跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.134) 您好!臺灣時間:2025/11/14 02:38
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:邱怡瑄
研究生(外文):Chiu, Yi-Hsuan
論文名稱:金屬-半導體異質結構:材料設計、載子動力學及光催化應用
論文名稱(外文):Metal-Semiconductor Heterostructures: Materials Design, Charge Dynamics and Photocatalytsis Applications
指導教授:徐雍鎣
指導教授(外文):Hsu, Yung-Jung
口試委員:韋光華呂世源黃暄益吳季珍陳貞夙
口試委員(外文):Wei, Kung-HwaLu, Shih-YuanHuang, MichaelWu, Jih-JenChen, Jen-Sue
口試日期:2018-12-28
學位類別:博士
校院名稱:國立交通大學
系所名稱:材料科學與工程學系所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2018
畢業學年度:107
語文別:英文
論文頁數:130
中文關鍵詞:金屬-半導體異質結構載子動力學光電化學水分解產氫全天候光催化劑
外文關鍵詞:Metal-semiconductor heterostructuresCharge dynamicsPhotoelectrochemical water splittingHydrogen generationAll-day-active photocatalysts
相關次數:
  • 被引用被引用:0
  • 點閱點閱:562
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
此篇論文著重在探索基本穩健且實用的光催化劑平台,以便在環境永續與可再生能源等具挑戰性的領域取得重大突破。為此我們開發了新穎智能光催化劑並建立其界面載子動力學與相關光催化活性的關聯性,包含典型的半導體/金屬異質結構光觸媒系統,ZnO/金屬(Au, Ag, Pd),特別是對於表面電漿共振誘導之界面載子動力學的定量分析。其中,ZnO-Au系統中對於等離子金屬含量,表面電漿共振誘導之載子傳遞,電場效應以及所量測到之電化學水分解反應中光活性提升間關聯性的建立為後續高效能且適當之電漿共振電化學水分解系統的開發提供確切實際的基礎。另外,我們還引進Ta, Nb, Zr等元素至TiO2奈米管中修飾其電子結構,並建立全空乏四元Ti−Nb−Ta−Zr−O (TNTZO)混合氧化物奈米管陣列,可作為後續建構複雜光電極系統所需之多樣化結構骨架。此外,通過顯著的載子分離和獨特過氧化氫酶特性之交互作用,可成功製備出具全天候活性之光催化劑- Au@Cu7S4修飾之TiO2奈米線。
This thesis focus on exploring essentially robust and practically efficient photocatalyst platform in order to make significant breakthrough to the ever-challenging fields of environmental sustainability and renewable energy. We developed the intelligent photocatalyst and demonstrated the correlations of their interfacial charge dynamics and photocatalytic activity including typical semiconductor/metal heterostructure photocatalyst system, ZnO/Metal (Ag, Au, Pd), especially for the quantitative analysis on the SPR-induced interfacial charge dynamics of ZnO-Au system. The correlations among plasmonic metal content, surface plasmon resonance-mediated charge transfer and electromagnetic response, and the resultant photoactivity enhancement toward photoelectrochemical (PEC) water splitting provide a solid foundation for creating effective and applicable plasmonic PEC cells. We also introduced Ta, Nb, Zr into TiO2 nanotube system to modify its electronic structures and established a fully depleted quaternary Ti−Nb−Ta−Zr−O (TNTZO) mixed-oxide nanotube arrays to serve as a versatile structural backbone for construction of a sophisticated photoelectrode paradigm. Besides, by coupling the pronounced charge separation and distinctive peroxidase mimic features, an all-day-active photocatalyst, Au@Cu7S4 nanocrystal-decorated TiO2 nanowires, were also successfully synthesized.
中文摘要 III
Abstract IV
Acknowledgement V
Table of Content VI
Chapter 1. Background and Motivation 1
Chapter 2. Metal-Particle-Decorated ZnO Nanocrystals: Photocatalysis and Charge Dynamicss 3
2.1 Introduction 3
2.2 Experimental Section 6
2.2.1 Preparation of PVP-Stabilized Metal Particles 6
2.2.2 Antisolvent Process for Metal-Decorated ZnO 6
2.2.3 Time-Resolved PL Analysis 7
2.2.4 Photocatalysis Experiment 7
2.2.5 Characterizations 8
2.3 Results and Discussion 9
2.4 Conclusions 21
2.5 References 22
Chapter 3. Plasmon-mediated charge dynamics and photoactivity enhancement for Au-decorated ZnO nanocrystals 28
3.1 Introduction 28
3.2 Experimental Section 31
3.2.1 Antisolvent process for ZnO–Au synthesis 31
3.2.2 Time-resolved PL measurements 31
3.2.3 PEC measurements 32
3.2.4 Electric field simulations 32
3.2.5 Characterization 33
3.3 Results and Discussion 34
3.4 Conclusion 51
3.5 Supporting Information 52
3.6 References 55
Chapter 4. Fully Depleted Ti−Nb−Ta−Zr−O Nanotubes: Interfacial Charge Dynamics and Solar Hydrogen Production 62
4.1 Introduction 62
4.2 Experimental Section 65
4.2.1 Anodization Growth of TNTZO 65
4.2.2 PEC Measurements. 65
4.2.3. Characterizations 66
4.3 Results and Discussion 68
4.4 Conclusions 85
4.5 References 86
Chapter 5. Au@Cu7S4 yolk@shell nanocrystal-decorated TiO2 nanowires as an all-day-active photocatalyst for environmental purification 92
5.1 Introduction 92
5.2 Experimental Section 95
5.2.1 Preparation of TiO2 nanowires 95
5.2.2. Decoration of Au particles 95
5.2.3. Further deposition of Cu2O and Cu7S4 95
5.2.4. Peroxidase-like activity measurement 96
5.2.5. Photocatalysis and dark-catalysis measurements 97
5.2.6. Characterizations 97
5.3 Results and Discussion 99
5.4 Conclusions 114
5.5 Supporting Information 115
5.6 References 118
Chapter 6. Summary and Outlook 124
Curriculum Vitae 126
2.5 References
1. Wang, H.; Zhang, L.; Chen, Z.; Hu, J.; Li, S.; Wang, Z.; Liu, J.; Wang, X. Semiconductor Heterojunction Photocatalysts: Design, Construction, and Photocatalytic Performances. Chem. Soc. Rev. 2014, 43, 5234−5244.
2. Wang, Y.; Wang, Q.; Zhan, X.; Wang, F.; Safdar, M.; He, J. Visible Light Driven Type II Heterostructures and Their Enhanced Photocatalysis Properties: A Review. Nanoscale 2013, 5, 8326−8339.
3. Qu, Y.; Duan, X. Progress, Challenge and Perspective of Heterogeneous Photocatalysts. Chem. Soc. Rev. 2013, 42, 2568−2580.
4. Su, Y.-W.; Lin, W.-H.; Hsu, Y.-J.; Wei, K.-H. Conjugated Polymer/Nanocrystal Nanocomposites for Renewable Energy Appli- cations in Photovoltaics and Photocatalysis. Small 2014, 10, 4427− 4442.

5. Liu, S.; Zhang, N.; Xu, Y.-J. Core−Shell Structured Nanocomposites for Photocatalytic Selective Organic Transformations. Part. Part. Syst. Charact. 2014, 31, 540−556.
6. Zhang, N.; Liu, S.; Xu, Y.-J. Recent Progress on Metal Core@ Semiconductor Shell Nanocomposites as A Promising Type of Photocatalyst. Nanoscale 2012, 4, 2227−2238.
7. Dutta, S. K.; Mehetor, S. K.; Pradhan, N. Metal Semiconductor Heterostructures for Photocatalytic Conversion of Light Energy. J. Phys. Chem. Lett. 2015, 6, 936−944.
8. Hou, W.; Cronin, S. B. A Review of Surface Plasmon Resonance-Enhanced Photocatalysis. Adv. Funct. Mater. 2013, 23, 1612−1619.
9. Jiang, R.; Li, B.; Fang, C.; Wang, J. Metal/Semiconductor Hybrid Nanostructures for Plasmon-Enhanced Applications. Adv. Mater. 2014, 26, 5274−5309.
10. Wang, C.; Astruc, D. Nanogold Plasmonic Photocatalysis for Organic Synthesis and Clean Energy Conversion. Chem. Soc. Rev. 2014, 43, 7188−7216.
11. Pu, Y.-C.; Wang, G.-M.; Chang, K.-D.; Ling, Y.-C.; Lin, Y.-K.; Fitzmorris, B. C.; Liu, C.-M.; Lu, X.-H.; Tong, Y.-X.; Zhang, J.-Z.; Hsu, Y.-J.; Li, Y. Au Nanostructure-Decorated TiO2 Nanowires Exhibiting Photoactivity Across Entire UV-visible Region for Photoelectrochem- ical Water Splitting. Nano Lett. 2013, 13, 3817−3823.
12. Ben-Shahar, Y.; Scotognella, F.; Kriegel, I.; Moretti, L.; Cerullo, G.; Rabani, E.; Banin, U. Optimal Metal Domain Size for Photocatalysis with Hybrid Semiconductor-Metal Nanorods. Nat. Commun. 2016, 7, 10413−10420.
13. Pu, Y.-C.; Chen, Y.-C.; Hsu, Y.-J. Au-Decorated NaxH2‐xTi3O7 Nanobelts Exhibiting Remarkable Photocatalytic Properties under Visible-Light Illumination. Appl. Catal., B 2010, 97, 389−397.
14. Chen, W.-T.; Hsu, Y.-J. L-Cysteine-Assisted Growth of Core- Satellite ZnS-Au Nanoassemblies with High Photocatalytic Efficiency. Langmuir 2010, 26, 5918−5925.
15. Jiang, Z.; Zhang, Z. Y.; Shangguan, W.; Isaacs, M. A.; Durndell, L. J.; Parlett, C. M. A.; Lee, A. F. Photodeposition as A Facile Route to Tunable Pt Photocatalysts for Hydrogen Production: on the Role of Methanol. Catal. Sci. Technol. 2016, 6, 81−88.
16. Chen, W.-T.; Lin, Y.-K.; Yang, T.-T.; Pu, Y.-C.; Hsu, Y.-J. Au/ ZnS Core/Shell Nanocrystals as An Efficient Anode Photocatalyst in Direct Methanol Fuel Cells. Chem. Commun. 2013, 49, 8486−8488.
17. Chen, Y.; Zeng, D.; Cortie, M. B.; Dowd, A.; Guo, H.; Wang, J.; Peng, D.-L. Seed-Induced Growth of Flower-Like Au-Ni-ZnO Metal-Semiconductor Hybrid Nanocrystals for Photocatalytic Applications. Small 2015, 11, 1460−1469.
18. Li, J.; Cushing, S. K.; Bright, J.; Meng, F.; Senty, T. R.; Zheng, P.; Bristow, A. D.; Wu, N. Ag@Cu2O Core-Shell Nanoparticles as Visible-Light Plasmonic Photocatalysts. ACS Catal. 2013, 3, 47−51.
19. Liu, G.; Wang, T.; Zhou, W.; Meng, X.; Zhang, H.; Liu, H.; Kako, T.; Ye, J. Crystal-Facet-Dependent Hot-Electron Transfer in Plasmonic-Au/Semiconductor Heterostructures for Efficient Solar Photocatalysis. J. Mater. Chem. C 2015, 3, 7538−7542.
