|
1. Geim, A.K. and K.S. Novoselov, The rise of graphene. Nature Materials, 2007. 6: p. 183. 2. Zhu, Y., S. Murali, W. Cai, X. Li, J.W. Suk, J.R. Potts, and R.S. Ruoff, Graphene and graphene oxide: synthesis, properties, and applications. Adv Mater, 2010. 22(35): p. 3906-24. 3. Neto, A.C., F. Guinea, N.M. Peres, K.S. Novoselov, and A.K. Geim, The electronic properties of graphene. Reviews of modern physics, 2009. 81(1): p. 109. 4. Ni, Z., H. Wang, J. Kasim, H. Fan, T. Yu, Y. Wu, Y. Feng, and Z. Shen, Graphene thickness determination using reflection and contrast spectroscopy. Nano letters, 2007. 7(9): p. 2758-2763. 5. Nair, R.R., P. Blake, A.N. Grigorenko, K.S. Novoselov, T.J. Booth, T. Stauber, N.M. Peres, and A.K. Geim, Fine structure constant defines visual transparency of graphene. Science, 2008. 320(5881): p. 1308-1308. 6. Guo, B., L. Fang, B. Zhang, and J.R. Gong, Graphene Doping: A Review. Insciences Journal, 2011. 1(2): p. 80-89. 7. Qu, L.T., Y. Liu, J.B. Baek, and L.M. Dai, Nitrogen-Doped Graphene as Efficient Metal-Free Electrocatalyst for Oxygen Reduction in Fuel Cells. Acs Nano, 2010. 4(3): p. 1321-1326. 8. Wang, X., G. Sun, P. Routh, D.H. Kim, W. Huang, and P. Chen, Heteroatom-doped graphene materials: syntheses, properties and applications. Chem Soc Rev, 2014. 43(20): p. 7067-98. 9. Agnoli, S. and M. Favaro, Doping graphene with boron: a review of synthesis methods, physicochemical characterization, and emerging applications. Journal of Materials Chemistry A, 2016. 4(14): p. 5002-5025. 10. Panchakarla, L.S., K.S. Subrahmanyam, S.K. Saha, A. Govindaraj, H.R. Krishnamurthy, U.V. Waghmare, and C.N.R. Rao, Synthesis, Structure, and Properties of Boron- and Nitrogen-Doped Graphene. Advanced Materials, 2009. 21(46): p. 4726-4730. 11. Rani, P. and V.K. Jindal, Designing band gap of graphene by B and N dopant atoms. RSC Adv., 2013. 3(3): p. 802-812. 12. Laref, A., A. Ahmed, S. Bin-Omran, and S.J. Luo, First-principle analysis of the electronic and optical properties of boron and nitrogen doped carbon mono-layer graphenes. Carbon, 2015. 81: p. 179-192. 13. Farmer, D.B., R. Golizadeh-Mojarad, V. Perebeinos, Y.-M. Lin, G.S. Tulevski, J.C. Tsang, and P. Avouris, Chemical doping and electron− hole conduction asymmetry in graphene devices. Nano letters, 2008. 9(1): p. 388-392. 14. Oostinga, J.B., H.B. Heersche, X. Liu, A.F. Morpurgo, and L.M. Vandersypen, Gate-induced insulating state in bilayer graphene devices. Nature materials, 2008. 7(2): p. 151. 15. