跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.59) 您好!臺灣時間:2025/10/14 03:00
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:徐偉翔
研究生(外文):SHIU, WEI-SHIANG
論文名稱:結腸癌細胞之基因體層次代謝網路重建結構分析與潛在致癌基因搜尋
論文名稱(外文):Reconstruction of Colon Cancer Cell Metabolic Network on Genome Scale and Potential Oncogene Discovery
指導教授:王逢盛
指導教授(外文):WANG, FENG-SHENG
口試委員:周宜雄黃奇英張牧新
口試委員(外文):CHOU, YI-SHYONGHUANG, CHY-YINGCHANG, MU-SHIN
口試日期:2019-06-28
學位類別:碩士
校院名稱:國立中正大學
系所名稱:化學工程研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:103
中文關鍵詞:結腸癌TCGAHPA致癌基因
外文關鍵詞:Colon cancerTCGAOncogeneHPA
相關次數:
  • 被引用被引用:0
  • 點閱點閱:166
  • 評分評分:
  • 下載下載:15
  • 收藏至我的研究室書目清單書目收藏:0
本研究依據The Cancer Genome Atlas (TCGA)資料庫與Human Protein Atlas (HPA)網站所提供各種組織器官之RNA Seq與蛋白質表現數據,並搭配Recon2.2人體基因組規模代謝網路模型以及兩種模型重建演算法:最佳化反應依賴性評估(Cost Optimization Reaction Dependency Assessment, CORDA)、整合代謝分析方法(Integrative Metabolic Analysis Tool, iMAT),建立出4種不同的結腸組織細胞特異性的代謝網路模型。
考慮到搭配實驗所需,本研究根據DMEM與RPMI-1640 兩種培養基的成分作為攝取物質的條件,同時使用突變通量平衡分析方法(Mutant Flux Balance Analysis, MFBA)模擬癌細胞與正常細胞的代謝重編程的差異。
本研究也分別在4種不同的結腸組織代謝模型成功計算出潛在的致癌基因,有助於日後研究學者能針對這些導致結腸癌細胞產生代謝重編程的致癌基因能夠開發出靶向的治療方式。



According to the RNA Seq and protein expression, data of various tissues provided by the Cancer Genome Atlas (TCGA) database and the Human Protein Atlas (HPA) website, and based on the human genome-scale metabolic network model (Recon 2.2 Model). This study used two different algorithms: Cost Optimization Reaction Dependency Assessment (CORDA) and Integrative Metabolic Analysis Tool (iMAT) to reconstruct four different metabolic network models of colon cell.
Considering the requirements of the experiment, this study used the components of DMEM and RPMI-1640 as the conditions for the uptake of substance, and used Mutant Flux Balance Analysis (MFBA) to simulate the metabolism reprogramming occurred in colon cancer cells
This study successfully calculated potential oncogenes in four different colon metabolic models, which can enable future researchers to develop targeted therapies for these oncogenic genes that cause metabolic reprogramming of colon cancer cells.


