跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.108) 您好!臺灣時間:2025/09/02 11:08
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:楊弘鼎
研究生(外文):Hong-Ding Yang
論文名稱:分離性全支配問題在環面和格子圖上之研究
論文名稱(外文):A Study of Disjunctive Total domination Problem on Tori and Grid Graphs
指導教授:彭勝龍彭勝龍引用關係
指導教授(外文):Sheng-Lung Peng
學位類別:碩士
校院名稱:國立東華大學
系所名稱:資訊工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
論文頁數:32
中文關鍵詞:支配問題格子圖環面
外文關鍵詞:Disjunctive total dominationGrid graphsTori
相關次數:
  • 被引用被引用:0
  • 點閱點閱:917
  • 評分評分:
  • 下載下載:5
  • 收藏至我的研究室書目清單書目收藏:0
給定一個圖G=(V,E),全支配集是指在圖G中存在一個點集合V的子集合D,而在V中所有的點都必須與D中的點相鄰。分離性全支配集是指在圖G中存在一個點集合V的子集合D,而V中所有的點都必須至少與D中的一點相鄰或者與D中的兩個點之間距離為二。分離性全支配問題就是找出圖G最小的分離性全支配集D。而圖G中最小的分離性全支配集稱為圖G的分離性全支配數。在這篇論文中,我們探討分離性全支配問題在格子圖與環面上之研究。而在某些特殊例子當中,我們所提出的解剛好會是其最佳解。
For a graph G = (V;E), a subset D of V is a total dominating set of
G if every vertex in V has to be adjacent to a vertex of D. Vertex
subset D is a disjunctive total dominating set if every vertex of V is
adjacent to a vertex of D or has at least two vertices in D at distance 2 from it. The disjunctive total domination problem on G is to find a disjunctive total dominating set D of the minimum cardinality. The cardinality of a minimum disjunctive total dominating set of G is called the disjunctive total domination number of G. In this thesis, we study the disjunctive total domination problem on grid graphs and tori. We propose upper bounds for general grid graphs and tori. In particular, some bounds are optimal for some special cases.
1 Introduction
2 Disjunctive Total Domination on Grid Graphs
3 Disjunctive Total Domination on Tori
4 Conclusion and Future Work
[1] Booth, K.S., Johnson, J.H.: Dominating sets in chordal graphs. SIAM J. Com-put. 11, 191-199 (1982)
[2] Chang, G.J.: Labeling algorithms for domination problems in sun-free chordal graphs. Discrete Applied Mathematics 22, 21-34 (1988)
[3] Chellali, M., Haynes, T.W.: A note on the total domination number of a tree.J. Combin. Math. Combin. Comput. 58, 189-193 (2006)
[4] Crevals, S., stergrd, P.R.J.: Independent domination of grids. Discrete Mathe-matics 338, 1379-1384 (2015)
[5] Delavina, E., Pepper, R.; Waller, B.: Lower bounds for the domination number.Discussiones Mathematicae Graph Theory 30, 475-487 (2010)
[6] Favaron, O., Henning, M.A.: Total domination in claw-free graphs with minimum degree 2. Discrete Mathematics 308(15), 3213-3219 (2008)
[7] Flandrin, E., Faudree, R., Ryjcek, Z.: Claw-free graphs - a survey. Discrete Math.164(1-3), 87-147 (1997)
[8] Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness, W. H. Freeman & Co., New York, NY, USA (1979)
[9] Goddard, W., Henning, M.A., McPillan, C.A.: The disjunctive domination num-ber of a graph. Quaestiones Math. 37, 547-561 (2014)
[10] Goncalves, D., Pinlou, A., Rao, M., Thomasse, S.: The domination number of grids. SIAM Journal on Discrete Mathematics 25, 1443-1453 (2011)
[11] Gravier, S.: Total domination number of grid graphs. Discrete Applied Mathe-matics 121, 119-128 (2002)
[12] Henning, M.A.: Graphs with large total domination number. Journal of Graph Theory 35, 21-45 (2000)
[13] Henning, M.A.: A survey of selected recent results on total domination in graphs.Discrete Mathematics 309, 32-63 (2009)
[14] Henning, M.A., Marcon, S.A.: Domination versus disjunctive domination in trees. Discrete Applied Mathematics 184, 171-177 (2015)
[15] Henning, M.A., Marcon, S.A.: Domination versus disjunctive domination in graphs. Quaestiones Mathematicae 39, 261-273 (2016)
[16] Henning, M.A., Naicker, V.: Graphs with large disjunctive total domination number. Discrete Mathematics & Theoretical Computer Science 17, 255-282(2015)
[17] Henning, M.A., Naicker, V.: Bounds on the disjunctive total domination number of a tree. Discussiones Mathematicae Graph Theory 36, 153{171 (2016)
[18] Henning, M.A., Naicker, V.: Disjunctive total domination in graphs. J. Comb.Optim. 31, 1090{1110 (2016)
[19] Henning, M.A., Yeo, A.: Total Domination in Graphs. Springer-Verlag New York, isbn=978-1-4614-6525-6 (2013)
[20] Keil, J.M.: The complexity of domination problems in circle graphs. Discrete Applied Mathematics 42, 51{63 (1993)
[21] Klaviar, S., Seifter, N.: Dominating Cartesian products of cycles, Discrete Appl.Math. 59, 129-136 (1995)
[22] Kratsch, D., Stewart, L.: Total domination and transformation. Inf. Process.Lett. 63, 167{170 (1997)
[23] Laskar, R., Pfa, J., Hedetniemi, S.M., Hedetneimi, S.T.: On the algorithmic complexity of total domination. SIAM J. on Algebraic and Discrete Methods 5,420-425 (1984)
[24] Lin, C.-F., Peng, S.-L.: Algorithmic aspects of disjunctive total domination in graphs. Proceedings of the 10th International Conference on Combinatorial Op-timization and Applications (COCOA 2016), 285{293 (2016)
[25] Panda, B.S., Pandey, A., Paul, S.: Algorithmic aspects of disjunctive domination in graphs. Proceedings of COCOON 2015, 325-336 (2015)
[26] Ramalingam, G., Rangan, C.P.: Total domination in interval graphs revisited.Inf. Process. Lett. 27, 17-21 (1988)
[27] Telle, J.A.: Complexity of domination-type problems in graphs. Nord. J. Com-put. 1, 157-171 (1994)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top