|
1.Wei, W.I. and J.S. Sham, Nasopharyngeal carcinoma. Lancet, 2005. 365(9476): p. 2041-54. 2.Cheng, Y.J., et al., Cigarette smoking, alcohol consumption and risk of nasopharyngeal carcinoma in Taiwan. Cancer Causes Control, 1999. 10(3): p. 201-7. 3.Hildesheim, A., et al., Association of HLA class I and II alleles and extended haplotypes with nasopharyngeal carcinoma in Taiwan. J Natl Cancer Inst, 2002. 94(23): p. 1780-9. 4.Wei, Y.S., et al., Interleukin-10 gene promoter polymorphisms and the risk of nasopharyngeal carcinoma. Tissue Antigens, 2007. 70(1): p. 12-7. 5.Thorley-Lawson, D.A., Epstein-Barr virus: exploiting the immune system. Nat Rev Immunol, 2001. 1(1): p. 75-82. 6.Dodd, L.E., et al., Genes involved in DNA repair and nitrosamine metabolism and those located on chromosome 14q32 are dysregulated in nasopharyngeal carcinoma. Cancer Epidemiol Biomarkers Prev, 2006. 15(11): p. 2216-25. 7.Shaffer, R., et al., Deriving prostate alpha-beta ratio using carefully matched groups, long follow-up and the phoenix definition of biochemical failure. Int J Radiat Oncol Biol Phys, 2011. 79(4): p. 1029-36. 8.Geara, F.B., et al., Carcinoma of the nasopharynx treated by radiotherapy alone: determinants of distant metastasis and survival. Radiother Oncol, 1997. 43(1): p. 53-61. 9.Huncharek, M. and B. Kupelnick, In regards to Baujat et al.: Chemotherapy in locally advanced nasopharyngeal carcinoma: An individual patient data meta-analysis of eight randomized trials and 1753 patients (Int J Radiat Oncol Biol Phys 2006;64:47-56). Int J Radiat Oncol Biol Phys, 2006. 65(3): p. 958; author reply 958-9. 10.Mundt, A.J., et al., Patterns of failure following high-dose chemotherapy and autologous bone marrow transplantation with involved field radiotherapy for relapsed/refractory Hodgkin's disease. Int J Radiat Oncol Biol Phys, 1995. 33(2): p. 261-70. 11.Hsu, H.C., et al., Pathology of nasopharyngeal carcinoma. Proposal of a new histologic classification correlated with prognosis. Cancer, 1987. 59(5): p. 945-51. 12.Cho, W.C., Nasopharyngeal carcinoma: molecular biomarker discovery and progress. Mol Cancer, 2007. 6: p. 1. 13.Lo, K.W. and D.P. Huang, Genetic and epigenetic changes in nasopharyngeal carcinoma. Semin Cancer Biol, 2002. 12(6): p. 451-62. 14.Ma, B.B., E.P. Hui, and A.T. Chan, Systemic approach to improving treatment outcome in nasopharyngeal carcinoma: current and future directions. Cancer Sci, 2008. 99(7): p. 1311-8. 15.Singh, A.B., A. Sharma, and P. Dhawan, Claudin family of proteins and cancer: an overview. J Oncol, 2010. 2010: p. 541957. 16.Shen, L., C.R. Weber, and J.R. Turner, The tight junction protein complex undergoes rapid and continuous molecular remodeling at steady state. J Cell Biol, 2008. 181(4): p. 683-95. 17.Sawada, N., et al., Tight junctions and human diseases. Med Electron Microsc, 2003. 36(3): p. 147-56. 18.Cereijido, M., R.G. Contreras, and L. Shoshani, Cell adhesion, polarity, and epithelia in the dawn of metazoans. Physiol Rev, 2004. 84(4): p. 1229-62. 19.Krause, G., et al., Structure and function of claudins. Biochim Biophys Acta, 2008. 1778(3): p. 631-45. 20.Feigin, M.E. and S.K. Muthuswamy, Polarity proteins regulate mammalian cell-cell junctions and cancer pathogenesis. Curr Opin Cell Biol, 2009. 21(5): p. 694-700. 21.Furuse, M., et al., Occludin: a novel integral membrane protein localizing at tight junctions. J Cell Biol, 1993. 123(6 Pt 2): p. 1777-88. 22.Morita, K., et al., Claudin multigene family encoding four-transmembrane domain protein components of tight junction strands. Proc Natl Acad Sci U S A, 1999. 96(2): p. 511-6. 