跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.124) 您好!臺灣時間:2025/09/19 14:20
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:李嘉茹
研究生(外文):Chia-Ju Li
論文名稱:將非常態平均數管制圖設計中成本與監控效率最佳化之研究
論文名稱(外文):A Study of X-bar Control Charts Design with Non-normally Data for Optimizing Cost and Monitoring Efficiency
指導教授:胡伯潛胡伯潛引用關係
指導教授(外文):Po-Chieng Hu
學位類別:碩士
校院名稱:國立虎尾科技大學
系所名稱:工業工程與管理研究所
學門:工程學門
學類:工業工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:61
中文關鍵詞:平均數管制圖經濟─統計性設計基因演算法
外文關鍵詞:X-bar control chartEconomic-statistical designGenetic algorithm
相關次數:
  • 被引用被引用:0
  • 點閱點閱:306
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
傳統管制圖經常假設樣本之量測值為常態分配,可是許多實務上的案例卻非如此。在這些實例中常常由於樣本組內之量測值較少,無法應用中央極限定理,使得常態分配的假設並不恰當。
由於較少文獻探討具警告界限之平均數管制圖經濟─統計性設計,因此本研究主要是探討在非常態性資料對於具警告界限之平均數管制圖經濟─統計性設計的影響。選擇經濟─統計性設計模式除了可以保有管制圖預期應有的偵測能力外,同時也能在經濟因素考量下,降低所需付出之成本。本研究在經濟性設計的部份是以Gordon 和Weindling(1975)成本模式,並以生產每件良品之平均成本為績效衡量指標;而統計性設計的部份則是採「平均連串長度」作為統計限制條件。本研究應用基因演算法進行求解,也就是要以基因演算法在滿足所設定的統計限制條件下搜尋管制圖最適參數組合:樣本大小(n)、抽樣間隔(s)、連串長度(r)、警告界限係數(w)與管制界限係數(k),使得生產每件良品的平均成本最小化。
研究結果顯示,固定抽樣成本(CF)與調查並消除可歸屬原因的成本(CA2)變動時,對於單位平均成本並無明顯的影響;而變動抽樣成本(CV)、不良品所花費的成本(CD)、調查錯誤警告的成本(CA1)與製程發生隨機偏移的頻率增加時,單位平均成本明顯遞增。另外,製程發生偏移程度與誤差容許率增加時,單位平均成本則明顯遞減。
Traditionally, when the issue of designing control chart is discussed, one usually assumes the observations in each sampled subgroup are normally distributed; therefore, the sample mean is also normally distributed. Even if the size of subgroup is large enough, the observations will be distributed normally according to the central limit theorem. However, the assumption may not be acceptable in practice.

In this research, an economic-statistical design of X-bar chart with warning limit under Non-normal distributions will be developed using the Burr distribution. In the part of economic design, Gordon and Weindling (1975) cost model is used to minimize average cost per part produced. In the part of statistical design, average run length (ARL) is used as the statistical limiting conditions. The genetic algorithm (GA) is adopted to search for the optimal parameters, i.e. the sampling size (n), the sampling interval (s), the run length (r), the warning limit coefficients (w) and the control limit coefficients (k).

By sensitive analysis we can get fixed sampling cost (CF) and cost correcting the assignable cause (CA2) don’t affect average cost per part produced. An increase in variation sampling cost (CV), cost of defective product (CD), cost of searching for assignable cause (CA1) and mean number of shift (θ) leads to increase average cost per part produced. In addition, An increase in shift coefficient (δ) and allowable semi-tolerance leads to increase average cost per part produced.
