跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.14) 您好!臺灣時間:2025/12/24 17:41
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:王雪芬
研究生(外文):Xue-Fen Wang
論文名稱:以熔融混煉法製備OBC/PCL形狀記憶奈米複合材料
論文名稱(外文):Preparation of Shape Memory OBC/PCL Melt-Blends and Nanocomposites
指導教授:賴森茂賴森茂引用關係
指導教授(外文):Sun-Mou Lai
口試委員:邱方遒盧信冲韓錦鈴
口試委員(外文):Fang-chyou ChiuHsin-Chun LuJin-Lin Han
口試日期:2014-07-24
學位類別:碩士
校院名稱:國立宜蘭大學
系所名稱:化學工程與材料工程學系碩士班
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:178
中文關鍵詞:烯烴嵌段共聚物聚己內酯氧化鋅形狀記憶高分子合膠複合材料
外文關鍵詞:olefin block copolymerpolycaprolactonezinc oxideshape memory polymercomposite
相關次數:
  • 被引用被引用:2
  • 點閱點閱:941
  • 評分評分:
  • 下載下載:20
  • 收藏至我的研究室書目清單書目收藏:0
本研究以熔融混練方式製備出烯烴嵌段共聚物 (Olefin Block Copolymers, OBC) /聚己內酯 (Polycaprolactone, PCL) 綠色形狀記憶高分子合膠,以 60/40 具最佳形狀記憶效果之組合,但兩者之間的相容性不佳,所以添加 OBC-g-GMA (Glycidyl Methacrylate, GMA) 及過氧化二異丙苯 (Dicumyl Peroxide, DCP) 當作相容劑,接著在加入不同長徑比的氧化鋅 (ZnO),並進行對形狀記憶高分子影響的探討。
掃描式電子顯微鏡 (SEM) 觀察出添加相容劑是有助於 OBC/PCL blends 的相容性。示差掃描熱分析儀 (DSC) 表示改質 OBC/PCL blends 的結晶溫度均提升,熔點溫度則無太大改變。流變儀 (AR) 呈現經 DCP 改質的 OBC/PCL blends 之黏度是高於未添加 DCP 改質的 OBC/PCL blends。X 光繞射分析儀 (XRD) 證明六方纖鋅礦 ZnO 之晶體結構。熱重分析儀 (TGA) 顯示添加 ZnO 的 OBC/PCL blends 之熱穩定性增加 35.4 oC。紫外光-可見光吸收光譜儀 (UV) 得知加入 ZnO 之 OBC/PCL blends 是具高吸收紫外光的功能。
形狀記憶方面先探討改質或未改質 OBC/PCL blends 在不同溫度 (30 oC、65 oC) 預變形之效果,研究中發現在 65 oC 預變形的 OBC/OBC-g-GMA/PCL-D blends 之形狀記憶效果最佳,其形狀固定率 (Shape fixity ratio, Rf) 及形狀恢復率 (Shape recovery ratio, Rr) 分別可達 96.7±2.6 % 及 95.7±3.5 %,在恢復應力中,最大應力會出現在預變形溫度附近,表示具有記憶溫度之效果;進一步研究應力鬆弛,經熱固定 10 分鐘後,有助於未添加 DCP 改質 OBC/PCL blends 之 Rf,高達 96.9±0.7 %;接著在不同溫度下先經預循環後,再進行三次的變形循環,此種預循環方式,為目前研究學者尚未研究之方向,結果發現無論改質或未改質 OBC/PCL blends 之 Rr 均仍然保持 100 % 的高恢復性;最後發現添加 ZnO 的 OBC/PCL blends 之 Rf 較未添加 OBC/PCL blends 為高。

Olefin block copolymer (OBC) and polycaprolactone (PCL) were melt-blended to form green shape memory blends. The shape memory behaviors of OBC/PCL blends were investigated at 60/40 proportions. Due to the lack of good compatibility between OBC and PCL, OBC-g-GMA (Glycidyl Methacrylate, GMA) and dicumyl peroxide (DCP) were added to improve the compatibility. In addition, ZnO with different aspect ratios were added to investigate their shape memory effect.
The SEM technique confirmed the improved compatibility between OBC and PCL after modification. The crystallization temperatures of OBC/PCL blends with modification slightly increased, but the melting temperatures were not varied much. Viscosity of OBC/PCL-D (peroxide modified) and OBC/OBC-g-GMA/PCL-D blends was higher than that of OBC/PCL and OBC/OBC-g-GMA/PCL blends. XRD (X-Ray Diffractometer) confirmed the crystal structure of hexagonal wurtzite ZnO. TGA showed that thermal stability of OBC/PCL blends increased 35.4 oC with the addition of ZnO. From UV (UV-visible absorption spectra) measurement, ZnO-filled OBC/PCL blends exhibited high UV absorption capability.