23.Furuse, M., et al., A single gene product, claudin-1 or -2, reconstitutes tight junction strands and recruits occludin in fibroblasts. J Cell Biol, 1998. 143(2): p. 391-401. 24.Lal-Nag, M. and P.J. Morin, The claudins. Genome Biol, 2009. 10(8): p. 235. 25.Furuse, M., et al., Overexpression of occludin, a tight junction-associated integral membrane protein, induces the formation of intracellular multilamellar bodies bearing tight junction-like structures. J Cell Sci, 1996. 109 ( Pt 2): p. 429-35. 26.Kubota, K., et al., Ca(2+)-independent cell-adhesion activity of claudins, a family of integral membrane proteins localized at tight junctions. Curr Biol, 1999. 9(18): p. 1035-8. 27.Stevenson, B.R., et al., Identification of ZO-1: a high molecular weight polypeptide associated with the tight junction (zonula occludens) in a variety of epithelia. J Cell Biol, 1986. 103(3): p. 755-66. 28.Hamazaki, Y., et al., Multi-PDZ domain protein 1 (MUPP1) is concentrated at tight junctions through its possible interaction with claudin-1 and junctional adhesion molecule. J Biol Chem, 2002. 277(1): p. 455-61. 29.Williams, L.A., et al., Identification and characterisation of human Junctional Adhesion Molecule (JAM). Mol Immunol, 1999. 36(17): p. 1175-88. 30.Yamamoto, Y., et al., Distinct roles of Rab3B and Rab13 in the polarized transport of apical, basolateral, and tight junctional membrane proteins to the plasma membrane. Biochem Biophys Res Commun, 2003. 308(2): p. 270-5. 31.Wu, X., et al., Evidence for regulation of the PTEN tumor suppressor by a membrane-localized multi-PDZ domain containing scaffold protein MAGI-2. Proc Natl Acad Sci U S A, 2000. 97(8): p. 4233-8. 32.Nakamura, T., et al., huASH1 protein, a putative transcription factor encoded by a human homologue of the Drosophila ash1 gene, localizes to both nuclei and cell-cell tight junctions. Proc Natl Acad Sci U S A, 2000. 97(13): p. 7284-9. 33.Piontek, J., et al., Formation of tight junction: determinants of homophilic interaction between classic claudins. FASEB J, 2008. 22(1): p. 146-58. 34.Wilcox, E.R., et al., Mutations in the gene encoding tight junction claudin-14 cause autosomal recessive deafness DFNB29. Cell, 2001. 104(1): p. 165-72. 35.Al-Haggar, M., et al., Familial hypomagnesemia with hypercalciuria and nephrocalcinosis: unusual clinical associations and novel claudin16 mutation in an Egyptian family. Clin Exp Nephrol, 2009. 13(4): p. 288-94. 36.Martin, T.A. and W.G. Jiang, Loss of tight junction barrier function and its role in cancer metastasis. Biochim Biophys Acta, 2009. 1788(4): p. 872-91. 37.Tan, C., et al., Regulation of tumor angiogenesis by integrin-linked kinase (ILK). Cancer Cell, 2004. 5(1): p. 79-90. 38.Mullin, J.M., et al., Effects of acute vs. chronic phorbol ester exposure on transepithelial permeability and epithelial morphology. J Cell Physiol, 1992. 152(1): p. 35-47. 39.Schoenenberger, C.A., et al., Multilayering and loss of apical polarity in MDCK cells transformed with viral K-ras. J Cell Biol, 1991. 112(5): p. 873-89. 40.Soini, Y., Expression of claudins 1, 2, 3, 4, 5 and 7 in various types of tumours. Histopathology, 2005. 46(5): p. 551-60. 41.Kominsky, S.L., et al., Loss of the tight junction protein claudin-7 correlates with histological grade in both ductal carcinoma in situ and invasive ductal carcinoma of the breast. Oncogene, 2003. 22(13): p. 2021-33. 42.Kwon, M.J., et al., Derepression of CLDN3 and CLDN4 during ovarian tumorigenesis is associated with loss of repressive histone modifications. Carcinogenesis, 2010. 31(6): p. 974-83. 43.Michl, P., et al., Claudin-4 expression decreases invasiveness and metastatic potential of pancreatic cancer. Cancer Res, 2003. 63(19): p. 6265-71. 