20. DuChene, J. S.; Sweeny, B. C.; Johnston-Peck, A. C.; Su, D.; Stach, E. A.; Wei, W. D. Prolonged Hot Electron Dynamics in Plasmonic-Metal/Semiconductor Heterostructures with Implications for Solar Photocatalysis. Angew. Chem., Int. Ed. 2014, 53, 7887−7891.
21. Haldar, K. K.; Sinha, G.; Lahtinen, J.; Patra, A. Hybrid Colloidal Au-CdSe Pentapod Heterostructures Synthesis and Their Photocatalytic Properties. ACS Appl. Mater. Interfaces 2012, 4, 6266−6272.
22. Yang, T.-T.; Chen, W.-T.; Hsu, Y.-J.; Wei, K.-H.; Lin, T.-Y.; Lin, T.-W. Interfacial Charge Carrier Dynamics in Core-Shell Au-CdS Nanocrystals. J. Phys. Chem. C 2010, 114, 11414−11420.
23. Chen, Y.-C.; Pu, Y.-C.; Hsu, Y.-J. Interfacial Charge Carrier Dynamics of the Three-Component In2O3-TiO2-Pt Heterojunction System. J. Phys. Chem. C 2012, 116, 2967−2975.
24. Lu, Y.-H.; Lin, W.-H.; Yang, C.-Y.; Chiu, Y.-H.; Pu, Y.-C.; Lee, M.-H.; Tseng, Y.-C.; Hsu, Y.-J. A Facile Green Antisolvent Approach to Cu2+-Doped ZnO Nanocrystals with Visible-Light-Responsive Photoactivities. Nanoscale 2014, 6, 8796−8803.
25. Chen, Y.-C.; Liu, T.-C.; Hsu, Y.-J. ZnSe·0.5N2H4 Hybrid Nanostructures: A Promising Alternative Photocatalyst for Solar Conversion. ACS Appl. Mater. Interfaces 2015, 7, 1616−1623.
26. Hsu, Y.-H.; Nguyen, A. T.; Chiu, Y.-H.; Li, J.-M.; Hsu, Y.-J. Au- Decorated GaOOH Nanorods Enhanced the Performance of Direct Methanol Fuel Cells under Light Illumination. Appl. Catal. B Environ. 2016, 185, 133−140.
27. Lin, Y.-F.; Hsu, Y.-J. Interfacial Charge Carrier Dynamics of Type-II Semiconductor Nanoheterostructures. Appl. Catal. B Environ. 2013, 130−131, 93−98.
28. Chen, M.-Y.; Hsu, Y.-J. Type-II Nanorod Heterostructure Formation through One-Step Cation Exchange. Nanoscale 2013, 5, 363−368.
29. Williams, G.; Kamat, P. V. Graphene-Semiconductor Nano-composites: Excited-State Interactions between ZnO Nanoparticles and Graphene Oxide. Langmuir 2009, 25, 13869−13873.
30. Lightcap, I. V.; Kamat, P. V. Fortification of CdSe Quantum Dots with Graphene Oxide. Excited State Interactions and Light Energy Conversion. J. Am. Chem. Soc. 2012, 134, 7109−7116.
31. Chen, Y.-C.; Katsumata, K.-i.; Chiu, Y.-H.; Okada, K.; Matsushita, N.; Hsu, Y.-J. ZnO-Graphene Composites as Practical Photocatalysts for Gaseous Acetaldehyde Degradation and Electrolytic Water Oxidation. Appl. Catal. A General 2015, 490, 1−9.
32. Tsai, K.-A.; Hsu, Y.-J. Graphene Quantum Dots Mediated Charge Transfer of CdSe Nanocrystals for Enhancing Photo-electrochemical Hydrogen Production. Appl. Catal. B Environ. 2015, 164, 271−278.
33. Yu, S.; Lee, S. Y.; Yeo, J.; Han, J. W.; Yi, J. Kinetic and Mechanistic Insights into the All-Solid-State Z-Schematic System. J. Phys. Chem. C 2014, 118, 29583−29590.
34. Pu, Y.-C.; Lin, W.-H.; Hsu, Y.-J. Modulation of Charge Carrier Dynamics of NaxH2-x Ti3O7-Au-Cu2O Z-Scheme Nanoheterostruc tures through Size Effect. Appl. Catal. B Environ. 2015, 163, 343−351.
35. He, W.; Kim, H.-K.; Wamer, W. G.; Melka, D.; Callahan, J. H.; Yin, J.-J. Photogenerated Charge Carriers and Reactive Oxygen Species in ZnO/Au Hybrid Nanostructures with Enhanced Photocatalytic and Antibacterial Activity. J. Am. Chem. Soc. 2014, 136, 750−757.
36. Chanaewa, A.; Schmitt, J.; Meyns, M.; Volkmann, M.; Klinke, C.; von Hauff, E. Charge Redistribution and Extraction in Photocatalytically Synthesized Au-ZnO Nanohybrids. J. Phys. Chem. C 2015, 119, 21704−21710.
37. Han, N. S.; Kim, D.; Lee, J. W.; Kim, J.; Shim, H. S.; Lee, Y.; Lee, D.; Song, J. K. Unexpected Size Effect Observed in ZnO-Au Composite Photocatalysts. ACS Appl. Mater. Interfaces 2016, 8, 1067− 1072.
38. Dong, J.-Y.; Hsu, Y.-J.; Wong, D. S.-H.; Lu, S.-Y. Growth of ZnO Nanostructures with Controllable Morphology Using a Facile Green Antisolvent Method. J. Phys. Chem. C 2010, 114, 8867−8872.
39. Kim, H.; Chan, N. Y.; Dai, J.-Y.; Kim, D.-W. Enhanced Surface- and-Interface Coupling in Pd-Nanoparticle-coated LaAlO3/SrTiO3 Heterostructures: Strong Gas- and Photo-Induced Conductance Modulation. Scientific Reports 2015, 5, 8531−8537.
40. Xia, F.; Perebeinos, V.; Lin, Y.-M.; Wu, Y.; Avouris, P. The Origins and Limits of Metal-Graphene Junction Resistance. Nat. Nanotechnol. 2011, 6, 179−184.
41. Pyatenko, A.; Yamaguchi, M.; Suzuki, M. Synthesis of Spherical Silver Nanoparticles with Controllable Sizes in Aqueous Solutions. J. Phys. Chem. C 2007, 111, 7910−7917.
42. Xitao, W.; Rong, L.; Kang, W. Synthesis of ZnO@ZnS-Bi2S3 Core-Shell Nanorod Grown on Reduced Graphene Oxide Sheets and Its Enhanced Photocatalytic Performance. J. Mater. Chem. A 2014, 2, 8304−8313.
43. Grabar, K. C.; Freeman, R. G.; Hommer, M. B.; Natan, M. J. Preparation and Characterization of Au colloide Monolayers. Anal. Chem. 1995, 67, 735−743.
44. Doty, R. C.; Tshikhudo, T. R.; Brust, M.; Fernig, D. G. Extremely Stable Water-Soluble Ag Nanoparticles. Chem. Mater. 2005, 17, 4630−4635.
45. Turkevich, J.; Kim, G. Palladium: Preparation and Catalytic Properties of Particles of Uniform Size. Science 1970, 169, 873−879.
46. Abbott, A. P.; Capper, G.; Davies, D. L.; Rasheed, R. K.; Shikotra, P. Selective Extraction of Metals from Mixed Oxide Matrixes Using Choline-Based Ionic Liquids. Inorg. Chem. 2005, 44, 6497− 6499.
47. Wang, Z.-S.; Sayama, K.; Sugihara, H. Efficient Eosin Y Dye- Sensitized Solar Cell Containing Br-/Br − Electrolyte. J. Phys. Chem. B 2005, 109, 22449−22455.
48. Koczkur, K. M.; Mourdikoudis, S.; Polavarapu, L.; Skrabalak, S. E. Polyvinylpyrrolidone (PVP) in Nanoparticle Synthesis. Dalton Trans. 2015, 44, 17883−17905.
49. Guo, L.; Yang, S.; Synthesis and Characterization of Poly(vinylpyrrolidone)-Modified Zinc Oxide Nanoparticles. Chem. Mater. 2000, 12, 2268−2274.
50. Han, N. S.; Shim, H. S.; Seo, J. H.; Kim, S. Y.; Park, S. M.; Song, J. K. Defect States of ZnO Nanoparticles: Discrimination by Time- Resolved Photoluminescence Spectroscopy. J. Appl. Phys. 2010, 107, 084306−084313.
51. Chang, Y.; Xu, J.; Zhang, Y.; Ma, S.; Xin, L.; Zhu, L.; Xu, C. Optical Properties and Photocatalytic Performances of Pd Modified ZnO Samples. J. Phys. Chem. C 2009, 113, 18761−187676.
52. Kale, R. B.; Hsu, Y.-J.; Lin, Y.-F.; Lu, S.-Y. Synthesis of Stoichiometric Flowerlike ZnO Nanorods with Hundred Percent Morphological Yield. Solid State Commun. 2007, 142, 302−305.
53. Ruiz Peralta, Ma. D. L.; Pal, U.; Zeferino, R. S. Photo- luminescence (PL) Quenching and Enhanced Photocatalytic Activity of Au-Decorated ZnO Nanorods Fabricated through Microwave- Assisted Chemical Synthesis. ACS Appl. Mater. Interfaces 2012, 4, 4807−4816.
54. Labat, F.; Ciofini, I.; Hratchian, H. P.; Frisch, M.; Raghavachari, K.; Adamo, C. First Principles Modeling of Eosin-Loaded ZnO Films: A Step toward the Understanding of Dye-Sensitized Solar Cell Performances. J. Am. Chem. Soc. 2009, 131, 14290−14298.
55. Graaf, H.; Maedler, C.; Kehr, M.; Oekermann, T. Structural Changes of Electrodeposited ZnO Matrices for Dye-Sensitized Solar Cells During Preparation. J. Phys. Chem. C 2009, 113, 6910−6912.
56. Guerin, V. M.; Magne, C.; Pauporte,́ T.; Le Bahers, T.; Rathousky, J. Electrodeposited Nanoporous versus Nanoparticulate ZnO Films of Similar Roughness for Dye-Sensitized Solar Cell Applications. ACS Appl. Mater. Interfaces 2010, 2, 3677−3685.
57. Cheng, H.-M.; Hsieh, W.-F. Electron Transfer Properties of Organic Dye-Sensitized Solar Cells Based on Indoline Sensitizers with ZnO Nanoparticles. Nanotechnology 2010, 21, 485202−485210.
58. Greeneltch, N. G.; Davis, A. S.; Valley, N. A.; Casadio, F.; Schatz, G. C.; Van Duyne, R. P.; Shah, N. C. Near-Infrared Surface- Enhanced Raman Spectroscopy (NIR-SERS) for the Identification of Eosin Y: Theoretical Calculations and Evaluation of Two Different Nanoplasmonic Substrates. J. Phys. Chem. A 2012, 116, 11863−11869.