For the shape memory test, OBC/OBC-g-GMA/PCL-D blends exhibited better shape memory effect in comparison with the unmodified blends at the predeformation temperature of 65 oC. Its’ shape fixing ratio (Rf) and the shape recovery ratio (Rr) were up to 96.7 % and 95.7 %, respectively. In recovery stress, the recovery stress peak temperature basically corresponded to the predeformation temperature, suggesting a unique “memory” effect. Through the stress relaxation process for holding 10 minutes before cooling the samples, Rf of OBC/PCL blends without DCP modification was improved, up to 96.9 %. With new pre-cycle training processes at different temperatures, Rr of OBC/PCL blends with or without modification reached 100 % even after three shape memory cycles. Finally, Rf of OBC/PCL blends with the addition of ZnO was higher than OBC/PCL blends without ZnO.

摘要 I
Abstract III
誌謝 V
目錄 VI
圖目錄 XI
表目錄 XIX
第一章 緒論 1
1.1 前言 1
1.2 研究方向 3
第二章 文獻回顧 5
2.1 烯烴嵌段共聚物 (Olefin Block Copolymers, OBC) 5
2.2 聚己內酯 (Polycaprolactone, PCL) 7
2.3 甲基丙烯酸縮水甘油酯 (Glycidyl Methacrylate, GMA) 9
2.4 氧化鋅 (Zinc Oxide, ZnO) 11
2.5 形狀記憶高分子 (Shape Memory Polymer, SMP) 20
第三章 實驗 30
3.1 實驗材料 30
3.2 實驗儀器 33
3.3 實驗流程與步驟 37
3.4 樣品製備 38
3.4.1 OBC-g-GMA 製備 38
3.4.2 OBC/PCL (OBC/OBC-g-GMA/PCL) blends 製備 39
3.4.3 OBC/PCL-D (OBC/OBC-g-GMA/PCL-D) blends 製備 40
3.4.4 ZnO製備 [Wang, 2013] 41
3.4.5 OBC/PCL-ZS (OBC/PCL-ZL) blends 製備 42
3.5 化學結構分析 44
3.5.1 全反射-傅立葉轉換紅外線光譜儀 (ATR-FTIR) 44
3.5.2 凝膠量測試 (Gel Content) 44
3.6 微結構分析 45
3.6.1 掃描式電子顯微鏡-能量色散 X 射線光譜 (SEM-EDS) 45
3.6.2 透式電子顯微鏡 (TEM) 46
3.6.3 X 光繞射分析儀 (X-Ray Diffractometer, XRD) 46
3.7 熱性質分析 47
3.7.1 示差掃描熱分析儀 (DSC) 47
3.7.2 熱重分析儀 (Thermogravimetric Analyzer, TGA) 48
3.7.3 動態機械分析儀 (Dynamic Mechanical Analysis, DMA) 48
3.8 機械性質測試 49
3.8.1 抗張測試 (Tensile Test) 49
3.9 流變性質分析 50
3.9.1 高性能流變儀 (Advanced Rheometer, AR) 50
3.10 抗紫外光測試 51
3.10.1 紫外光-可見光吸收光譜儀 (UV) 51
3.11 形狀記憶測試 51
3.11.1 不同溫度的預變形 (Predeformation Temperature) 51
3.11.2 應力鬆弛 (Stress Relaxation) 54
3.11.3 不同溫度的機械循環 (Mechanical Cycling) 54
第四章 結果與討論 55
Ⅰ. OBC/PCL blends with and without modification 55
4.1 化學結構分析 55
4.1.1 ATR-FTIR 55
4.1.2 凝膠量測試 60
4.2 微結構分析 63
4.2.1 SEM-EDS 63
4.3 熱性質分析 71
4.3.1 DSC 71
4.3.2 DMA 75
4.4 機械性質測試 80
4.4.1 抗張測試 80
4.5 流變性質分析 91
4.5.1 AR 91
4.6 形狀記憶測試 96
4.6.1 不同溫度的預變形 96
4.6.2 應力鬆弛 103
4.6.3 不同溫度的機械循環 108
Ⅱ. OBC/PCL blends + ZnO 132
4.7 微結構分析 132
4.7.1 TEM 132
4.7.2 SEM-EDS 135
4.7.3 XRD 143
4.8 熱性質分析 146
4.8.1 DSC 146
4.8.2 TGA 150
4.9 機械性質測試 155
4.9.1 抗張測試 155
4.10 抗紫外光測試 159
4.10.1 UV 159
4.11 形狀記憶測試 164
第五章 結論 168
第六章 參考文獻 171

Al-Malaika, S.; Eddiyanto, E. “Reactive Processing of Polymers: Effect of Bifunctional and Tri-Functional Comonomers on Melt Grafting of Glycidyl Methacrylate onto Polypropylene,” Polym. Degrad. Stab., 95, 353-362 (2010).
