array for array microscopy by diamond milling techniques,” Proceedings of SPIE-The International Society for Optical Engineering, vol. 7590, 2010, 75900A.
[27]M. Lahrichi, G. Glastre, E. Derouin, D. Carpentier, N. Lagay, J. Decobert, M. Achouche,“240-GHz gain-bandwidth product back-side illuminated AlInAs avalanche photodiodes,” IEEE Photonics Technology letters, vol. 22, no. 18, 2010, pp. 1373–1375.
[28]S. M Sze, Physics of semiconductor devices: physics and technology, Wiley, 1985.
[29]A. Bandyopadhyay, M. J. Deen, L. ETarf, W. Clark,“A simplified approach to time domain modeling of avalanche photodiode,” IEEE Journal of Quantum Electron, vol. 34, 1998, pp. 691-699.A. Aoki, G. Nogami, J. Electrochem. Soc. 143, 191–193 (1996).
[30]K. S. Hyun, C. Y. Park, “Breakdown characteristics in InP/InGaAs avalanche photodiode with p-i-n multiplication layer structure,” Journal of Applied Physics, vol. 81, 1997, pp. 974-984.
[31]I. Umebu, A. N. M. M. Choudhury, P. N. Robson, “Ionization coefficients measured in abrupt InP junction,” Applied Physics Letters, vol. 36, 1980, pp. 302-303.
[32]S. R. Forrest, O. K. Kim, and R. G. Smith, “Optical response time of In0.53Ga0.47As/InP avalanche photodiodes,” Applied Physics Letters, vol. 41, 1992, pp. 95-98.
[33]J. C. Campbell, W. T. Tsang, G. J. Qua, and B. C. Johnson,“Frequency response of InP/InGaAsP/InGaAs avalanche photodiodes with separate、absorption、grading and multiplication region,” IEEE Journal of Quantum Electronics, Vol. 21, 1985, pp. 1743-1746.
[34]J. C. Campbell, W. T. Tsang, G. J. Qua, B. C. Johnson,“High-speed InP/InGaAsP/InGaAs avalanche photodiodes grown by chemical beam Exitaxy,”IEEE Journal of Quantum Electronics, vol. 24, 1998, pp. 496-500.
[35]O. S. Abdulwahid, J. Sexton, l. Kostakis, K. Lan, M. Missous,“physical modelling and experimental characterisation of InAlAs/InGaAs avalanche photodiode for 10 Gb/s data rates and higher,“ IET Optoelectronics, vol 12, Issue 1 , 2018, pp. 5-10.
[36]S. R. Forrest, O. K. Kim, R. G. Smith, “Optical response time of In0.53Ga0.47As/InP avalanche photodiodes,” Applied Physics Letters, vol. 4, 1982, pp. 95-98.
[37]http://ccf.ee.ntu.edu.tw/~ypchiou/Intro_EO/Ch0_RayOptics.pdf
[38]林坤億,利用接觸式曝光與立體光罩製作微針陣列模仁之研究,碩士論文,國立台灣科技大學機械工程所,台北,2012。[39]林哲平,以微影製程開發新型光學微透鏡陣列模仁之研究,博士論文,國立台灣科技大學機械工程所,台北,2004。[40]A. Romano, R. Cavaliere,theory and design of astronomical optical system using mathematica,Birkhauser,2010,pp. 14-17.。
[41]O. Wada, “Ion-beam etching of InP and its application to the fabrication of high radiance InGaAsP/InP light emitting diodes,” J. Electrochem. Soc.: Solid-State Science and Technology, vol. 131, no. 10, 1984, pp. 2373-2380.
[42]R. Congxin, X. Deyuan, C. Guoliang, L. Xianghuai, Z. Shichang, ”Fabrication of bifocal microlenses on InP and Si by Air ion beam etching,” Nuclear Inst. and Methods in Physics Research, B, vol 96, Issue 1, 1995, pp. 401-404.
[43]J. Kim, K. M. Kim, S. K. Jeon, M. Kim, E. H. Park, Y. S. Kwon, “Successively dry-wet etched InP microlens for bell shaped LED,” International Conference on Indium Phosphide and Related Materials, vol. 7769454, 2003, pp. 175-177.
[44]S. J. Cho, J. Kim, H. Kim, H. Y. Yang, Y. S. Kwon “Heterojunction bipolar phototransistor with monolithic integrated microlens,” Japanese Journal of. Applied Physics, vol. 45, no. 8A, 2006, pp. 6285-6287.
[45]T. Chino, M. Ishino, M. Kito, and Y. Matsui, “High reliable InGaAsP buried heterostructure laser diode fabricated by Cl2/N2-RIBE and MOVPE,” International Conference on Indium Phosphide and Related Materials, vol. 6188759, 2000, pp. 709-712.
[46]E.-H. Park and Y.-S. Kwon, “Chemical etching of InGaAsP/InP using HBr-H3PO4-K2Cr2O7 and its application to microlens array,” International Conference on Indium Phosphide and Related Materials, vol. 6703325, 2000, pp. 190-192.
[47]J. L.Weyher, R. Fornari, T. Görög, J. J. Kelly, and B.Erné, “HBr-K2Cr2O7-H2O etching system for lnP”, J. Cryst. Growth, vol. 141, 1994, pp. 57-67.
[48]林世穆譯,ASAPTM 8.0 Primer入門指南/簡介,US Breault Oranization,2003。