跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.213) 您好!臺灣時間:2025/11/08 16:24
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:范辰碩
研究生(外文):Chen-Shuo Fan
論文名稱:近赤道東太平洋特定海域之降水年際變異探討
論文名稱(外文):Inter-annual Rainfall Variability of Specific Area In The Eastern Equatorial Pacific Ocean
指導教授:嚴明鉦嚴明鉦引用關係
指導教授(外文):Ming-Cheng Yen
學位類別:碩士
校院名稱:國立中央大學
系所名稱:大氣科學學系
學門:自然科學學門
學類:大氣科學學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:56
中文關鍵詞:海氣交互作用氣候震盪年際變異
外文關鍵詞:Air-Sea InteractionClimate OscillationInter-annual Variation
相關次數:
  • 被引用被引用:0
  • 點閱點閱:111
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究主要受美國及荷蘭預計在2020年共同開發的海上城市計畫(Floating City Project)所啟發,此計畫目前規畫之建設預定地為中美洲外海近赤道東太平洋海域。考慮到未來海上城市的水資源問題,本研究致力於對目標區域(6N-12N,86W-94W)之濕季降水的年際變化進行分析。研究中根據目標區域在雨季的降水氣候型態,主要將雨季分為三個時期,第一時期為五、六月,第二時期為七、八月,第三時期為九、十月。透過合成分析的方法,分別對1979-2014年之間每一時期取出六個乾年及六個濕年進行合成,並利用其結果進行分析。
根據水氣收支方程(Moisture Budget)在目標區域的診斷結果顯示出,第一及第二時期在乾年的降水受減弱的上升運動及乾平流影響,在濕年的降水受增強的上升運動及濕平流影響。第三時期垂直運動變化對於降水的影響力則是不管在乾年或是濕年都較第一、第二時期來得高,反之水氣平流變化對於降水的影響程度則是第一、二時期較第三時期來的相對明顯。從全球海溫及目標區域之降水相關性的分析結果顯示,目標區域的降水與太平洋及大西洋的海溫變化均有相關性存在。所以本研究進一步使用經驗正交函數(EOF)分別對太平洋及大西洋分離出訊號強度較高的前三個海溫震盪模態,使用各模態海溫震盪訊號與目標區域降水進行相關性及多元回歸分析,可以驗證第一、第二時期的乾濕年主要受到中太平洋聖嬰(CP)、東太平洋聖嬰(EP)及北大西洋震盪(NAO)訊號所影響,到了第三時期的降水則只受到CP及EP的影響。其中CP及EP兩類聖嬰的生命週期對於沃克環流強弱的影響,以及NAO對於北大西洋副熱帶高壓強弱變化的影響即為主導著水氣垂直平流變化與水氣水平平流變化的主要原因,間接呼應了水氣收支方程對於目標區域降水變化診斷之結果。
This research is inspired by Floating City Project which is going to be implemented by American and Netherland Cooperated Institution in 2020. The floating city has been planned to construct over the eastern equatorial Pacific Ocean near Central America in the project. Consider to the future water resource problem of the floating city, this research is dedicated to understand inter-annual precipitation variation over Target Area (6N-12N, 86W-94W) in rainy season. Target Area is actually a place where the floating city would be built in 2020. In this research, climatology rainy season of Target Area has been classified as three periods. Period-1, Period-2 and Period-3 are represent of May-June, July-August and September-October respectively. Wet years and dry years are picked up in each period, then analysis of atmospheric and oceanic gridded datasets would be conducted through composite analysis method according to these wet and dry years.
Follow the diagnostic results of moisture budget over Target Area, Period-1 and Period-2 has dry advection and downward motion anomaly contribution for less precipitation in Dry year. Conversely, wet advection and upward motion anomaly contributed for more precipitation in Wet year. With regard to Period-3, contribution intensity of vertical motion anomaly is much higher than Period-1 and Period-2, but for advection term contribution is much less than former two periods. From the results of correlation analysis between global sea surface temperatures (SST) and Target Area precipitation, precipitation has found to have related with Pacific and Atlantic SST. Therefore, this research further applied Empirical Orthogonal Function (EOF) with SST datasets to separate out the most three significant climate oscillation signals of Pacific and Atlantic Ocean. Through correlation and multi-regression analysis of climate oscillation signals and precipitation, Period-1 and Period-2 precipitation are demonstrated that affected by Central Pacific ENSO (CP), Eastern Pacific ENSO (EP) and North Atlantic Oscillation (NAO). When getting into Period-3, precipitation only affected by CP and EP in this time. Especially for Walker Circulation variation during CP and EP events, Atlantic Subtropical High variation during NAO event, these phenomenon are the main cause of vertical motion and advection anomaly contribution, it is also consistent with the diagnostic results of moisture budget.