59. Kobasa, I. M.; Tarasenko, G. P. Photocatalysis of Reduction of the Dye Methylene Blue by Bi2S3/CdS Nanocomposites. Theor. Exp. Chem. 2002, 38, 255−258.
60. Kobasa, I. M.; Kondrat'eva, I. V.; Gnatyuk, Yu. I. Photocatalytic Reduction of Methylene Blue by Formaldehyde in the Presence of Titanium Dioxide and Cadmium Sulfide Sensitized by (1-Phenyl-5,6- Benzoquinoline-2)-2,4-Dihydroxystyryl Iodide. Theor. Exp. Chem. 2008, 44, 42−47.
61. Behnajady, M. A.; Modirshahla, N.; Hamzavi, R. Kinetic Study on Photocatalytic Degradation of C.I. Acid Yellow 23 by ZnO Photocatalyst. J. Hazard. Mater. 2006, 133, 226−232.
62. Velmurugan, R.; Swaminathan, M. An Efficient Nanostructured ZnO for Dye Sensitized Degradation of Reactive Red 120 Dye under Solar Light. Sol. Energy Mater. Sol. Cells 2011, 95, 942−950.
63. Zhang, Z.; Yu, Y.; Wang, P. Hierarchical Top-Porous/Bottom-Tubular TiO2 Nanostructures Decorated with Pd Nanoparticles for Efficient Photoelectrocatalytic Decomposition of Synergistic Pollutants. ACS Appl. Mater. Interfaces 2012, 4, 990−996.
64. Zhou, N.; Polavarapu, L.; Gao, N.; Pan, Y.; Yuan, P.; Wang, Q.; Xu, Q.-H. TiO2 Coated Au/Ag Nanorods with Enhanced Photo- catalytic Activity under Visible Light Irradiation. Nanoscale 2013, 5, 4236−4241.
65. Yin, H.; Yu, K.; Song, C.; Huang, R.; Zhu, Z. Synthesis of Au- Decorated V2O5@ZnO Heteronanostructures and Enhanced Plasmonic Photocatalytic Activity. ACS Appl. Mater. Interfaces 2014, 6, 14851−14860.
66. He, W.; Wu, H.; Wamer, W. G.; Kim, H.-K.; Zheng, J.; Jia, H.; Zheng, Z.; Yin, J.-J. Unraveling the Enhanced Photocatalytic Activity and Phototoxicity of ZnO/Metal Hybrid Nanostructures from Generation of Reactive Oxygen Species and Charge Carriers. ACS Appl. Mater. Interfaces 2014, 6, 15527−15535.
67. Zhang, L.; Du, L.; Yu, X.; Tan, S.; Cai, X.; Yang, P.; Gu, Y.; Mai, W. Significantly Enhanced Photocatalytic Activities and Charge Separation Mechanism of Pd-Decorated ZnO−Graphene Oxide Nanocomposites. ACS Appl. Mater. Interfaces 2014, 6, 3623−3629.
68. Wei, C.; Bard, A. J.; Mirkin, M. V. Scanning Electrochemical Microscopy Application of SECM to the Study of Charge Transfer Processes at the Liquid/Liquid Interface. J. Phys. Chem. 1995, 99, 16033−16042.
69. Amemiya, S.; Ding, Z.; Zhou, J.; Bard, A. J. Studies of Charge Transfer at Liquid-Liquid Interfaces and Bilayer Lipid Membranes by Scanning Electrochemical Microscopy. J. Electroanal. Chem. 2000, 483, 7−17.
70. Furube, A.; Katoh, R.; Hara, K.; Sato, T.; Murata, S.; Arakawa, H.; Tachiya, M. Lithium Ion Effect on Electron Injection from a Photoexcited Coumarin Derivative into a TiO2 Nanocrystalline Film Investigated by Visible-to-IR Ultrafast Spectroscopy. J. Phys. Chem. B 2005, 109, 16406−16414.
71. Beckers, E. H. A.; Meskers, S. C. J.; Schenning, A. P. H. J.; Chen, Z.; Wuerthner, F.; Janssen, R. A. J. Charge Separation and Recombination in Photoexcited Oligo(p-phenylene vinylene): Per- ylene Bisimide Arrays Close to the Marcus Inverted Region. J. Phys. Chem. A 2004, 108, 6933−6937.
3.6 References
1. Wood, R. W. On a remarkable case of uneven distribution of light in a diffraction grating spectrum. Philosophical Magazine 1902, 4, 396-402.
2. Wood, R. W. SPR Method and Its Utilisation for Low Alcohols Concentrations Determination. Philosophical Magazine 1912, 23, 310-317.
3. Hou, W.; Cronin, S. B. A Review of Surface Plasmon Resonance-Enhanced Photocatalysis. Adv. Funct. Mater. 2013, 23, 1612-1619.
4. Sykes, M. E.; Barito, A.; Green, P. F.; Shtein, M. Broadband Plasmonic Photocurrent Enhancement in Planar Organic Photovoltaics Embedded in a Metallic Nanocavity. Adv. Energy Mater. 2014, 4, 1301937-1-1301937-9.
5. Suzuki, A.; Kondoha, J.; Matsui, Y.; Shiokaw, S.; Suzuki, K. Development of novel optical waveguide surface plasmon resonance (SPR) sensor with dual light emitting diodes. Sens. Actuators, B 2005, 106, 383-387.
6. Zhang, H. Q.; Boussaad, S.; Tao, N. J. High-performance differential surface plasmon resonance sensor using quadrant cell photodetector. Rev. Sci. Instrum. 2003, 74, 150-153.
7. Horiuchi, N. The new facets of plasmonics. Nat. Photonics 2012, 6, 353-354.
8. Fazio, E.; Neri, F.; Andrea, C. D’; Ossi, P. M.; Santo, N.; Trusso, S. SERS activity of pulsed laser ablated silver thin films with controlled nanostructure. J. Raman Spectrosc. 2011, 42, 1298-1304.
9. Zhao, Y.; Denga, Z.-q.; Li, J. Photonic crystal fiber based surface plasmon resonance chemical sensors. Sens. Actuators, B 2014, 202, 557-567.
10. Sun, Y.; Xia, Y. Gold and silver nanoparticles: A class of chromophores with colors tunable in the range from 400 to 750 nm. Analyst 2003, 128, 686-691.
11. Jiang, R.; Li, B.; Fang, C.; Wang, J. Metal/Semiconductor Hybrid Nanostructures for Plasmon-Enhanced Applications. Adv. Mater. 2014, 26, 5274-5309.
12. Han, C.; Quan, Q.; Chen, H. M.; Sun, Y.; Xu, Y.-J. Progressive Design of Plasmonic Metal-Semiconductor Ensemble toward Regulated Charge Flow and Improved Vis-NIR-Driven Solar-to-Chemical Conversion. Small 2017, 13, 1602947.
13. Zhang, N.; Han, C.; Xu, Y.-J.; Foley, J. J. IV; Zhang, D.; Codrington, J.; Gray, S. K.; Sun, Y. Near-field dielectric scattering promotes optical absorption by platinum nanoparticles. Nature Photonics 2016, 10, 473-482.
14. Zhang, N.; Liu, S.; Fu, X.; Xu, Y.-J. Synthesis of M@TiO2 (M = Au, Pd, Pt) Core–Shell Nanocomposites with Tunable Photoreactivity. J. Phys. Chem. C 2011, 115, 9136-9145.
15. Zhang, N.; Liu, S.; Xu, Y.-J. Recent progress on metal core@semiconductor shell nanocomposites as a promising type of photocatalyst. Nanoscale 2012, 4, 2227-2238.
16. Zhang, Z.; Huang, Y.; Liu, K.; Guo, L.; Yuan, Q.; Dong, B. Multichannel‐Improved Charge‐Carrier Dynamics in Well‐Designed Hetero‐nanostructural Plasmonic Photocatalysts toward Highly Efficient Solar‐to‐Fuels Conversion. Adv. Mater. 2015, 27, 5906-5914.
17. Shi, Y.; Wang, J.; Wang, C.; Zhai, T.-T.; Bao, W.-J.; Xu, J.-J.; Xia, X.-H.; Chen, H.-Y. Hot Electron of Au Nanorods Activates the Electrocatalysis of Hydrogen Evolution on MoS2 Nanosheets. J. Am. Chem. Soc. 2015, 137, 7365-7370.
18. Wang, T.; Lv, R.; Zhang, P.; Li, C.; Gong, J. Au nanoparticle sensitized ZnO nanopencil arrays for photoelectrochemical water splitting. Nanoscale 2015, 7, 77-81.
19. Xu, F.; Yao, Y.; Bai, D.; Xu, R.; Mei, J.; Wu, D.; Gao, Z.; Jiang, K. Au nanoparticle decorated WO3 photoelectrode for enhanced photoelectrochemical properties. RSC Adv. 2015, 5, 60339-60344.
20. Zhang, Z.; Cao, S.-W.; Liao, Y.; Xue, C. Selective photocatalytic decomposition of formic acid over AuPd nanoparticle-decorated TiO2 nanofibers toward high-yield hydrogen production. Appl. Catal. B Environ. 2015, 162, 204-209.
21. Patra, K. K.; Gopinath, C. S. Bimetallic and Plasmonic Ag–Au on TiO2 for Solar Water Splitting: An Active Nanocomposite for Entire Visible-Light-Region Absorption. ChemCatChem 2016, 8, 3294-3301.
22. Zhu, M.; Cai, X.; Fujitsuka, M.; Zhang, J.; Majima, T. Au/La2Ti2O7 Nanostructures Sensitized with Black Phosphorus for Plasmon-Enhanced Photocatalytic Hydrogen Production in Visible and Near-Infrared Light. Angew. Chem. Int. Ed. 2017, 129, 2096-2100.
23. Zhang, J.; Jin, X.; Morales-Guzman, P. I.; Yu, X.; Liu, H.; Zhang, H.; Razzari, L.; Claverie, J. P. Engineering the Absorption and Field Enhancement Properties of Au−TiO2 Nanohybrids via Whispering Gallery Mode Resonances for Photocatalytic Water Splitting. ACS Nano 2016, 10, 4496-4503.
24. Upadhyay, A. P.; Behara, D. K.; Sharma, G. P.; Gyanprakash, M.; Pala, R. G. S.; Sivakumar, S. Fabricating Appropriate Band-Edge-Staggered Heterosemiconductors with Optically Activated Au Nanoparticles via Click Chemistry for Photoelectrochemical Water Splitting. ACS Sustainable Chem. Eng. 2016, 4, 4511-4520.
25. Patra, B. K.; Khilari, S.; Pradhan, D.; Pradhan, N. Hybrid Dot−Disk Au-CuInS2 Nanostructures as Active Photocathode for Efficient Evolution of Hydrogen from Water. Chem. Mater. 2016, 28, 4358-4366.
26. Yang, T.-H.; Harn, Y.-W.; Pan, M.-Y.; Huang, L.-D.; Chen, M.-C.; Li, B.-Y.; Liu, P.-H.; Chen, P.-Y.; Lin, C.-C.; Wei, P.-K.; Chen, L.-J.; Wu, J.-M. Ultrahigh density plasmonic hot spots with ultrahigh electromagnetic field for improved photocatalytic activities. Appl. Catal. B Environ. 2016, 181, 612-624.
27. Li, C.-H.; Li, M.-C.; Liu, S.-P.; Jamison, A. C.; Lee, D.; Lee, T. R.; Lee, T.-C. Plasmonically Enhanced Photocatalytic Hydrogen Production from Water: The Critical Role of Tunable Surface Plasmon Resonance from Gold−Silver Nanoshells. ACS Appl. Mater. Interfaces 2016, 8, 9152-9161.
28. Li, H.; Li, Z.; Yu, Y.; Ma, Y.; Yang, W.; Wang, F.; Yin, X.; Wang, X. Surface Plasmon Resonance Enhanced Photoelectrochemical Water Splitting from Au Nanoparticle-Decorated 3D TiO2 Nanorod Architectures. J. Phys. Chem. C 2017, 121, 12071-12079.
29. Shi, H.; Wang, X.; Zheng, M.; Wu, X.; Chen, Y.; Yang, Z.; Zhang, G.; Duan, H. Hot-Electrons Mediated Efficient Visible-Light Photocatalysis of Hierarchical Black Au–TiO2 Nanorod Arrays on Flexible Substrate. Adv. Mater. Interfaces 2016, 3, 1600588-1-1600588-11.
30. Chen, Y.; Xin, X.; Zhang, N.; Xu, Y.-J. Aluminum-Based Plasmonic Photocatalysis. Part. Part. Syst. Charact. 2017, 1600357-1-1600357-10.
31. Lewis, N. S.; Nocera, D. G. Powering the planet: Chemical challenges in solar energy utilization. PNAS 2006, 103, 15729-15735.
32. Wu, M.; Chen, W.-J.; Shen, Y.-H.; Huang, F.-Z.; Li, C.-H.; Li, S.-K. In Situ Growth of Matchlike ZnO/Au Plasmonic Heterostructure for Enhanced Photoelectrochemical Water Splitting. ACS Appl. Mater. Interfaces 2014, 6, 15052-15060.
33. Pu, Y.-C.; Wang, G.; Chang, K.-D.; Ling, Y.; Lin, Y.-K.; Fitzmorris, B. C.; Liu, C.-M.; Lu, X.; Tong, Y.; Zhang, J. Z.; Hsu, Y.-J.; Li, Y. Au Nanostructure-Decorated TiO2 Nanowires Exhibiting Photoactivity Across Entire UV-visible Region for Photoelectrochemical Water Splitting. Nano Lett. 2013, 13, 3817-3823.
34. Cushing, S. K.; Li, J.; Meng, F.; Senty, T. R.; Suri, S.; Zhi, M.; Li, M.; Bristow, A. D.; Wu, N. Photocatalytic Activity Enhanced by Plasmonic Resonant Energy Transfer from Metal to Semiconductor. J. Am. Chem. Soc. 2012, 134, 15033-15041.
35. Burda, C.; Chen, X.; Narayanan, R.; El-Sayed, M. A. Chemistry and Properties of Nanocrystals of Different Shapes. Chem. Rev. 2005, 105, 1025-1102.
36. Khan, M. R.; Chuan, T. W.; Yousuf, A.; Chowdhury, M. N. K.; Cheng, C. K. Schottky barrier and surface plasmonic resonance phenomena towards the photocatalytic reaction: study of their mechanisms to enhance photocatalytic activity. Catal. Sci. Technol. 2015, 5, 2522-2531.
37. Zhou, N.; López-Puente, V.; Wang, Q.; Polavarapu, L.; Pastoriza-Santos, I.; Xu, Q.-H. Plasmon-enhanced light harvesting: applications in enhanced photocatalysis, photodynamic therapy and photovoltaics. RSC Adv. 2015, 5, 29076-29097.
38. Dong, J.-Y.; Hsu, Y.-J.; Wong, D. S.-H.; Lu, S.-Y. Growth of ZnO Nanostructures with Controllable Morphology Using a Facile Green Antisolvent Method. J. Phys. Chem. C 2010, 114, 8867-8872.
39. Vietmeyer, F.; Seger, B.; Kamat, P. V. Anchoring ZnO Particles on Functionalized Single Wall Carbon Nanotubes. Excited State Interactions and Charge Collection. Adv. Mater. 2007, 19, 2935-2940.
40. Tran, P. D.; Chiam, S. Y.; Boix, P. P.; Ren, Y.; Pramana, S. S.; Fize, J.; Artero, V.; Barber, J. Novel cobalt/nickel–tungsten-sulfide catalysts for electrocatalytic hydrogen generation from water. Energy Environ. Sci. 2013, 6, 2452-2459.
41. Shan, F.K.; Yu, Y. S. Band gap energy of pure and Al-doped ZnO thin films. J. Eur. Ceram. Soc. 2004, 24, 1869-1872.
42. Misra, M.; Kapur, P.; Nayak, M. K.; Singla, M. Synthesis and visible photocatalytic activities of a Au@Ag@ZnO triple layer core–shell nanostructure. New J. Chem. 2014, 38, 4197-4203.
43. Xitao, W.; Rong, L.; Kang, W. Synthesis of ZnO@ZnS–Bi2S3 core–shell nanorod grown on reduced graphene oxide sheets and its enhanced photocatalytic performance. J. Mater. Chem. A 2014, 2, 8304-8313.
44. Yang, T.-T.; Chen, W.-T.; Hsu, Y.-J.; Wei, K.-H.; Lin, T.-Y.; Lin, T.-W. Interfacial Charge Carrier Dynamics in Core−Shell Au-CdS Nanocrystals. J. Phys. Chem. C 2010, 114, 11414-11420.
45. Chen, Y.-C.; Pu, Y.-C.; Hsu, Y.-J. Interfacial Charge Carrier Dynamics of the Three-Component In2O3–TiO2–Pt Heterojunction System. J. Phys. Chem. C 2012, 116, 2967-2975.
46. Lin, Y.-F.; Hsu, Y.-J. Interfacial charge carrier dynamics of type-II semiconductor nanoheterostructures. Appl. Catal. B Environ. 2013, 130-131, 93-98.
47. Lin, W.-H.; Chang, T.-F. M.; Lu, Y.-H.; Sato, T.; Sone, M.; Wei, K.-H.; Hsu, Y.-J. Supercritical CO2-Assisted Electrochemical Deposition of ZnO Mesocrystals for Practical Photoelectrochemical Applications. J. Phys. Chem. C 2013, 117, 25596-25603.
48. Chen, M.-Y.; Hsu, Y.-J. Type-II nanorod heterostructure formation through one-step cation exchange. Nanoscale 2013, 5, 363-368.
49. Lu, Y.-H.; Lin, W.-H.; Yang, C.-Y.; Chiu, Y.-H.; Pu, Y.-C.; Lee, M.-H.; Tseng, Y.-C.; Hsu, Y.-J. A Facile Green Antisolvent Approach to Cu2+-doped ZnO Nanocrystals with Visible-Light-Responsive Photoactivities. Nanoscale 2014, 6, 8796-8803.
50. Chen, Y.-C.; Katsumata, K.-i.; Chiu, Y.-H.; Okada, K.; Matsushita, N.; Hsu, Y.-J. ZnO–graphene composites as practical photocatalysts for gaseous acetaldehyde degradation and electrolytic water oxidation. Appl. Catal. A General 2015, 490, 1-9.
51. Tsai, K.-A.; Hsu, Y.-J. Graphene quantum dots mediated charge transfer of CdSe nanocrystals for enhancing photoelectrochemical hydrogen production. Appl. Catal. B Environ. 2015, 164, 271-278.
52. Pu, Y.-C.; Lin, W.-H.; Hsu, Y.-J. Modulation of Charge Carrier Dynamics of NaxH2-xTi3O7-Au-Cu2O Z-Scheme Nanoheterostructures through Size Effect. Appl. Catal. B Environ. 2015, 163, 343-351.
53. Chen, Y.-C.; Liu, T.-C.; Hsu, Y.-J. ZnSe-0.5(N2H4) Hybrid Nanostructures: A Promising Alternative Photocatalyst for Solar Conversion. ACS Appl. Mater. Interfaces 2015, 7, 1616-1623.
54. Hsu, Y.-H.; Nguyen, A. T.; Chiu, Y.-H.; Li, J.-M.; Hsu, Y.-J. Au-decorated GaOOH Nanorods Enhanced the Performance of Direct Methanol Fuel Cells under Light Illumination. Appl. Catal. B Environ. 2016, 185, 133-140.
55. Li, J.-M.; Cheng, H.-Y.; Chiu, Y.-H.; Hsu, Y.-J. ZnO-Au-SnO2 Z-scheme Photoanodes for Remarkable Photoelectrochemical Water Splitting. Nanoscale 2016, 8, 15720-15729.
56. Pu, Y.-C.; Chou, H.-Y.; Kuo, W.-S.; Wei, K.-H.; Hsu, Y.-J. Interfacial charge carrier dynamics of cuprous oxide-reduced graphene oxide (Cu2O-rGO) nanoheterostructures and their related visible-light-driven photocatalysis. Appl. Catal. B Environ. 2017, 204, 21-32.
57. Chiu, Y.-H.; Hsu, Y.-J. Au@Cu7S4 yolk@shell nanocrystal-decorated TiO2 nanowires as an all-day-active photocatalyst for environmental purification. Nano Energy 2017, 31, 286-295.
58. Yu, S.; Kim, Y. H.; Lee, S. Y.; Song, H. D.; Yi, J. Hot‐Electron‐Transfer Enhancement for the Efficient Energy Conversion of Visible Light. Angew. Chem. Int. Ed. 2014, 53, 11203-11207.
59. Kinnan, M. K.; Chumanov, G. Plasmon Coupling in Two-Dimensional Arrays of Silver Nanoparticles: II. Effect of the Particle Size and Interparticle Distance. J. Phys. Chem. C 2010, 114, 7496-7501.
60. Halas, N. J.; Lal, S.; Chang, W.-S.; Link, S.; Nordlander, P. Plasmons in Strongly Coupled Metallic Nanostructures. Chem. Rev. 2011, 111, 3913-3961.
61. Yang, L.; Wang, H.; Yan, B.; Reinhard, B. M. Calibration of Silver Plasmon Rulers in the 1-25 nm Separation Range: Experimental Indications of Distinct Plasmon Coupling Regimes. J. Phys. Chem. C 2010, 114, 4901-4908.
62. Zuloaga, J.; Prodan, E.; Nordlander, P. Quantum Description of the Plasmon Resonances of a Nanoparticle Dimer. Nano Lett. 2009, 9, 887-891.
63. Naldoni, A.; Fabbri, F.; Altomare, M.; Marelli, M.; Psaro, R.; Selli, E.; Salviati, G.; Santo, V. D. The critical role of intragap states in the energy transfer from gold nanoparticles to TiO2. Phys. Chem. Chem. Phys. 2015, 17, 4864-4869.
64. Naldoni, A.; Riboni, F.; Marelli, M.; Bossola, F.; Ulisse, G.; Carlo, A. D.; Nappini, I. Píš, S.; Malvestuto, M.; Dozzi, M. V.; Psaro, R.; Selli, E.; Santo, V. D. Influence of TiO2 electronic structure and strong metal–support interaction on plasmonic Au photocatalytic oxidations. Catal. Sci. Technol. 2016, 6, 3220-3229.