Arya, S. K.; Saha, S.; Ramirez-Vick, J. E.; Gupta, V.; Bhansali, S.; Singh, S. P. “Recent Advances in ZnO Nanostructures and Thin Films for Biosensor Applications: Review,” Anal. Chim.Acta, 737, 1-21 (2012).
Anthamatten, M.; Roddecha, S.; Li, J. “Energy Storage Capacity of Shape-Memory Polymers,” Macromolecules, 46, 4230-4234 (2013).
Alagar, M.; Abdul Majeed, S. M.; Selvaganapathi, A.; Gnanasundaram, P. “Studies on Thermal, Thermal Ageing and Morphological Characteristics of EPDM-g-VTES/LLDPE,” Eur. Polym.J., 42, 336-347 (2006).
Avella, M.; Bras, J. M.; Belgacem, M. N. “Preparation of Biodegradable Polyesters/High-Amylose-Starch Composites by Reactive Blending and Their Characterization,” J. Appl. Polym.Sci., 83, 1432-1442 (2002).
Armstrong, S. R.; Du, J.; Baer, E. “Co-Extruded Multilayer Shape Memory Materials: Nano-Scale Phenomena,” Polymer, 55, 626-631 (2001).
Amirian, M.; Chakoli, A. N.; Sui, J.; Cai, W. “Enhanced Shape Memory Effect of Poly(L-Lactide-Co-ε-Caprolactone) Biodegradable Copolymer Reinforced with Functionalized MWCNTs,” J Polym Res, 19:9777 (2012).
Baghani, M.; Mohammadi, H.; Naghdabadi, R. “An Analytical Solution for Shape-Memory-Polymer Euler-Bernoulli Beams under Bending,” Int J Mec Sci, 84, 84-90 (2014).
Cai, A.-J.; Wang, Y.-L.; Xing, S.-T.; Ma, Z.-C. “Cavity of Cyclodextrin, a Useful Tool for the Morphological Control of ZnO Micro/Nanostructures,” Ceram.Int.; 38, 5265-5270 (2012).
Christenson, E. M.; Anderson, J. M.; Hiltner, A.; Baer, E. “Relationship between Nanoscale Deformation Processes and Elastic Behavior of Polyurethane Elastomers,” Polymer, 46, 11744-11754 (2005).
Chum, P. S.; Swogger, K. W. “Olefin Polymer Technologies-History and Recent Progress at the Dow Chemical Company,” Prog.Polym.Sci., 33, 797-819 (2008).
Du, J.; Armstrong, S. R.; Baer, E. “Co-Extruded Multilayer Shape Memory Materials: Comparing Layered and Blend Architectures,” Polymer, 54, 5399-5407 (2013).
Farhadi-Khouzani, M.; Fereshteh, Z.; Loghman-Estarki, M. R.; Razavi, R. S. “Different Morphologies of ZnO Nanostructures Via Polymeric Complex Sol-Gel Method: Synthesis and Characterization,” J. Sol-Gel Sci Technol., 64, 193-199 (2012).
Gupta, P.; Costeux, S.; Oswald, T.; Cheung, Y. W.; Weaver, L.; Karande, S.; Chum, S. “Investigation and Modification of the Melt Rheology of Olefin Block Copolymers,” Antec Annual Technical Conference, 2, 973-977 (2007).
Gu, L.; Zheng, K.; Zhou, Y.; Li, J.; Mo, X.; Patzke, G. R.; Chen, G. “Humidity Sensors Based on ZnO/TiO2Core/Shell Nanorod Arrays with Enhanced Sensitivity,” Sensor Actuat B-Chem., 159, 1-7 (2011).
Gall, K.; Yakacki, C. M.; Liu, Y.; Shandas, R.; Willett, N.; Anseth, K.S.; Biomed, J. “Thermomechanics of the Shape Memory Effect in Polymers for Biomedical Applications,” Mater Res A, 73, 339-348 (2005).