致謝 I
摘要 II
Abstract III
目錄 IV
圖目錄 VI
表目錄 IX
第一章 緒論 1
1.1 前言 1
1.2 文獻回顧 2
1.3 研究動機 4
第二章 代謝生物資料庫與工具程式 6
2.1生物資料庫 6
2.1.1 The Cancer Genome Atlas (TCGA) 7
2.1.2 The Human Protein Atlas (HPA) 9
2.1.3 Virtual Metabolic Human (VMH) 12
2.1.4 The Human Metabolome Database (HMDB) 14
2.1.5 Uniprot Database 15
2.2工具程式說明 16
2.2.1 General Algebraic Modeling System (GAMS) 16
2.2.2 Genesis (Cluster analysis) 21
第三章 代謝網路模型與計算方法之介紹與分析 22
3.1 前言 22
3.2 結腸細胞之代謝網路模型重建 23
3.3 計算方法與基本設定介紹 27
3.3.1 巢狀式混合差值進化法 (Nested Hybrid Differential Evolution, NHDE) 27
3.3.2 基質最少成分分析(Minimum Nutrients Requirement Analysis) 29
3.3.3突變通量均衡分析(mutant-Flux Balance Analysis, mFBA) 30
3.3.4通量變異性分析(Flux Variability Analysis, FVA) 31
第四章 結果討論 32
4.1前言 32
4.2 TCGA基因結果分析 33
4.2.1 TCGA基因表現量計算說明 34
4.2.2 TCGA基因上/下調結果 38
4.3 結腸組織代謝網路模型結構分析 43
4.4 通量變異性分析(Flux Variability Analysis)結果分析 52
4.4.1代謝反應通量變異性分析 54
4.4.2 Choke point通量變異性分析 57
4.5 結腸組織代謝網路模型之潛在致癌基因搜尋 59
4.5.1 致癌性類似度之計算 59
4.5.2 潛在致癌基因搜尋 60
4.5.3 致癌基因-物質FVA分析 64
4.5.4 致癌基因-通量平衡分析 71
4.5.5 肌醇磷酸代謝基因-PIK3C3, PI4K2A, PIP5K1A, MTMR3 73
4.5.6 氨基糖代謝基因-NANS, NANP 78
4.5.7 維他命B2基因-RFK, ACP5 82
4.5.8 其他代謝致癌基因-ALDH18A1, HIBADH, SLC25A11 86
第五章 結論與未來展望 93
5.1結論 93
5.2 未來展望 95
參考文獻 99

[1]H. Kitano, "Systems biology: a brief overview," science, vol. 295, no. 5560, pp. 1662-1664, 2002.
[2]M. G. Vander Heiden and R. J. DeBerardinis, "Understanding the intersections between metabolism and cancer biology," Cell, vol. 168, no. 4, pp. 657-669, 2017.
[3]W. H. Koppenol, P. L. Bounds, and C. V. Dang, "Otto Warburg's contributions to current concepts of cancer metabolism," Nature Reviews Cancer, vol. 11, no. 5, p. 325, 2011.
[4]P. Som et al., "A fluorinated glucose analog, 2-fluoro-2-deoxy-D-glucose (F-18): nontoxic tracer for rapid tumor detection," J Nucl Med, vol. 21, no. 7, pp. 670-675, 1980.
[5]N. Swainston et al., "Recon 2.2: from reconstruction to model of human metabolism," Metabolomics, vol. 12, no. 7, p. 109, 2016.
[6]N. C. Duarte et al., "Global reconstruction of the human metabolic network based on genomic and bibliomic data," Proceedings of the National Academy of Sciences, vol. 104, no. 6, pp. 1777-1782, 2007.
[7]C. Gille et al., "HepatoNet1: a comprehensive metabolic reconstruction of the human hepatocyte for the analysis of liver physiology," Molecular systems biology, vol. 6, no. 1, p. 411, 2010.
[8]K. Tomczak, P. Czerwińska, and M. Wiznerowicz, "The Cancer Genome Atlas (TCGA): an immeasurable source of knowledge," Contemporary oncology, vol. 19, no. 1A, p. A68, 2015.
[9]M. Uhlén et al., "Tissue-based map of the human proteome," Science, vol. 347, no. 6220, p. 1260419, 2015.
[10]M. Uhlen et al., "A pathology atlas of the human cancer transcriptome," Science, vol. 357, no. 6352, p. eaan2507, 2017.
[11]D. Wishart, D. Tzur, and C. Knox, "HMDB: the Human Metabolome Database. Nucleic Acids Res," Database, no. D521-6, 2007.
[12]U. Consortium, "UniProt: a hub for protein information," Nucleic acids research, vol. 43, no. D1, pp. D204-D212, 2014.
[13]T. F. Rutherford, "Applied general equilibrium modeling with MPSGE as a GAMS subsystem: An overview of the modeling framework and syntax," Computational economics, vol. 14, no. 1-2, pp. 1-46, 1999.
[14]A. Sturn, J. Quackenbush, and Z. Trajanoski, "Genesis: cluster analysis of microarray data," Bioinformatics, vol. 18, no. 1, pp. 207-208, 2002.
[15]R. Storn and K. Price, "Differential evolution–a simple and efficient heuristic for global optimization over continuous spaces," Journal of global optimization, vol. 11, no. 4, pp. 341-359, 1997.