65. Ingram, D. B.; Linic, S. Water Splitting on Composite Plasmonic-Metal/Semiconductor Photoelectrodes: Evidence for Selective Plasmon-Induced Formation of Charge Carriers near the Semiconductor Surface. J. Am. Chem. Soc. 2011, 133, 5202-5205.
66. Zhang, L.; Herrmann, L. O.; Baumberg, J. J. Size Dependent Plasmonic Effect on BiVO4 Photoanodes for Solar Water Splitting. Scientific Reports 2015, 5, 16660.
67. Kawawaki, T.; Takahashi, Y.; Tatsuma, T. Enhancement of Dye-Sensitized Photocurrents by Gold Nanoparticles: Effects of Plasmon Coupling. J. Phys. Chem. C 2013, 117, 5901-5907.
68. Erwin, W. R.; Coppola, A.; Zarick, H. F.; Arora, P.; Miller, K. J.; Bardhan, R. Plasmon enhanced water splitting mediated by hybrid bimetallic Au–Ag core–shell nanostructures. Nanoscale 2014, 6, 12626-12634.
69. Zheng, Y.; Chen, C.; Zhan, Y.; Lin, X.; Zheng, Q.; Wei, K.; Zhu, J.; Zhu, Y. Luminescence and Photocatalytic Activity of ZnO Nanocrystals: Correlation between Structure and Property. Inorg. Chem. 2007, 46, 6675-6682.
70. Wang, J.; Liu, P.; Fu, X.; Li, Z.; Han, W.; Wang, X. Relationship between Oxygen Defects and the Photocatalytic Property of ZnO Nanocrystals in Nafion Membranes. Langmuir 2009, 25, 1218-1223.
71. Rahman, M. A.; Bazargan, S.; Srivastava, S.; Wang, X.; Abd-Ellah, M.; Thomas, J. P.; Heinig, N. F.; Pradhan, D.; Leung, K. T. Defect-rich decorated TiO2 nanowires for super-efficient photoelectrochemical water splitting driven by visible light. Energy Environ. Sci. 2015, 8, 3363-3373.
72. Jorcin, J.-B.; Orazem, M. E.; Pébère, N.; Tribollet, B. CPE analysis by local electrochemical impedance spectroscopy. Electrochimica Acta 2006, 51, 1473-1479.
73. Ismail, E.; Khamlich, S.; Dhlamini, M.; Maaza, M. Green biosynthesis of ruthenium oxide nanoparticles on nickel foam as electrode material for supercapacitor applications. RSC Adv. 2016, 6, 86843-86850.
74. Hong, J.; D. Yoon, S.; Kim, S. K.; Kim, T. S.; Kim, S.; Pak, E. Y.; No, K. AC frequency characteristics of coplanar impedance sensors as design parameters. Lab Chip 2005, 5, 270-279.
75. Li, Q.; Zheng, M.; Zhong, M.; Ma, L.; Wang, F.; Ma, L.; Shen, W. Engineering MoSx/Ti/InP Hybrid Photocathode for Improved Solar Hydrogen Production. Scientific Reports 2016, 6, 29738-1-29738-9.
76. Cowan, A. J.; Barnett, C. J.; Pendlebury, S. R.; Barroso, M.; Sivula, K.; Grätzel, M.; Durrant, J. R.; Klug, D. R. Activation Energies for the Rate-Limiting Step in Water Photooxidation by Nanostructured r-Fe2O3 and TiO2. J. Am. Chem. Soc. 2011, 133, 10134-10140.
77. Hung, S.-F.; Xiao, F.-X.; Hsu, Y.-Y.; Suen, N.-T.; Yang, H.-B.; Chen, H. M.; Liu, B. Iridium Oxide-Assisted Plasmon-Induced Hot Carriers: Improvement on Kinetics and Thermodynamics of Hot Carriers. Adv. Energy Mater. 2016, 6, 1501339-1-1501339-12.
78. Bu, Y.; Chen, Z. Highly efficient photoelectrochemical anticorrosion performance of C3N4@ZnO composite with quasi-shell–core structure on 304 stainless steel. RSC Adv. 2014, 4, 45397-45406.
79. Subramanian, V.; Wolf, E. E.; Kamat, P. V. Green Emission to Probe Photoinduced Charging Events in ZnO−Au Nanoparticles. Charge Distribution and Fermi-Level Equilibration. J. Phys. Chem. B 2003, 107, 7479-7485.
80. Bloh, J. Z.; Dillert, R.; Bahnemann, D. W. Ruthenium-modified zinc oxide, a highly active vis-photocatalyst: the nature and reactivity of photoactive centres. Phys. Chem. Chem. Phys. 2014, 16, 5833-5845.
81. Folli, A.; Bloh, J. Z.; Lecaplain, A.; Walkerb, R.; Macphee, D. E. Properties and photochemistry of valence-induced-Ti3+ enriched (Nb, N)-codoped anatase TiO2 semiconductors. Phys. Chem. Chem. Phys. 2015, 17, 4849-4853.
82. Chen, H.; Liu, G.; Wang, L. Switched photocurrent direction in Au/TiO2 bilayer thin films. Scientific Reports 2015, 5, 10852-1-10852-9.
83. Li, Z.; Luo, W.; Zhang, M.; Feng, J.; Zou, Z. Photoelectrochemical cells for solar hydrogen production: current state of promising photoelectrodes, methods to improve their properties, and outlook. Energy Environ. Sci. 2013, 6, 347-370.
84. Wang, X.; Xie, J.; Li, C. M. Architecting smart “umbrella” Bi2S3/rGO-modified TiO2 nanorod array structures at the nanoscale for efficient photoelectrocatalysis under visible light. J. Mater. Chem. A 2015, 3, 1235-1242.
85. Fan, F.; Tang, P.; Wang, Y.; Feng, Y.; Chen, A.; Luo, R.; Li, D. Facile synthesis and gas sensing properties of tubular hierarchical ZnO self-assembled by porous nanosheets. Sens. Actuators B: Chem. 2015, 215, 231–240.
86. Allagui, A.; Alawadhi, H.; Alkaaby, M.; Gaidi, M.; Mostafa1, K.; Abdulaziz, Y. Mott–Schottky analysis of flower‐like ZnO microstructures with constant phase element behavior. Phys. Status Solidi A, 2016, 213, 139-145.
4.5 References
1. Roy, P.; Kim, D.; Lee, K.; Spiecker, E.; Schmuki, P. TiO2 nanotubes and their application in dye-sensitized solar cells. Nanoscale 2010, 2, 45–59.
2. Liu, N.; Schneider, C.; Freitag, D.; Hartmann, M.; Venkatesan, U.; Müller, J.; Spiecker, E.; Schmuki, P. Black TiO2 Nanotubes: Cocatalyst-Free Open-Circuit Hydrogen Generation. Nano Lett. 2014, 14, 3309–3313.
3. Allam, N. K.; Grimes, C. A. Room Temperature One-Step Polyol Synthesis of Anatase TiO2 Nanotube Arrays: Photoelectrochemical Properties. Langmuir 2009, 25, 7234–7240.
4. Xiao, F.-X.; Miao, J.; Wang, H.-Y.; Liu, B. Self-assembly of hierarchically ordered CdS quantum dots–TiO2 nanotube array heterostructures as efficient visible light photocatalysts for photoredox applications. J. Mater. Chem. A 2013, 1, 12229–12238.
5. Sarkar, A.; Singh, A. K.; Sarkar, D.; Khan, G. G.; Mandal, K. Three-Dimensional Nanoarchitecture of BiFeO3 Anchored TiO2 Nanotube Arrays for Electrochemical Energy Storage and Solar Energy Conversion. ACS Sustainable Chem. Eng. 2015, 3, 2254−2263.
6. Zhang, H.; Liu, P.; Liu, X.; Zhang, S.; Yao, X.; An, T.; Amal, R.; Zhao, H. Fabrication of Highly Ordered TiO2 Nanorod/Nanotube Adjacent Arrays for Photoelectrochemical Applications. Langmuir 2010, 26, 11226–11232.
7. Mohamed, A. M.; Aljaber, A. S.; AlQaradawi, S. Y.; Allam, N. K. TiO2 nanotubes with ultrathin walls for enhanced water splitting. Chem. Commun. 2015, 51, 12617–12620.
8. Xiao, F.-X.; Hung, S.-F.; Miao, J.; Wang, H.-Y.; Yang, H.; Liu, B. Metal-Cluster-Decorated TiO2 Nanotube Arrays: A Composite Heterostructure toward Versatile Photocatalytic and Photoelectrochemical Applications. Small 2015, 11, 554–567.
9. Li, Y.; Luo, S.; Wei, Z.; Meng, D.; Ding, M.; Liu, C. Electrodeposition technique-dependent photoelectrochemical and photocatalytic properties of an In2S3/TiO2 nanotube array. Phys. Chem. Chem. Phys. 2014, 16, 4361–4368.
10. Altomare, M.; Lee, K.; Killian, M. S.; Selli, E.; Schmuki, P. Ta-Doped TiO2 Nanotubes for Enhanced Solar-Light Photoelectrochemical Water Splitting. Chem. Eur. J. 2013, 19, 5841–5844.
11. Das, C.; Roy, P.; Yang, Min.; Jha, H.; Schmuki, P. Nb doped TiO2 nanotubes for enhanced photoelectrochemical water-splitting. Nanoscale 2011, 3, 3094–3096.
12. Krbal, M.; Sopha, H.; Podzemna, V.; Das, S.; Prikryl, J.; Macak, J. M. TiO2 Nanotube/Chalcogenide-Based Photoelectrochemical Cell: Nanotube Diameter Dependence Study. J. Phys. Chem. C 2017, 121, 6065–6071.
13. Gui, Q.; Xu, Z.; Zhang, H.; Cheng, C.; Zhu, X.; Yin, M.; Song, Y.; Lu, L.; Chen, X.; Li, D. Enhanced Photoelectrochemical Water Splitting Performance of Anodic TiO2 Nanotube Arrays by Surface Passivation. ACS Appl. Mater. Interfaces 2014, 6, 17053–17058.
14. Fernandes, J. A.; Khan, S.; Baum, F.; Kohlrausch, E. C.; Santos, J. A. L. d.; Baptista, D. L.; Teixeira, S. R.; Dupont, J.; Santos, M. J. L. Synergizing nanocomposites of CdSe/TiO2 nanotubes for improved photoelectrochemical activity via thermal treatment. Dalton Trans. 2016, 45, 9925–9931.
15. Xiao, F.-X.; Miao, J.; Wang, H.-Y.; Yang, H.; Chen, J.; Liu, B. Electrochemical construction of hierarchically ordered CdSe-sensitized TiO2 nanotube arrays: towards versatile photoelectrochemical water splitting and photoredox applications. Nanoscale 2014, 6, 6727–6737.
16. Liang, S.; He, J.; Sun, Z.; Liu, Q.; Jiang, Y.; Cheng, H.; He, B.; Xie, Z.; Wei, S. Improving Photoelectrochemical Water Splitting Activity of TiO2 Nanotube Arrays by Tuning Geometrical Parameters. J. Phys. Chem. C 2012, 116, 9049−9053.