目錄

中文摘要 -------------------------------------------------------------------------- i
英文摘要 -------------------------------------------------------------------------- ii
誌謝 -------------------------------------------------------------------------- iii
目錄 -------------------------------------------------------------------------- iv
表目錄 -------------------------------------------------------------------------- vi
圖目錄 -------------------------------------------------------------------------- vii
符號說明 -------------------------------------------------------------------------- viii
第一章 緒論-------------------------------------------------------------------- 1
1.1 研究背景-------------------------------------------------------------- 1
1.2 研究動機與目的----------------------------------------------------- 2
1.3 研究範圍與假設----------------------------------------------------- 3
1.4 研究架構-------------------------------------------------------------- 4
第二章 文獻探討-------------------------------------------------------------- 7
2.1 管制圖經濟性設計-----------------------------------------------
7
2.2 管制圖經濟─統計性設計--------------------------------------
8
2.3 具警告界限之管制圖----------------------------------------------- 10
2.4 非常態性資料之探討----------------------------------------------- 11
2.5 基因演算法應用在管制圖相關研究----------------------------- 12
2.6 田口實驗設計應用在管制圖相關研究-------------------------- 13
第三章 研究方法-------------------------------------------------------------- 15
3.1 Burr分配-------------------------------------------------------------- 15
3.1.1 Burr分配之簡介----------------------------------------------------- 15
3.1.2 應用Burr分配之轉換方式---------------------------------------- 16
3.2 基因演算法----------------------------------------------------------- 19
3.2.1 編碼-------------------------------------------------------------------- 19
3.2.2 初始族群-------------------------------------------------------------- 21
3.2.3 定義適應函數-------------------------------------------------------- 21
3.2.4 基因運算子----------------------------------------------------------- 21
3.2.5 停止條件-------------------------------------------------------------- 26

第四章 模式的建立----------------------------------------------------------- 27
4.1 模型的假設----------------------------------------------------------- 27
4.2 成本模式之介紹----------------------------------------------------- 27
4.3 模型中機率的推導-------------------------------------------------- 30
4.4 統計性設計之說明-------------------------------------------------- 36
第五章 模式的求解----------------------------------------------------------- 37
5.1 求解程序-------------------------------------------------------------- 37
5.2 範例說明-------------------------------------------------------------- 38
5.3 基因演算法之參數設定-------------------------------------------- 46
5.3.1 田口實驗設計-------------------------------------------------------- 46
5.3.2 基因實驗參數設定-------------------------------------------------- 46
5.3.3 實驗分析-------------------------------------------------------------- 48
第六章 模式的分析----------------------------------------------------------- 50
6.1 經濟性與經濟─統計性設計之比較------------------------------ 50
6.2 敏感度分析----------------------------------------------------------- 53
第七章 結論與建議----------------------------------------------------------- 59
7.1 結論-------------------------------------------------------------------- 59
7.2 建議-------------------------------------------------------------------- 61
參考文獻 -------------------------------------------------------------------------- 62
參考文獻

[1]王品皓,2000,在非常態性與相關性資料下平均數管制圖之經濟性設計,國立雲林科技大學工業工程與管理系研究所,碩士論文。
[2]包益坤,2003,X-bar與R管制圖的聯合經濟統計模式設計應用在服從非常態分配的品質特性,中原大學工業工程與管理系研究所,碩士論文。
[3]許智豪,2004,以品質損失函數觀點探討平均值管制圖之經濟設計,大葉大學工業工程與管理系研究所,碩士論文。
[4]Alexander, S.M. Dillman, M.A. Usher, J.S. and Damodaran, B., 1995, “Economic design of control charts using the Taguchi loss function”, Computers in Industrial Engineering, vol.28, pp.671–679.
[5]Bai, D.S., and Lee, K.T., 1998, “An Economic Design of Variable Sampling Interval X-bar Control Charts.”, International Journal of Production Economics, vol.54, pp. 57–64.
[6]Burr, I.W., 1942, “Cumulative Frequency Distribution.”, Annals of Mathematical Statistics, Vol. 13, pp. 215-232
[7]Celano, G. and Fichera, S., 1999,“Multiobjective Economic Design of an X-bar Control Chart.”, Computers and Industrial Engineering, vol.37, pp. 129-132.
[8]Chang, Y.S. and Bai, D.S., 2001, “Control Charts for Positively Skewed Populations With Weighted Standard Deviations.”, Quality and Reliability Engineering International, vol.17, pp. 397–406.
[9]Chen, Y.K., 2004, “Economic Design of X-bar Control Charts for Non-normally Data Using Variable Sampling Policy.”, International Journal of Production Economics, vol.92, pp. 61-74.
[10]Chen, Y.K., 2007, ”Economic design of variable sampling interval T2 control charts—A hybrid Markov Chain approach with genetic algorithms”, Expert Systems with Applications: An International Journal, vol. 33 , pp.683-689.
[11]Chen, H.F. and Cheng, Y.Y., 2007,“Non-normality Effects on the Economic statistical Design of X-bar Charts with Weibull In-Control Time.”, European Journal of Operational Research, vol.176, pp. 986-998.
[12]Chiu, W.K., and Wetherill, G.B., 1974, “A Simplified Scheme for the Economic Design of X-bar Charts.”, Journal of Quality Technology, vol.6, pp. 63-69.