Ghosh, P.; Srinivasa, A.R. “Development of a Finite Strain Two-Network Model for Shape Memory Polymers Using QR Decomposition,” Int J Eng Sci, 81, 177-191 (2014).
Ghosh, P.; Srinivasa, A. R. “A Two-Network Thermomechanical Model and Parametric Study of the Response of Shape Memory Polymers,”Mech. Mater., 60, 1-17 (2013).
Guilherme, M. R.; Mauricio, M. R.; Tenório-Neto, E. T.; Kunita, M. H.; Cardozo-Filho, L.; Cellet, T. S.P.; Pereira, G. M.; Muniz, E. C.; Da Rocha, S. R.P.; Rubira, A. F. “Polycaprolactone Nanoparticles Containing Encapsulated Progesterone Prepared Using a scCO2Emulsion Drying Technique,” Mater Lett, 124, 197-200 (2014).
Hustad, P. D.; Marchand, G. R.; Garcia-Meitin, E. I.; Roberts, P. L.; Weinhold, J. D. “Photonic Ppolyethylene from Self-Assembled Mesophases of Polydisperse Olefin Block Copolymers,” Macromolecules, 42, 3788-3794 (2009).
Heuchel, M.; Sauter, T.; Kratz, K.; Lendlein, A. “Thermally Induced Shape-Memory Effects in Polymers: Quantification and Related Modeling Approaches,” J. Polym. Sci. Part B: Polym. Phys., 51, 621-637 (2013).
Hoeher, R.; Raidt, T.; Rose, M.; Katzenberg, F.; Tiller, J. C. “Recoverable Strain Storage Capacity of Shape Memory Polyethylene,” J. Polym. Sci. Part B: Polym. Phys., 51, 1033-1040 (2013).
Han, C.; Ran1, X.; Su, X.; Zhang, K.; Liu, N.; Dong, L. “Effect of Peroxide Crosslinking on Thermal and Mechanical Properties of Poly(ε-caprolactone),” Polym. Int., 56, 593-600 (2007).
Hu, P.; Han, N.; Zhang, D.; Ho, J. C.; Chen, Y. “Highly for Maldehyde-Sensitive, Transition-Metal Doped ZnO Nanorods Preparedby Plasma-Enhanced Chemical Vapor Deposition,” SensActuators BChem., 169, 74-80 (2012).
Habibi, M. H.; Karimi, B. “Application of Impregnation Combustion Method for Fabrication of Nanostructure CuO/ZnO Composite Oxide: XRD, FESEM, DRS and FTIR Study,” J. Ind. and Eng. Chem., 20, 1566-1570 (2014).
Ji, F. L.; Hu, J. L.; Li, T. C.; Wong, Y. W. “Morphology and Shape Memory Effect of Segmented Polyurethanes. Part I: With Crystalline Reversible Phase,” Polymer, 48, 5133-5145 (2007).
Jeeju, P. P.; Jayalekshmi, S.; Chandrasekharan, K.; Sudheesh, P. “Enhanced Linear and Nonlinear Optical Properties of Thermally Stable ZnO/Poly(styrene)-Poly(ethyl ethacrylate) Nanocomposite Films,” Thin Solid Films, 531, 378-384 (2013).
Jang, Y.-J.; Chun, S. Y.; Kim, G. N.; Kim, J. R.; Oh, S. H.; Lee, J. H.; Kim, B. S.; Song, P. H.; Yoo, E. S.; Kwon, T. G. “Characterization of a Novel Composite Scaffold Consisting of Acellular Bladder Submucosa Matrix, Polycaprolactone and Pluronic F127 as a Substance for Bladder Reconstruction,” Acta Biomater., 10, 3117-3125 (2014).
Kweon, H. Y.; Yoo, M. K.; Park, I. K.; Kim, T. H.; Lee, H. C.; Lee, H.-S.; Oh, J.-S.; Akaike, T.; Cho, C.-S. “A Novel Degradable Polycaprolactone Nnetworks for Tissue Engineering,” Biomaterials, 24, 801-808 (2003).
Krouit, M.; Errico, M. E.; Rimedio, R.; Sadocco, P. “Cellulose Surface Grafting with Polycaprolactone by Heterogeneous Click-Chemistry,” Eur. Polym.J., 44, 4074-4081 (2008).
Kiomarsipour, N.; Razavi, R. S. “Hydrothermal Synthesis of ZnO Nanopigments with High UV Absorption and Vis/NIR Reflectance,” Ceram.Int., 40, 11261-11268 (2014).