44.Lee, J.W., et al., Increased expressions of claudin-1 and claudin-7 during the progression of cervical neoplasia. Gynecol Oncol, 2005. 97(1): p. 53-9. 45.Reichert, M., T. Muller, and W. Hunziker, The PDZ domains of zonula occludens-1 induce an epithelial to mesenchymal transition of Madin-Darby canine kidney I cells. Evidence for a role of beta-catenin/Tcf/Lef signaling. J Biol Chem, 2000. 275(13): p. 9492-500. 46.Jenkins, E.L., et al., Chronic hypoxia down-regulates tight junction protein ZO-2 expression in children with cyanotic congenital heart defect. ESC Heart Fail, 2016. 3(2): p. 131-137. 47.Gottardi, C.J., et al., The junction-associated protein, zonula occludens-1, localizes to the nucleus before the maturation and during the remodeling of cell-cell contacts. Proc Natl Acad Sci U S A, 1996. 93(20): p. 10779-84. 48.Jin, T., I. George Fantus, and J. Sun, Wnt and beyond Wnt: multiple mechanisms control the transcriptional property of beta-catenin. Cell Signal, 2008. 20(10): p. 1697-704. 49.Lee, J.W., et al., Upregulated claudin-1 expression confers resistance to cell death of nasopharyngeal carcinoma cells. Int J Cancer, 2010. 126(6): p. 1353-66. 50.Hanahan, D. and R.A. Weinberg, The hallmarks of cancer. Cell, 2000. 100(1): p. 57-70. 51.Reddy, S.P., et al., Prognostic significance of keratinization in nasopharyngeal carcinoma. Am J Otolaryngol, 1995. 16(2): p. 103-8. 52.Brodeur, G.M., Neuroblastoma: biological insights into a clinical enigma. Nat Rev Cancer, 2003. 3(3): p. 203-16. 53.Huo, Q., et al., Claudin-1 protein is a major factor involved in the tumorigenesis of colorectal cancer. Anticancer Res, 2009. 29(3): p. 851-7. 54.Bhat, A.A., et al., Claudin-1 promotes TNF-alpha-induced epithelial-mesenchymal transition and migration in colorectal adenocarcinoma cells. Exp Cell Res, 2016. 349(1): p. 119-127. 55.Pope, J.L., et al., Claudin-1 regulates intestinal epithelial homeostasis through the modulation of Notch-signalling. Gut, 2014. 63(4): p. 622-34. 56.Lourenco, S.V., et al., Oral squamous cell carcinoma: status of tight junction claudins in the different histopathological patterns and relationship with clinical parameters. A tissue-microarray-based study of 136 cases. J Clin Pathol, 2010. 63(7): p. 609-14. 57.Li, W.J., et al., Expression of claudin-1 and its relationship with lymphatic microvessel generation in hypopharyngeal squamous cell carcinoma. Genet Mol Res, 2015. 14(4): p. 11814-26. 58.Hsueh, C., et al., Expression pattern and prognostic significance of claudins 1, 4, and 7 in nasopharyngeal carcinoma. Hum Pathol, 2010. 41(7): p. 944-50. 59.Dhawan, P., et al., Claudin-1 regulates cellular transformation and metastatic behavior in colon cancer. J Clin Invest, 2005. 115(7): p. 1765-76. 60.Jian, Y., et al., Delocalized Claudin-1 promotes metastasis of human osteosarcoma cells. Biochem Biophys Res Commun, 2015. 466(3): p. 356-61. 61.Lippoldt, A., et al., Organization of choroid plexus epithelial and endothelial cell tight junctions and regulation of claudin-1, -2 and -5 expression by protein kinase C. Neuroreport, 2000. 11(7): p. 1427-31. 62.Leotlela, P.D., et al., Claudin-1 overexpression in melanoma is regulated by PKC and contributes to melanoma cell motility. Oncogene, 2007. 26(26): p. 3846-56. 63.Yan, M., et al., IKKalpha restoration via EZH2 suppression induces nasopharyngeal carcinoma differentiation. Nat Commun, 2014. 5: p. 3661. 64.Nowak, D., D. Stewart, and H.P. Koeffler, Differentiation therapy of leukemia: 3 decades of development. Blood, 2009. 113(16): p. 3655-65. 65.Rane, J.K., D. Pellacani, and N.J. Maitland, Advanced prostate cancer[mdash]a case for adjuvant differentiation therapy. Nat Rev Urol, 2012. 9(10): p. 595-602.
|