[13]Chiu, W.K. and Cheung, K.C., 1977, “An Economic Study of X-bar Charts with Warning Limits.”, Journal of Quality Technology, vol.9, pp. 166-171
[14]Chou, C.Y. and Cheng, P.H., 1997, “Ranges Control Chart for Non-normal Data.”, Journal of the Chinese Institute of Industrial Engineers, vol.14, pp. 401-409.
[15]Chou, C.Y. Chen, C.H. and Liu, H.R., 2000, “Economic-Statistical Design of X-bar Charts for Non-normal Data by Considering Quality Loss.”, Journal of Applied Statistics, vol.27, pp. 939–951.
[16]Chou, C.Y., 2001, “Economic Design of X-bar Charts for Non-normally Correlated Data.”, International Journal of Production Research, vol.39, pp. 1931-1941.
[17]Chou, C.Y., 2001, “Economic Statistical Design of Averages Control Charts for Monitoring a Process under Non-normality.”, The International Journal of Advanced Manufacturing Technology, vol.17, pp. 603-609.
[18]Chou, C.Y. Chen, C.H. and Liu, H.R., 2004, “The Effect of Non-normality on the Economic Design of Warning Limit X-bar Charts.”, Quality Engineering, vol.16, pp. 567-575
[19]Chou, C.Y., Chen, C.H., and Chen, C.H., 2006, “Economic design of variable sampling intervals T2 control charts using genetic algorithms”, Expert Systems with Applications, vol.30, pp.233–242.
[20]Chou, C.Y. Chen, C.H. and Liu, H.R. 2006, “Economic design of variable sampling intervals EWMA charts with sampling at fixed times using genetic algorithms”, Quality and Quantity, vol. 40, No. 6, pp. 879-896.
[21]Chen, Y.K., 2007, “Economic design of variable sampling interval T2 control charts—A hybrid Markov Chain approach with genetic algorithms”, Expert Systems with Applications: An International Journal, vol. 33 , pp.683-689.
[22]Duncan, A.J., 1956, “The Economic Design of X-bar Charts Used to Maintain Current Control of a Process.”, Journal of the American Statistical Association, vol.51, pp. 228-242.
[23]Duncan, A.J. 1971, “The Economic Design of X-bar charts When There is a Multiplicity of Assignable Causes.” , Journal of American Statistical Association, vol.66, pp. 107-121.
[24]Gordon, G.R. and Weindling, J.I., 1975, “A Cost Model for Economic Design of Warning Limit Control Chart Schemes.” , AIIE Transaction, vol.3, pp. 319-329
[25]Ho, C.C., and Case, K.E., 1994, “The Economically-Based EWMA Control Chart.”, International Journal of Production Research, vol.32, pp. 2179-2186.
[26]Ho, C.C., and Case, K.E., 1994, “An Economic Design of the Zone Control Chart for Jointly Monitoring Process Centering and Variation”, Computers and Industrial Engineering, vol. 26 , pp.213-221.
[27]Holland, J., 1975, “Adaptation in Natural and Artificial Systems.”, University of Michigan Press, Ann Arbor, Michigan.
[28]Lin, Y.C. and Chou, C.Y., 2005, “On the Design of Variable Sample Size and Sampling Intervals X-bar Charts under Non-normality.”, International Journal of Production Economics, vol.96, pp. 249-261.
[29]Linderman, K. and Love, T.E., 2000, “Economic and Economic Statistical Designs for MEWMA Control Charts.”,Journal of Quality Technology, vol.32, pp.410-417.
[30]Liu, H.R., Chou, C.Y, Chen, C.H., 2002, “Minimum-loss design of x-bar charts for correlated data”, Journal of Loss Prevention in the Process Industries, vol.15, pp.405-411.
[31]Liu, H.R. Chou, C.Y. and Chen, C.H., 2003, “The Effect of Correlation on the Economic Design of Warning Limit X-bar Charts.”, International of Advanced Manufacturing Technology, vol.22, pp. 306-312
[32]McWilliams, T.P., 1994, “Economic, Statistical, and Economic-Statistical X-bar Chart Designs.”, Journal of Quality Technology, vol.26, pp. 227-238.
[33]Montgomery, D. C., Torng, J. C., Cochran, J. K., and Lawence, F. P., 1995, “Statistically constrained economic design of the EWMA chart”, Journal of Quality Technology, vol. 27, pp.250–256.
[34]Oraini, H.A. and Rahim M.A., 2002, “Economic Statistical Design of X-bar Control Charts for Systems With Gamma(λ,2), In-Control Times.”, Computer and Industrial Engineering, vol.43, pp. 645-654.
[35]Page, E.S., 1962, “A Modified Control Chart with Warning Limits.”, Biometrika, vol.49, pp. 171-176.
[36]Panagos, M.R. Heikes, R.G. and Montgomery, D.C., 1985, “Economic Design of Control Charts for Two Manufacturing Process Models.”, Naval Research and Logistics Quarterly, vol.32, pp. 631-46.
[37]Rahim, M.A., 1985, “Economic Model of X-bar Chart under Non-normality and Measurement Errors.”, Computers and Operations Research, vol.12, pp. 291–299.
[38]Saniga, E.M., 1978, “Joint Economical Design of X-bar and R Control Charts.”, Management Science, vol.24, pp. 420-431.
[39]Schaffer, J.D.; Richard, A., Caruana, L., Eshelman, J. and Rajarshi, D., 1989 “A Study of Control Parameters Affecting Online Performance of Genetic Algorithms for Function Optimization.”, The 3rd International Conference on Genetic Algorithms and Their Applications, pp. 51-60
[40]Shiau, Y.R. , Lin, M.H., Chung, I.P. and Pen, Y.L., 2006, “Monitoring Capability Study and Genetic Economic Design Of X-bar Control Chart”, International Journal of Advanced Manufacturing Technology, 30, 273-278.
[41]Taylor, H.M., 1968, “The Economic Design of Cumulative Sum Control Chart.”, Technometrics, vol.10, pp. 479-488.
[42]Tsai, C. F. Bowerman C. and Tait, J., 2000,“A Dynamic Adaptive System for Economic Design of Multiple Control Charts.”Integrated Manufacuring Systems, pp. 277-285.
[43]Weindling, J.I., 1967, “Statistical Properties of a General Class of Control Charts Treated as a Markov Process.” Ph.D. Dissertation, Columbia University.
[44]Weindling, J.I. Littauer, S.B. and Tiago de Oliverira, J. 1970, “Mean Action Time of the Control Chart with Warning Limits.”, Journal of Quality Technology, vol.2, pp. 79-85.
[45]Woodall, W.H., 1986, “Weaknesses of the Economic Design of Control Charts.”, Technometrics, vol.28, pp. 408-409.
[46]Yourstone, S.A. and Zimmer, W.J., 1992, “Non-normality and the Design of Control Charts for Averages.”, Decision Sciences, vol.23, pp. 1099-1113.
[47]Zhang, G. and Berardi, V., 1997, “Economic Statistical Design of X-bar Control Chart for Systems With Weibull In-Control Times.”, Computers and Industrial Engineering, vol.32, pp. 575-586.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 江惜美:<析論蘇軾詩的源流>,《臺北市立師範學院學報》第30期,1999年3月。
2. 黃坤堯:<超越李白:論北宋詩壇的文藝氣象>,《中國文化研究所學報》第11卷第42期,2002年。
3. 江惜美:<「後山詩話」中對蘇軾詩詞的評論>,《臺北市立師範學院學報》第32期,2001年11月。
4. 汪榮祖:<蘇東坡詠史詩一瞥>,《歷史月刊》第162期,2001年7月。
5. 朱振藩:<學士老饕蘇東坡>,《歷史月刊》第162期,2001年7月。
6. 鄭曉江:<勞動筋骨,節制貪欲---蘇東坡的養生之道>,《歷史月刊》第162期,2001年7月。
7. 朱榮智:<中國傳統文人的三種生命情調---以屈原、陶淵明、蘇東坡為例>,《國文天地》第16卷第11期,2001年4月。
8. 邱敏捷:<從「後赤壁賦」看東坡被貶後內在心境之轉化>,《國文天地》第16卷第7期,2000年12月。
9. 陳惠美:<蘇東坡諧虐詩初探>,《僑光學報》第18期,2000年11月。
10. 鍾美玲:<蘇軾禪詩山水意象的表現>,《中國文化月刊》第246期,2000年9月。
11. 黃志誠:<東坡寄託之表現手法及其主題淺探>,《輔仁國文學報》第16期,2000年7月。
12. 江惜美:<析論蘇軾詩中的想像>,《應用語文學報》第2期,2000年6月。
13. 江惜美:<蘇軾詩中的感情>,《臺北市立師範學院學報》第31期,2000年4月。
14. 羅秀美:<蘇東坡的和陶詩>,《國文天地》第15卷第9期,2000年2月。
15. 黃志誠:<蘇軾諷諭詩內容探析---以宋神宗熙寧二年至元豐二年詩歌為探析對象>,《光武學報》第23期,1998年11月。