Koerner, H.; Kelley, J.; George, J.; Drummy, L.; Mirau, P.; Bell, N. S.; Hsu, J. W. P.; Vaia, R. A. “ZnO Nanorod-Thermoplastic Polyurethane Nanocomposites: Morphology and Shape Memory Performance,” Macromolecules, 42, 8933-8942 (2009).
Li, J. L.; Xie, X. M. “Reconsideraten on the Mechanism of Free-Radical Melt Grafting of Glycidyl Methacrylate on Polyolefin,” Polymer., 53, 2197-2204 (2012).
Liu, J.; Huang, X. “A Low-Temperature Synthesis of Ultraviolet-Light-Emitting ZnO Nanotubes and Tubular Whiskers,” J. Solid State Chem., 179, 843-848 (2006).
Lützen, H.; Gesing, T. M.; Kim, B.K.; Hartwig, A. “Novel Cationically Polymerized Epoxy/Poly(ε-Caprolactone) Polymers Showing a Shape Memory Effect,” Polym. J., 53, 6089-6095 (2012).
Lai, S.-M.; Lan, Y.-C. “Shape Memory Properties of Melt-Blended Polylactic Acid (PLA)/Thermoplastic Polyurethane (TPU) Bio-Based Blends,” J Polym Res., 20:140, 1-8 (2013).
Liu, G.; Guan, Y.; Wen, T.; Wang, X.; Zhang, X.; Wang, D.; Li, X.; Loos, J.; Chen, H.; Walton, K.; Marchand, G. “Effect of Mesophase Separation and Crystallization on the Elastomeric Behavior of Olefin Multi-Block Copolymers,” Polymer, 52, 5221-5230 (2011).
Li, C.-F.; Hsu, C.-Y.; Li, Y.-Y. “NH3 Sensing Properties of ZnO Thin Films Prepared Via Sol-Gel Method,” J. Alloys Compd., 606, 27-31 (2014).
Li, B.; Wang, Y. “Facile Synthesis and Photocatalytic Activity of ZnO-CuO Nanocomposite,” Superlattices Microstruct., 47, 615-623 (2010).
Meng, Q.; Hu, J. “A Review of Shape Memory Polymer Composites and Blends,” Composites: Part A, 40, 1661-1672 (2009).
Mishra, J. K.; Chang, Y.-W.; Kim, D.-K. “Green Thermoplastic Elastomer Based on Polycaprolactone/Epoxidized Natural Rubber Blend as a Heat Shrinkable Material,” Mater. Lett.,61, 3551-3554 (2007).
Miaudet, P.; Derré, A.; Maugey, M.; Zakri, C.; Piccione, P. M.; Inoubli, R.; Poulin, P.“Shape and Temperature Memory of Nanocomposites with Broadened Glass Transition,” Science, 23, 1294-1296 (2007).
Makarov, C.; Cohen, V.; Raz-Pasteur, A.; Gotman, I. “In Vitro Elution of Vancomycin from Biodegradable Osteoconductive Calcium Phosphate-Polycaprolactone Composite Beads for Treatment of Osteomyelitis,” Eur. J. Pharm. Sci., 62, 49-56 (2014).
Mostafaei, A.; Zolriasatein, A. “Synthesis and Characterization of Conducting Polyaniline Nanocomposites Containing ZnO Nanorods,” Prog.Mater.Sci., 22, 273-280 (2012).
Meng, H.; Li, G. “A Review of Stimuli-Responsive Shape Memory Polymer Composites,” Polymer, 54, 2199-2221 (2013).
Nava-Ortiz, C. A. B.; Burillo, G.; Bucio, E.; Alvarez-Lorenzo, C. “Modification of Polyethylene Films by Radiation Grafting of GlycidylMethacrylate and Immobilization of β-Cyclodextrin,” Radiat. Phys. Chem., 78, 19-24 (2009).
Park, H. E.; Dealy, J. M.; Marchand, G. R.; Wang, J.; Li, S.; Register, R. A. “Rheology and Structure of Molten, Olefin Multiblock Copolymers,” Macromolecules, 43, 6789-6799 (2010).
Peponi, L.; Navarro-Baena, I.; Sonseca, A.; Gimenez, E.; Marcos-Fernandez, A.; Kenny,J. M. “Synthesis and Characterization of PCL–PLLA Polyurethane with Shape Memory Behavior,” Eur. Polym. J., 49, 893-903 (2013).