17. Cargnello, M.; Montini, T.; Smolin, S. Y.; Priebe, J. B.; Jaén, J. J. D.; Doan-Nguyen, V. V. T.; McKay, I. S.; Schwalbe, J. A.; Pohl, M.-M.; Gordon, T. R.; Lu, Y.; Baxter, J. B.; Brückner, A.; Fornasiero, P.; Murray, C. B.; PNAS 2016, 113, 3966–3971.
18. Mohamed, A. M.; Aljaber, A. S.; AlQaradawi, S. Y.; Allam, N. K. TiO2 nanotubes with ultrathin walls for enhanced water splitting. Chem. Commun. 2015, 51, 12617–12620.
19. Pu, Y.-C.; Wang, G.; Chang, K.-D.; Ling, Y.; Lin, Y.-K.; Fitzmorris, B. C.; Liu, C.-M.; Lu, X.; Tong, Y.; Zhang, J. Z.; Hsu, Y.-J.; Li, Y. Au Nanostructure-Decorated TiO2 Nanowires Exhibiting Photoactivity Across Entire UV-visible Region for Photoelectrochemical Water Splitting. Nano Lett. 2013, 13, 3817–3823.
20. Zhan, Z.; An, J.; Zhang, H.; Hansen, R. V.; Zheng, L. Three-Dimensional Plasmonic Photoanodes Based on Au-Embedded TiO2 Structures for Enhanced Visible-Light Water Splitting. ACS Appl. Mater. Interfaces 2014, 6, 1139−1144.
21. Liu, S.; Han, C.; Tang, Z.-R.; Xu, Y.-J. Heterostructured semiconductor nanowire arrays for artificial photosynthesis. Mater. Horiz. 2016, 3, 270–282.
22. Ai, G.; Li, H.; Liu, S.; Mo, R.; Zhong, J. Solar Water Splitting by TiO2/CdS/Co–Pi Nanowire Array Photoanode Enhanced with Co–Pi as Hole Transfer Relay and CdS as Light Absorber. Adv. Funct. Mater. 2015, 25, 5706–5713.
23. Hensel, J.; Wang, G.; Li, Y.; Zhang, J. Z. Synergistic Effect of CdSe Quantum Dot Sensitization and Nitrogen Doping of TiO2 Nanostructures for Photoelectrochemical Solar Hydrogen Generation. Nano Lett. 2010, 10, 478–483.
24. Xiao, F.-X.; Miao, J.; Wang, H.-Y.; Yang, H.; Chen, J.; Liu, B. Electrochemical construction of hierarchically ordered CdSe-sensitized TiO2 nanotube arrays: towards versatile photoelectrochemical water splitting and photoredox applications. Nanoscale 2014, 6, 6727–6737.
25. Fang, W. Q.; Huo, Z.; Liu, P.; Wang, X. L.; Zhang, M.; Jia, Y.; Zhang, H.; Zhao, H.; Yang, H. G.; Yao, X. Fluorine-Doped Porous Single-Crystal Rutile TiO2 Nanorods for Enhancing Photoelectrochemical Water Splitting. Chem. Eur. J. 2014, 20, 11439–11444.
26. Wang, G.; Wang, H.; Ling, Y.; Tang, Y.; Yang, X.; Fitzmorris, R. C.; Wang, C.; Zhang, J. Z.; Li, Y. Hydrogen-Treated TiO2 Nanowire Arrays for Photoelectrochemical Water Splitting. Nano Lett. 2011, 11, 3026–3033.
27. Wang, C.; Chen, Z.; Jin, H.; Cao, C.; Lia, J.; Mi, Z. Enhancing visible-light photoelectrochemical water splitting through transition-metal doped TiO2 nanorod arrays. J. Mater. Chem. A 2014, 2, 17820–17827.
28. Choi, M.; Lee, J. H.; Jang, Y. J.; Kim, D.; Lee, J. S.; Jang, H. M.; Yong, K. Hydrogen-doped Brookite TiO2 Nanobullets Array as a Novel Photoanode for Efficient Solar Water Splitting. Scientific Reports 2016, 6, 36099.
29. Wang, G.; Xiao, X.; Li, W.; Lin, Z.; Zhao, Z.; Chen, C.; Wang, C.; Li, Y.; Huang, X.; Miao, L.; Jiang, C.; Huang, Y.; Duan, X. Significantly Enhanced Visible Light Photoelectrochemical Activity in TiO2 Nanowire Arrays by Nitrogen Implantation. Nano Lett 2015, 15, 4692–4698.
30. Pan, X.; Yang, M.-Q.; Fu, X.; Zhang, N.; Xu, Y.-J. Defective TiO2 with oxygen vacancies: synthesis, properties and photocatalytic applications. Nanoscale 2013, 5, 3601–3614.
31. Mor, G. K.; Prakasam, H. E.; Varghese, O. K.; Shankar, K.; Grimes, C. A. Vertically Oriented Ti−Fe−O Nanotube Array Films:  Toward a Useful Material Architecture for Solar Spectrum Water Photoelectrolysis. Nano Lett. 2007, 7, 2356–2364.
32. Mor, G. K.; Varghese, O. K.; Wilke, R. H. T.; Sharma, S.; Shankar, K.; Latempa, T. J.; Choi, K.-S.; Grimes, C. A. p-Type Cu−Ti−O Nanotube Arrays and Their Use in Self-Biased Heterojunction Photoelectrochemical Diodes for Hydrogen Generation. Nano Lett. 2008, 8, 1906–1911.
33. Allam, N. K.; Alamgir, F.; El-Sayed, M. A. Enhanced Photoassisted Water Electrolysis Using Vertically Oriented Anodically Fabricated Ti−Nb−Zr−O Mixed Oxide Nanotube Arrays. ACS Nano 2010, 4, 5819–5826.
34. Fukuda, A.; Takemoto, M.; Saito, T.; Fujibayashi, S.; Neo, M.; Yamaguchi, S.; Kizuki, T.; Matsushita, T.; Niinomi, M.; Kokubo, T.; Nakamura, T. Bone bonding bioactivity of Ti metal and Ti–Zr–Nb–Ta alloys with Ca ions incorporated on their surfaces by simple chemical and heat treatments. Acta Biomater. 2011, 7, 1379–1386.
35. Bărbînţă, A. C.; Mareci, D.; Chelariu, R.; Bolat, G.; Munteanu, C.; Cho, K.; Niinomi, M. The estimation of corrosion behavior of new TiNbTaZr alloys for biomedical applications. Mater. Corros. 2014, 65, 1017–1023.
36. Yang, M.; Jha, H.; Liu, N.; Schmuki, P. Increased photocurrent response in Nb-doped TiO2 nanotubes. J. Mater. Chem. 2011, 21, 15205–15208.
37. Yang, M.; Kim, D.; Jha, H.; Lee, K.; Paul, J.; Schmuki, P. Nb doping of TiO2 nanotubes for an enhanced efficiency of dye-sensitized solar cells. Chem. Commun. 2011, 47, 2032–2034.
38. Mohamed, I. M. A.; Dao, V.-D.; Barakat, N. A. M.; Yasin, A. S.; Yousef, A.; Choi, H.-S. Efficiency enhancement of dye-sensitized solar cells by use of ZrO2-doped TiO2 nanofibers photoanode. J. Colloid Interface Sci. 2016, 476, 9–19.
39. Sengele, A.; Robert, D.; Keller, N.; Keller, V.; Herissan, A.; Colbeau-Justin, C. Ta-doped TiO2 as photocatalyst for UV-A activated elimination of chemical warfare agent simulant. J. Catal. 2016, 334, 129–141.
40. Singh, N.; Prakash, J.; Misra, M.; Sharma, A.; Gupta, R. K. Dual Functional Ta-Doped Electrospun TiO2 Nanofibers with Enhanced Photocatalysis and SERS Detection for Organic Compounds. ACS Appl. Mater. Interfaces 2017, 9, 28495–28507.
41. Nakada, A.; Nishioka, S.; Vequizo, J. J. M.; Muraoka, K.; Kanazawa, T.; Yamakata, A.; Nozawa, S.; Kumagai, H.; Adachi, S.-i.; Ishitania, O.; Maeda, K. Solar-driven Z-scheme water splitting using tantalum/nitrogen co-doped rutile titania nanorod as an oxygen evolution photocatalyst. J. Mater. Chem. A 2017, 5, 11710–11719.
42. Ma, B. C.; Ghasimi, S.; Landfester, K.; Vilela, F.; Zhang, K. A. I. Conjugated microporous polymer nanoparticles with enhanced dispersibility and water compatibility for photocatalytic applications. J. Mater. Chem. A 2015, 3, 16064–16071.
43. Yin, H.; Liu, H.; Shen, W. Z. The large diameter and fast growth of self-organized TiO2 nanotube arrays achieved via electrochemical anodization. Nanotechnology 2010, 21, 035601.
44. Albu, S. P.; Roy, P.; Virtanen, S.; Schmuki, P. Self-organized TiO2 Nanotube Arrays: Critical Effects on Morphology and Growth. Isr. J. Chem. 2010, 50, 453–467.
45. Ozkan, S.; Nguyen, N. T.; Mazare, A.; Cerri, I.; Schmuki, P. Controlled spacing of self-organized anodic TiO2 nanotubes. Electrochem. Commun. 2016, 69, 76–79.
46. Wang, J.; Yu, Y.; Li, S.; Guo, L.; Wang, E.; Cao, Y. Doping Behavior of Zr4+ Ions in Zr4+-Doped TiO2 Nanoparticles. J. Phys. Chem. C 2013, 117, 27120–27126.
47. Jung, S.-Y.; Ha, T.-J.; Seo, W.-S.; Lim, Y. S.; Shin, S.; Cho, H. H.; Park, H.-H. Thermoelectric Properties of Nb-Doped Ordered Mesoporous TiO2. J. Electron. Mater. 2011, 40, 652-656.
48. Ni, J.; Fu, S.; Wu, C.; Maier, J.; Yu, Y.; Li, L. Self-Supported Nanotube Arrays of Sulfur-Doped TiO2 Enabling Ultrastable and Robust Sodium Storage. Adv. Mater. 2016, 28, 2259–2265.
49. Wang, X.; Feng, Z.; Shi, J.; Jia, G.; Shen, S.; Zhou, J.; Li, C. Trap states and carrier dynamics of TiO2 studied by photoluminescence spectroscopy under weak excitation condition. Phys. Chem. Chem. Phys. 2010, 12, 7083–7090.
50. Kavitha, M. K.; Jinesh, K. B.; Philip, R.; Gopinath, P.; John, H. Defect engineering in ZnO nanocones for visible photoconductivity and nonlinear absorption. Phys. Chem. Chem. Phys. 2014, 16, 25093–25100.
51. Lin, W.-H.; Chang, T.-F. M.; Lu, Y.-H.; Sato, T.; Sone, M.; Wei, K.-H.; Hsu, Y.-J. Supercritical CO2-Assisted Electrochemical Deposition of ZnO Mesocrystals for Practical Photoelectrochemical Applications. J. Phys. Chem. C 2013, 117, 25596−25603.
52. Chen, Y.-C.; Liu, T.-C.; Hsu, Y.-J. ZnSe·0.5N2H4 Hybrid Nanostructures: A Promising Alternative Photocatalyst for Solar Conversion. ACS Appl. Mater. Interfaces 2015, 7, 1616–1623.