[16]R. Storn and K. Price, "Minimizing the real functions of the ICEC'96 contest by differential evolution," in Proceedings of IEEE International Conference on Evolutionary Computation, 1996: IEEE, pp. 842-844.
[17]F.-S. Wang and J.-P. Chiou, "Optimal control and optimal time location problems of differential-algebraic systems by differential evolution," Industrial & Engineering Chemistry Research, vol. 36, no. 12, pp. 5348-5357, 1997.
[18]J.-P. Chiou and F.-S. Wang, "Hybrid method of evolutionary algorithms for static and dynamic optimization problems with application to a fed-batch fermentation process," Computers & Chemical Engineering, vol. 23, no. 9, pp. 1277-1291, 1999.
[19]J. D. Orth, I. Thiele, and B. Ø. Palsson, "What is flux balance analysis?," Nature biotechnology, vol. 28, no. 3, p. 245, 2010.
[20]A. Bordbar, J. M. Monk, Z. A. King, and B. O. Palsson, "Constraint-based models predict metabolic and associated cellular functions," Nature Reviews Genetics, vol. 15, no. 2, p. 107, 2014.
[21]K. J. Kauffman, P. Prakash, and J. S. Edwards, "Advances in flux balance analysis," Current opinion in biotechnology, vol. 14, no. 5, pp. 491-496, 2003.
[22]S. Gudmundsson and I. Thiele, "Computationally efficient flux variability analysis," BMC bioinformatics, vol. 11, no. 1, p. 489, 2010.
[23]S. C. Hicks and R. A. Irizarry, "Quantro: a data-driven approach to guide the choice of an appropriate normalization method," Genome biology, vol. 16, no. 1, p. 117, 2015.
[24]K. A. Adamson and S. Prion, "Reliability: measuring internal consistency using Cronbach's α," Clinical Simulation in Nursing, vol. 9, no. 5, pp. e179-e180, 2013.
[25]C. Prévostel and P. Blache, "The dose-dependent effect of SOX9 and its incidence in colorectal cancer," European Journal of Cancer, vol. 86, pp. 150-157, 2017.
[26]B.-Q. Li, P.-P. Liu, and C.-H. Zhang, "Correlation between the methylation of APC gene promoter and colon cancer," Oncology letters, vol. 14, no. 2, pp. 2315-2319, 2017.
[27]M. Xu, X. Liu, Y. Xu, S. Zhu, and Y. Gao, "Co‑expression of Axin and APC gene fragments inhibits colorectal cancer cell growth via regulation of the Wnt signaling pathway," Molecular medicine reports, vol. 16, no. 4, pp. 3783-3790, 2017.
[28]E. Sanz-Garcia, G. Argiles, E. Elez, and J. Tabernero, "BRAF mutant colorectal cancer: prognosis, treatment, and new perspectives," Annals of Oncology, vol. 28, no. 11, pp. 2648-2657, 2017.
[29]B. Leroy, M. Anderson, and T. Soussi, "TP 53 mutations in human cancer: database reassessment and prospects for the next decade," Human mutation, vol. 35, no. 6, pp. 672-688, 2014.
[30]M. A. Frouws et al., "The influence of BRAF and KRAS mutation status on the association between aspirin use and survival after colon cancer diagnosis," PloS one, vol. 12, no. 1, p. e0170775, 2017.
[31]T. Ni, Z. He, Y. Dai, J. Yao, Q. Guo, and L. Wei, "Oroxylin A suppresses the development and growth of colorectal cancer through reprogram of HIF1α-modulated fatty acid metabolism," Cell death & disease, vol. 8, no. 6, p. e2865, 2017.
[32]C.-H. Chen et al., "Dual inhibition of PIK3C3 and FGFR as a new therapeutic approach to treat bladder cancer," Clinical Cancer Research, vol. 24, no. 5, pp. 1176-1189, 2018.
[33]B. Ling, L. Chen, Q. Liu, and J. Yang, "Gene expression correlation for cancer diagnosis: a pilot study," BioMed research international, vol. 2014, 2014.
[34]M. G. Waugh, "Chromosomal instability and phosphoinositide pathway gene signatures in glioblastoma multiforme," Molecular neurobiology, vol. 53, no. 1, pp. 621-630, 2016.