Rosa, D. S.; Guedes, C.G.F.; Bardi, M.A.G. “Evaluation of Thermal, Mechanical and Morphological Properties of PCL/CA and PCL/CA/PE-g-GMA Blends,” Polym.Test., 26, 209-215 (2007).
Runge, M. B.; Wang, H.; Spinner, R. J.; Windebank, A. J.; Yaszemski, M.J. “Reformulating Polycaprolactone Fumarate to Eliminate Toxic Diethylene Glycol:Effects of Polymeric Branching and Autoclave Sterilization on Material Properties,” Acta Biomaterialia, 8, 133-143 (2012).
Rakhshani, A. E. “Visible Light Emission and UV Light Detection Properties of Solution-Grown ZnO/Polymer Heterojunction Diodes on Stainless Steel Foil,” Appl. Surf.Sci., 311, 614-620 (2014).
Sahoo, S.; Sasmal, A.; Nanda, R.; Phani, A. R.; Nayak, P. L. “Synthesis of Chitosan-Polycaprolactone Blend for Control Delivery of Ofloxacin Drug,” Carbohydr. Polym., 79, 106-113 (2010).
Salerno, A.; Domingo, C. “A Novel Bio-Safe Phase Separation Process for Preparing Open-Pore Biodegradable Polycaprolactone Microparticles,”Mater.Sci. Eng. C, 42, 102-110 (2014).
Sinha, N.; Ray, G.; Bhandari, S.; Godara, S.; Kumar, B. “Synthesis and Enhanced Properties of Cerium Doped ZnO Nanorods,” Ceram.Int., 40, 12337-12342 (2014).
Shen, L.; Bao, N.; Yanagisawa, K.; Zheng, Y.; Domen, K.; Gupta, A.; Grimes, C. A. “Direct Growth of Comet-Like Superstructures of Au-ZnO Submicron Rod Arrays by Solvothermal Soft Chemistry Process,” J. Solid State Chem., 180, 213-220 (2007).
Sabbaghan, M.; Beheshtian, J.; Mirsaeidi, S. A. M. “Preparation of Uniform 2D ZnO Nanostructures by the Ionic Liquid-Assisted Sonochemical Method and Their Optical Properties,” Ceram.Int., 40, 7769-7774 (2014).
Titaux, G. A.; Contreras-Garcı´a, A.; Bucio, E. “Surface Modification by γ-Ray-Induced Grafting of PDMAEMA/PEGMEMAonto PE Films,” Radiat. Phys. Chem., 78, 485-488 (2009).
Vajargah, P. H.; Abdizadeh, H.; Ebrahimifard, R.; Golobostanfard, M. R. “Sol-gel Derived ZnO Thin Films: Effect of Amino-Additives,” Appl. Surf. Sci., 285P, 732-743 (2013).
Wu, C.-S.“Preparaten and Characterization of a Polycaprolactone/C60 Composite and its Improved Counterpart (PCL-NH2/C60 -OH),” J. Appl. Polym.Sci., 115, 3489-3499 (2010).
Wang, H.; Li, C.; Zhao, H.; Liu, J. “Preparation of Nano-Sized Flower-Like ZnO Bunches by a Direct Precipitation Method,” Adv. Powder Technol., 24, 599-604 (2013).
Zhang, H.; Wang, H.; Zhong, W.; Du, Q. “A Novel Type of Shape Memory Polymer Blend and the Shape Memory Mechanism,” Polymer, 50, 1596-1601 (2009).
Zhang, Q.; Feng, J. “Difunctional Olefin Block Copolymer/Paraffin Form-Stable Phase Change Materials with Simultaneous Shape Memory Property,” Sol Energ Mat Sol C., 117, 259-266 (2013).
Zhang, H.; Wang, H.; Zhong, W.; Du, Q. “A Novel Type of Shape Memory Polymer Blend and the Shape Memory Mechanism,” Polymer, 50, 1596-1601 (2009).
Zhang, L.; Li, F.; Chen, Y.; Wang, X. “Synthesis of Transparent ZnO/PMMA Nanocomposite Films ThroughFree-Radical Copolymerization of Asymmetric Zinc Methacrylate Acetate and In-Situ Thermal Decomposition,” J. Lumin., 131, 1701-1706 (2011).
Zhou, X.; Feng, J.; Cheng, D.; Yi, J.; Wang, L.“Different Crystallization Behavior of Olefin Block Copolymer in α- and β-Polypropylene Matrix,” Polymer, 54, 4719-4727 (2013).

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