53. Yang, J.-S.; Wu, J.-J. Low-potential driven fully-depleted BiVO4/ZnO heterojunction nanodendrite array photoanodes for photoelectrochemical water splitting. Nano Energy 2017, 32, 232–240.
54. Ahn, K.-S.; Yan, Y.; Shet, S.; Jones, K.; Deutsch, T.; Turner, J.; Al-Jassim, M. ZnO nanocoral structures for photoelectrochemical cells. Appl. Phys. Lett. 2008, 93, 163117.
55. Mao, C.; Zuo, F.; Hou, Y.; Bu, X.; Feng, P. In Situ Preparation of a Ti3+ Self-Doped TiO2 Film with Enhanced Activity as Photoanode by N2H4 Reduction. Angew. Chem. Int. Ed. 2014, 53, 10485–10489.
56. Chakhari, W.; Ben Naceur, J.; Ben Taieb, S.; Ben Assaker, I.; Chtourou, R. Fe-doped TiO2 nanorods with enhanced electrochemical properties as efficient photoanode materials. J. Alloy. Comp. 2017, 708, 862–870.
57. liu, Q.; Ding, D.; Ning, C.; Wang, X. Reduced N/Ni-doped TiO2 nanotubes photoanodes for photoelectrochemical water splitting. RSC Adv. 2015, 5, 95478–95487.
58. Liu, Q.; Ding, D.; Ning, C.; Wang, X. Black Ni-doped TiO2 photoanodes for high-efficiency photoelectrochemical water-splitting. Int. J. Hydrog. Energy 2015, 40, 2107–2114.
59. Khan, S. U. M.; Al-Shahry, M.; Ingler, W. B. Efficient Photochemical Water Splitting by a Chemically Modified n-TiO2. Science 2002, 297, 2243–2245.
60. Walter, M. G.; Warren, E. L.; McKone, J. R.; Boettcher, S. W.; Mi, Q.; Santori, E. A.; Lewis, N. S. Solar Water Splitting Cells. Chem. Rev. 2010, 110, 6446–6473.
61. Freitas, R. G.; Santanna, M. A.; Pereira, E. C. Preparation and Characterization of TiO2 Nanotube Arrays in Ionic Liquid for Water Splitting. Electrochimica Acta 2014, 136, 404–411.
62. Lian, Z.; Wang, W.; Xiao, S.; Li, X.; Cui, Y.; Zhang, D.; Li, G.; Li, H. Plasmonic silver quantum dots coupled with hierarchical TiO2 nanotube arrays photoelectrodes for efficient visible-light photoelectrocatalytic hydrogen evolution. Scientific Reports 2015, 5, 10461.
63. Chen, H.; Liu, G.; Wang, L. Switched photocurrent direction in Au/TiO2 bilayer thin films. Scientific Reports 2015, 5, 10852.
64. Giannakopoulou, T.; Papailias, I.; Todorova, N.; Boukos, N.; Liu, Y.; Yu, J.; Trapalis, C. Tailoring the energy band gap and edges’ potentials of g-C3N4/TiO2 composite photocatalysts for NOx removal. Chem. Eng. J. 2017, 310, 571–580.
65. Ai, G.; Mo, R.; Chen, Q.; Xu, H.; Yang, S.; Li, H.; Zhong, J. TiO2/Bi2S3 core–shell nanowire arrays for photoelectrochemical hydrogen generation. RSC Adv. 2015, 5, 13544–13549.
66. Ding, Y.; Nagpal, P. Titanium dioxide nanotube membranes for solar energy conversion: effect of deep and shallow dopants. Phys. Chem. Chem. Phys. 2017, 19, 10042–10050.
67. Folli, A.; Bloh, J. Z.; Lecaplain, A.; Walker, R.; Macphee, D. E. Properties and photochemistry of valence-induced-Ti3+ enriched (Nb, N)-codoped anatase TiO2 semiconductors. Phys. Chem. Chem. Phys. 2015, 17, 4849–4853.
68. Bloh, J. Z.; Dillert, R.; Bahnemann, D. W. Ruthenium-modified zinc oxide, a highly active vis-photocatalyst: the nature and reactivity of photoactive centres. Phys. Chem. Chem. Phys. 2014, 16, 5833–5845.
69. Li, Z.; Luo, W.; Zhang, M.; Feng, J.; Zou, Z. Photoelectrochemical cells for solar hydrogen production: current state of promising photoelectrodes, methods to improve their properties, and outlook. Energy Environ. Sci. 2013, 6, 347–370.
70. Wang, X.; Xie, J.; Li, C. M. Architecting smart “umbrella” Bi2S3/rGO-modified TiO2 nanorod array structures at the nanoscale for efficient photoelectrocatalysis under visible light. J. Mater. Chem. A 2015, 3, 1235–1242.
5.6 References
1. Zhang, N.; Yang, M.-Q.; Liu, S.; Sun, Y.; Xu, Y.-J. Waltzing with the Versatile Platform of Graphene to Synthesize Composite Photocatalysts. Chem. Rev. 2015, 115, 10307−10377.
2. Liu, S.; Tang, Z.-R.; Sun, Y.; Colmenares, J. C.; Xu, Y.-J. One-dimension-based spatially ordered architectures for solar energy conversion. Chem. Soc. Rev. 2015, 44, 5053−5075.
3. Liu, S.; Han, C.; Tang, Z.-R.; Xu, Y.-J. Heterostructured semiconductor nanowire arrays for artificial photosynthesis. Mater. Horiz. 2016, 3, 270−282.
4. Yang, J.; Chen, C.; Ji, H.; Ma, W.; Zhao, J. Mechanism of TiO2-Assisted Photocatalytic Degradation of Dyes under Visible Irradiation:  Photoelectrocatalytic Study by TiO2-Film Electrodes. J. Phys. Chem. B 2005, 109, 21900−21907.
5. Khan, S. U. M.; Al-Shahry, M.; Jr., W. B. I. Efficient Photochemical Water Splitting by a Chemically Modified n-TiO2. Science 2002, 297, 2243−2245.
6. Dhakshinamoorthy, A.; Navalon, S.; Corma, A.; Garcia, H. Photocatalytic CO2 reduction by TiO2 and related titanium containing solids. Energy Environ. Sci. 2012, 5, 9217−9233.
7. Chiarello, G. L.; Aguirre, M. H.; Selli, E. Hydrogen production by photocatalytic steam reforming of methanol on noble metal-modified TiO2. J. Catal. 2010, 273, 182−190.
8. Wang, M.; Sun, L.; Lin, Z.; Cai, J.; Xie, K.; Lin, C. p–n Heterojunction photoelectrodes composed of Cu2O-loaded TiO2 nanotube arrays with enhanced photoelectrochemical and photoelectrocatalytic activities. Energy Environ. Sci. 2013, 6, 1211−1220.
9. Cao, J.; Sun, J.-Z.; Li, H.-Y.; Hong, J.; Wang, M. A facile room-temperature chemical reduction method to TiO2@CdS core/sheath heterostructure nanowires. J. Mater. Chem. 2004, 14, 1203−1206.
10. Pu, Y.-C.; Wang, G.-M.; Chang, K.-D.; Ling, Y.-C.; Lin, Y.-K.; Fitzmorris, B. C.; Liu, C.-M.; Lu, X.-H.; Tong, Y.-X.; Zhang, J.-Z.; Hsu, Y.-J.; Li, Y. Au Nanostructure-Decorated TiO2 Nanowires Exhibiting Photoactivity Across Entire UV-visible Region for Photoelectrochemical Water Splitting. Nano Lett. 2013, 13, 3817−3823.
11. Lian, Z.; Wang, W.; Xiao, S.; Li, X.; Cui, Y.; Zhang, D.; Li, G.; Li, H. Plasmonic silver quantum dots coupled with hierarchical TiO2 nanotube arrays photoelectrodes for efficient visible-light photoelectrocatalytic hydrogen evolution. Scientific Reports 2015, 5, 10461−10471.
12. Zhang, N.; Han, C.; Xu, Y.-J.; IV, J. J. F.; Zhang, D.; Codrington, J.; Gray, S. K.; Sun, Y. Near-field dielectric scattering promotes optical absorption by platinum nanoparticles. Nature Photonics 2016, 10, 473−482.
13. Li, Q.; Li, Y. W.; Wu, P.; Xie, R.; Shang, J. K. Palladium Oxide Nanoparticles on Nitrogen‐Doped Titanium Oxide: Accelerated Photocatalytic Disinfection and Post‐Illumination Catalytic “Memory”. Adv. Mater. 2008, 20, 3717−3723.
14. Li, Q.; Li, Y. W.; Liu, Z.; Xie, R.; Shang, J. K. Memory antibacterial effect from photoelectron transfer between nanoparticles and visible light photocatalyst. J. Mater. Chem. 2010, 20, 1068−1072.
15. Chiou, Y.-D.; Hsu, Y.-J. Room-temperature synthesis of single-crystalline Se nanorods with remarkable photocatalytic properties. Appl. Catal. B Environ. 2011, 105, 211−219.
16. Basu, M.; Sinha, A. K.; Pradhan, M.; Sarkar, S.; Govind, Pal, T. CuO Barrier Limited Corrosion of Solid Cu2O Leading to Preferential Transport of Cu(I) Ion for Hollow Cu7S4 Cube Formation. J. Phys. Chem. C 2011, 115, 12275−12282.
17. Chen, X.; Tian, X.; Su, B.; Huang, Z.; Chen, X.; Oyama, M. Au nanoparticles on citrate-functionalized graphene nanosheets with a high peroxidase-like performance. Dalton Trans. 2014, 43, 7449−7454.
18. Pu, Y.-C.; Chen, Y.-C.; Hsu, Y.-J. Au-Decorated NaxH2‐xTi3O7 Nanobelts Exhibiting Remarkable Photocatalytic Properties under Visible-Light Illumination. Appl. Catal. B Environ. 2010, 97, 389−397.
19. Ji, X.; Song, X.; Li, J.; Bai, Y.; Yang, W.; Peng, X. Size Control of Gold Nanocrystals in Citrate Reduction:  The Third Role of Citrate. J. Am. Chem. Soc. 2007, 129, 13939−13948.
20. Lin, Y.-K.; Chiang, Y.-J.; Hsu, Y.-J. Metal–Cu2O core–shell nanocrystals for gas sensing applications: Effect of metal composition. Sens. Actuators B 2014, 204, 190−196.
21. Li, J.; Xu, D. Tetragonal faceted-nanorods of anatase TiO2 single crystals with a large percentage of active {100} facets. Chem. Commun. 2010, 46, 2301−2303.
22. Chen, Y.-C.; Katsumata, K.-i.; Chiu, Y.-H.; Okada, K.; Matsushita, N.; Hsu, Y.-J. ZnO–graphene composites as practical photocatalysts for gaseous acetaldehyde degradation and electrolytic water oxidation. Appl. Catal. A General 2015, 490, 1−9.
23. Song, G.; Lin, Y.; Zhu, Z.; Zheng, H.; Qiao, J.; He, C.; Wang, H. Strong Fluorescence of Poly(N‐vinylpyrrolidone) and Its Oxidized Hydrolyzate. Macromol. Rapid Commun. 2015, 36, 278−285.