中文摘要 I
Abstract II
誌謝 III
目錄 IV
表目錄 V
圖目錄 V
一、前言 1
二、分析資料來源及分析方法 4
三、分析結果與討論 9
3-1水氣收支方程診斷 9
3-2海溫與降水相關性探討 12
3-3太平洋及大西洋之氣候震盪訊號分析 13
3-4氣候震盪訊號影響降水變化機制探討 16
四、結論 22
參考文獻 25
圖表 27
Barnston, A. G., and R. E. Livezey, 1987. Classification, seasonality and persistence of low-frequency atmospheric circulation patterns. Mon. Wea. Rev., 115, 1083-1126
Bjornsson, H., and S. A. Venegas, 1997. A manual for EOF and SVD analyses of climate data, McGill University, CCGCR Report No. 97-1, Montreal, Quebec, 52
Bracewell, R. N., The Fourier Transform and Its Applications, 3rd ed., Boston, McGraw Hill, 2000
Behringer, D.W., and Y. Xue, 2004. Evaluation of the global ocean data assimilation system at NCEP: The Pacific Ocean. Eighth Symposium on Integrated Observing and Assimilation Systems for Atmosphere, Oceans, and Land Surface, AMS 84th Annual Meeting, Washington State Convention and Trade Center, Seattle, Washington, 11-15. Derber, J.C., and A. Rosati, 1989: A global oceanic data assimilation system. J. Phys. Oceanogr., 19, 1333-1347
Chou, C., J. D. Neelin, C. A. Chen, and J. Y. Tu, 2009. Evaluating the “Rich-Get-Richer” Mechanism in Tropical Precipitation Change under Global Warming. J. Climate, 22, 1982–2005
Clara, D., A. A. Michael, S. P. Xie, and S. P. Adam, 2010. Sea Surface Temperature Variability: Patterns and Mechanisms. Annual Review of Marine Science, 2, 115-143
Dai, A., T. M. L. Wigley, 2000. Global patterns of ENSO-induced precipitation. Geophys. Res. Lett., 27, 1944-8007
Dee, D. P., S. M. Uppala, A. J. Simmons, P. Berrisford, P. Poli, S. Kobayashi, U. Andrae, M. A. Balmaseda, G. Balsamo, P. Bauer, P. Bechtold, A. C. M. Beljaars, L. vandeBerg, J. Bidlot, N. Bormann, C. Delsol, R. Dragani, M. Fuentes, A. J. Geer, L. Haimberger, S. B. Healy, H. Hersbach, E. V. Holm, L. Isaksen, P. Kallberg, M. Kohler, M. Matricardi, A. P. McNally, S. Monge, B. M. Morcrette, J.-J. Park, B. K. Peubey, C. Rosnay, P. Tavolato, J. N. Thepaut, and F. Vitart, 2011. The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q.J.R. Meteorol. Soc., 137, 553–597
Gill, A. E., 1980. Some simple solutions for heat-induced tropical circulation. Q.J.R. Meteorol. Soc., 106, 447–462
Jessica, M. U., and F. H. Robert, Mind on Statistics, Cengage Learning, 2014
Kerr, R., 2000. A North Atlantic climate pacemaker for the centuries. Science, 288, 1984–1985
Kao, H. Y. and J. Y. Yu, 2009. Contrasting eastern Pacific and central Pacific types of El Nino. J. Clim., 22, 615–632
Kug, J. S., F. F. Jin, and S. I. An, 2009. Two Types of El Nino Events: Cold Tongue El Nino and Warm Pool El Nino. J. Climate, 22, 1499–1515
Liebmann, B., and C. A. Smith, 1996. Description of a Complete (Interpolated) Outgoing Longwave Radiation Dataset. Bulletin of the American Meteorological Society, 77, 1275-1277
Magana, V., A. A. Jorge, and M. Socorro, 1999. The Midsummer Drought over Mexico and Central America. J. Climate, 12, 1577–1588
Masao, K., W. Ebisuzaki, J. Woollen, S. K. Yang, J. J. Hnilo, M. Fiorino, and G. L. Potter, 2002. NCEP–DOE AMIP-II Reanalysis (R-2). Bull. Amer. Meteor. Soc., 83, 1631–1643
Michael, A. T., and J. A. Eric, 2005. Climate of Central America and the Caribbean. Encyclopedia of World Climatology, 183-189
Monique, M. and C. Francisco, 2011. Global Modes of Sea Surface Temperature Variability in Relation to Regional Climate Indices. J. Climate, 24, 4314–4331
Nathan, J. M., R. H. Steven, Z. Yuan, M. W. John, and C. F. Robert, 1997. A Pacific Interdecadal Climate Oscillation with Impacts on Salmon Production. Bull. Amer. Meteor. Soc., 78, 1069–1079
Rudloff, W., 1981. World-Climates, with Tables of Climatic Data and Practical Suggestions. Wissenschaftliche Verlagsgesellschaft mbH Stuttgart.
Ropelewski, C. F., and M. S. Halpert, 1987. Global and regional scale precipitation patterns associated with the El Nino/ Southern Oscillation. Mon. Wea. Rev., 115, 1606-1626
Rodgers, K. B., P. Friederichs, and M. Latif, 2004. Tropical Pacific decadal variability and its relation to decadal modulations of ENSO. J. Climate, 17, 3761–377
The Seasteading Institute, 2013. Seasteading Implementation Plan - Final Report. Retrieved from http://www.seasteading.org/
Wanner H, S. Bronnimann, and C. Casty, 2001. North Atlantic oscillation – concepts and studies. Surveys in Geophysics, 22, 321–382
Xie, S. P., and P.A. Arkin, 1997. Global precipitation: A 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. Bull. Amer. Meteor. Soc., 78, 2539 – 2558
Xie, S. P., and J. A. Carton, 2004. Tropical Atlantic variability: patterns, mechanisms, and impacts. Earth Climate: The Ocean-Atmosphere Interaction, 121–42
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top