[35]Z.-Q. Bian, Y. Luo, F. Guo, Y.-Z. Huang, M. Zhong, and H. Cao, "Overexpressed ACP5 has prognostic value in colorectal cancer and promotes cell proliferation and tumorigenesis via FAK/PI3K/AKT signaling pathway," American journal of cancer research, vol. 9, no. 1, p. 22, 2019.
[36]G. Hirano et al., "Involvement of riboflavin kinase expression in cellular sensitivity against cisplatin," International journal of oncology, vol. 38, no. 4, pp. 893-902, 2011.
[37]A. Oppelt et al., "PIKfyve, MTMR3 and their product PtdIns5P regulate cancer cell migration and invasion through activation of Rac1," Biochemical Journal, vol. 461, no. 3, pp. 383-390, 2014.
[38]B. a. Zheng, X. Yu, and R. Chai, "Myotubularin-related phosphatase 3 promotes growth of colorectal cancer cells," The Scientific World Journal, vol. 2014, 2014.
[39]J.-S. Lee et al., "Loss of SLC25A11 causes suppression of NSCLC and melanoma tumor formation," EBioMedicine, vol. 40, pp. 184-197, 2019.
[40]J. Hlouschek, V. Ritter, F. Wirsdörfer, D. Klein, V. Jendrossek, and J. Matschke, "Targeting SLC25A10 alleviates improved antioxidant capacity and associated radioresistance of cancer cells induced by chronic-cycling hypoxia," Cancer letters, vol. 439, pp. 24-38, 2018.
[41]A. Buffet et al., "Germline mutations in the mitochondrial 2-oxoglutarate/malate carrier SLC25A11 gene confer a predisposition to metastatic paragangliomas," Cancer research, vol. 78, no. 8, pp. 1914-1922, 2018.
[42]M. L. Craze et al., "MYC regulation of glutamine–proline regulatory axis is key in luminal B breast cancer," British journal of cancer, vol. 118, no. 2, p. 258, 2018.
[43]L. Tang et al., "Global metabolic profiling identifies a pivotal role of proline and hydroxyproline metabolism in supporting hypoxic response in hepatocellular carcinoma," Clinical Cancer Research, vol. 24, no. 2, pp. 474-485, 2018.
[44]J. Zou, L. Mi, X.-F. Yu, and J. Dong, "Interaction of 14-3-3σ with KCMF1 suppresses the proliferation and colony formation of human colon cancer stem cells," World Journal of Gastroenterology: WJG, vol. 19, no. 24, p. 3770, 2013.
[45]D. Szklarczyk et al., "The STRING database in 2017: quality-controlled protein–protein association networks, made broadly accessible," Nucleic acids research, p. gkw937, 2016.
[46]G. Singh, "Mitochondrial FAD-linked glycerol-3-phosphate dehydrogenase: a target for cancer therapeutics," Pharmaceuticals, vol. 7, no. 2, pp. 192-206, 2014.
[47]A. Steenackers et al., "Silencing the nucleocytoplasmic O-GlcNAc transferase reduces proliferation, adhesion, and migration of cancer and fetal human colon cell lines," Frontiers in endocrinology, vol. 7, p. 46, 2016.
[48]B. Adamczyk, T. Tharmalingam, and P. M. Rudd, "Glycans as cancer biomarkers," Biochimica et Biophysica Acta (BBA)-General Subjects, vol. 1820, no. 9, pp. 1347-1353, 2012.
[49]F. Ricciardiello et al., "Inhibition of the Hexosamine Biosynthetic Pathway by targeting PGM3 causes breast cancer growth arrest and apoptosis," Cell death & disease, vol. 9, no. 3, p. 377, 2018.
[50]E. S. Goetzman, "Advances in the Understanding and Treatment of Mitochondrial Fatty Acid Oxidation Disorders," Current genetic medicine reports, vol. 5, no. 3, pp. 132-142, 2017.
[51]Q.-F. Fu et al., "Alpha-enolase promotes cell glycolysis, growth, migration, and invasion in non-small cell lung cancer through FAK-mediated PI3K/AKT pathway," Journal of hematology & oncology, vol. 8, no. 1, p. 22, 2015.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top