24. Ivanov, S.; Tsakova, V. Influence of copper anion complexes on the incorporation of metal particles in polyaniline Part I: Copper citrate complex. J. Appl. Electrochem. 2002, 32, 701−707.
25. Zhang, H.; Zhang, Z.; Li, B.; Hua, Y.; Wang, C.; Zhao, X.; Liu, X. Synthesis and characterization of multipod frameworks of Cu2O microcrystals and Cu7S4 hollow microcages. CrystEngComm 2015, 17, 3908−3911.
26. Chen, G.; Niu, M.; Cui, L.; Bao, F.; Zhou, L.; Wang, Y. Facile Synthesis and Formation Mechanism of Metal Chalcogenides Hollow Nanoparticles. J. Phys. Chem. C 2009, 113, 7522−7525.
27. Sun, S.; Wang, S.; Deng, D.; Yang, Z. Formation of hierarchically polyhedral Cu7S4 cages from Cu2O templates and their structure-dependent photocatalytic performances. New J. Chem. 2013, 37, 3679−3684.
28. Do, Y.; Choi, J.-S.; Kim, S. K.; Sohn, Y. The Interfacial Nature of TiO2 and ZnO Nanoparticles Modified by Gold Nanoparticles. Bull. Korean Chem. Soc. 2010, 31, 2170−2174.
29. Pastrnak, J. Refractive index of Cu2O crystals in region up to 10 μ. Czech. J. Phys. 1961, 11, 374−376.
30. Kumar, M. K.; Krishnamoorthy, S.; Tan, L. K.; Chiam, S. Y.; Tripathy, S.; Gao, H. Field Effects in Plasmonic Photocatalyst by Precise SiO2 Thickness Control Using Atomic Layer Deposition. ACS Catal. 2011, 1, 300−308.
31. Ren, S.; Wang, B.; Zhang, H.; Ding, P.; Wang, Q. Sandwiched ZnO@Au@Cu2O Nanorod Films as Efficient Visible-Light-Driven Plasmonic Photocatalysts. ACS Appl. Mater. Interfaces 2015, 7, 4066−4074.
32. Yan, J.; Wu, G.; Guan, N.; Li, L.; Li, Z.; Cao, X. Understanding the effect of surface/bulk defects on the photocatalytic activity of TiO2: anatase versus rutile. Phys. Chem. Chem. Phys. 2013, 15, 10978−10988.
33. Lee, B.-Y.; Park, S.-H.; Lee, S.-C.; Kang, M.; Park, C.-H.; Choung, S.-J. Optical properties of Pt-TiO2 catalyst and photocatalytic activities for benzene decomposition. Korean J. Chem. Eng. 2003, 20, 812−818.
34. Rahmana, M. M.; Krishnab, K. M.; Sogac, T.; Jimboc, T.; Umeno, M. Optical properties and X-ray photoelectron spectroscopic study of pure and Pb-doped TiO2 thin films. J. Phys. Chem. Solids. 1999, 60, 201−210.
35. Sangpour, P.; Hashemi, F.; Moshfegh, A. Z. Photoenhanced Degradation of Methylene Blue on Cosputtered M:TiO2 (M = Au, Ag, Cu) Nanocomposite Systems: A Comparative Study. J. Phys. Chem. C 2010, 114, 13955−13961.
36. Williams, G.; Kamat, P. V. Graphene−Semiconductor Nanocomposites: Excited-State Interactions between ZnO Nanoparticles and Graphene Oxide. Langmuir 2009, 25, 13869−13873.
37. Yang, T.-T.; Chen, W.-T.; Hsu, Y.-J.; Wei, K.-H.; Lin, T.-Y.; Lin, T.-W. Interfacial Charge Carrier Dynamics in Core-Shell Au-CdS Nanocrystals. J. Phys. Chem. C 2010, 114, 11414−11420.
38. Lin, Y.-F.; Hsu, Y.-J. Interfacial charge carrier dynamics of type-II semiconductor nanoheterostructures. Appl. Catal. B Environ. 2013, 130-131, 93-98.
39. Chen, M.-Y.; Hsu, Y.-J. Type-II Nanorod Heterostructure Formation through One-Step Cation Exchange. Nanoscale 2013, 5, 363−368.
40. Chen, C.-H.; Wu, C.-L.; Pu, J.; Chiu, M.-H.; Kumar, P.; Takenobu, T.; Li, L.-J. Hole mobility enhancement and p-doping in monolayer WSe2 by gold decoration. 2D Materials 2014, 1, 034001.
41. Gao, W.; Kahn, A. Effect of electrical doping on molecular level alignment at organic-organic heterojunctions. Appl. Phys. Lett. 2003, 82, 4815−4817.
42. Yu, Z. B.; Xie, Y. P.; Liu, G.; Lu, G. Q. (M.); Ma, X. L.; Cheng, H.-M. Self-assembled CdS/Au/ZnO heterostructure induced by surface polar charges for efficient photocatalytic hydrogen evolution. J. Mater. Chem. A 2013, 1, 2773−2776.
43. Liu, S.; Yang, M.-Q.; Tang, Z.-R.; Xu, Y.-J. A nanotree-like CdS/ZnO nanocomposite with spatially branched hierarchical structure for photocatalytic fine-chemical synthesis. Nanoscale 2014, 6, 7193−7198.
44. Zhou, P.; Yu, J.; Jaroniec, M. All‐Solid‐State Z‐Scheme Photocatalytic Systems. Adv. Mater. 2014, 26, 4920−4935.
45. Li, R. S.; Liu, H.; Chen, B. B.; Zhang, H. Z.; Huang, C. Z.; Wang, J. Stable gold nanoparticles as a novel peroxidase mimic for colorimetric detection of cysteine. Anal. Methods 2016, 8, 2494−2501.
46. Jv, Y.; Li, B.; Cao, R. Positively-charged gold nanoparticles as peroxidase mimic and their application in hydrogen peroxide and glucose detection. Chem. Commun. 2010, 46, 8017−8019.
47. Liu, Y.; Wang, C.; Cai, N.; Long, S.; Yu, F. Negatively charged gold nanoparticles as an intrinsic peroxidasemimic and their applications in the oxidation of dopamine. J. Mater. Sci. 2014, 49, 7143−7150.
48. Li, G. L.; Ma, P.; Zhang, Y. F.; Liu, X. L.; Zhang, H.; Xue, W. M.; Mi, Y.; Luo, Y. E.; Fan, H. M. Synthesis of Cu2O nanowire mesocrystals using PTCDA as a modifier and their superior peroxidase-like activity. J. Mater. Sci. 2016, 51, 3979−3988.
49. Liu, Y.; Zhu, G.; Bao, C.; Yuan, A.; Shen, X. Intrinsic Peroxidase‐like Activity of Porous CuO Micro‐/nanostructures with Clean Surface. Chin. J. Chem. 2014, 32, 151−156.
50. He, W.; Jia, H.; Li, X.; Lei, Y.; Li, J.; Zhao, H.; Mi, L.; Zhang, L.; Zheng, Z. Understanding the formation of CuS concave superstructures with peroxidase-like activity. Nanoscale 2012, 4, 3501−3506.
51. Zhang, N.; Liu, S.; Xu, Y.-J. Recent progress on metal core@semiconductor shell nanocomposites as a promising type of photocatalyst. Nanoscale 2012, 4, 2227−2238.
52. Li, G.; Tang, Z. Noble metal nanoparticle@metal oxide core/yolk-shell nanostructures as catalysts: recent progress and perspective. Nanoscale 2014, 6, 3995−4011.
53. Wang, X.; Feng, J.; Bai, Y.; Zhang, Q.; Yin, Y. Synthesis, Properties, and Applications of Hollow Micro-/Nanostructures. Chem. Rev. 2016, 116, 10983−11060.
54. Zhang, N.; Liu, S.; Fu, X.; Xu, Y.-J. Synthesis of M@TiO2 (M = Au, Pd, Pt) Core–Shell Nanocomposites with Tunable Photoreactivity. J. Phys. Chem. C 2011, 115, 9136−9145.
55. Zhang, N.; Xu. Y.-J. Aggregation- and Leaching-Resistant, Reusable, and Multifunctional Pd@CeO2 as a Robust Nanocatalyst Achieved by a Hollow Core–Shell Strategy. Chem. Mater. 2013, 25, 1979−1988.
56. Galeano, C.; Güttel, R.; Paul, M.; Arnal, P.; Lu, A.-H.; Schüth, F. Yolk‐Shell Gold Nanoparticles as Model Materials for Support‐Effect Studies in Heterogeneous Catalysis: Au, @C and Au, @ZrO2 for CO Oxidation as an Example. Chem. Eur. J. 2011, 17, 8434−8439.
57. Park, J. C.; Song, H. Metal@Silica yolk-shell nanostructures as versatile bifunctional nanocatalysts. Nano Res. 2011, 4, 33−49.
58. Gates, B. C. Supported Metal Clusters: Synthesis, Structure, and Catalysis. Chem. Rev. 1995, 95, 511−522.
59. Corma, A.; Garcia, H. Supported gold nanoparticles as catalysts for organic reactions. Chem. Soc. Rev. 2008, 37, 2096−2126.
60. Shankar, M. V.; Neppolian, B.; Sakthivel, S.; Arabindoo, B.; Palanichamy, M.; Murugesan, V. Kinetics of photocatalytic degradation of textile dye reactive red 2. Indian J. Eng. Mater. Sci. 2001, 8, 104−109.
61. Yang, X.; Chen, W.; Huang, J.; Zhou, Y.; Zhu, Y.; Li, C. Rapid degradation of methylene blue in a novel heterogeneous Fe3O4 @rGO@TiO2-catalyzed photo-Fenton system. Scientific Reports 2015, 5, 10632.
62. Shi, W.; Du, D.; Shen, B.; Cui, C.; Lu, L.; Wang, L.; Zhang, J. Synthesis of Yolk–Shell Structured Fe3O4@void@CdS Nanoparticles: A General and Effective Structure Design for Photo-Fenton Reaction. ACS Appl. Mater. Interfaces. 2016, 8, 20831−20838.
63. Liu, F.; Xiao, P.; Tian, W. Q.; Zhou, M.; Li, Y.; Cui, X.; Zhang, Y.; Zhou, X. Hydrogenation of Pt/TiO2{101} nanobelts: a driving force for the improvement of methanol catalysis. Phys. Chem. Chem. Phys. 2015, 17, 28626−28634.
64. Lin, F.; Yang, J.; Lu, S.-H.; Niu, K.-Y.; Liu, Y.; Sun, J.; Du, X.-W. Laser synthesis of gold/oxide nanocomposites. J. Mater. Chem. 2010, 20, 1103−1106.
65. Ji, R.; Sun, W.; Chu, Y. One-step hydrothermal synthesis of Ag/Cu2O heterogeneous nanostructures over Cu foil and their SERS applications. RSC Adv. 2014, 4, 6055−6059.
66. Wang, M.; Xie, F.; Li, W.; M. Chen, Zhao, Y. Preparation of various kinds of copper sulfides in a facile way and the enhanced catalytic activity by visible light. J. Mater. Chem. A 2013, 1, 8616−8621.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top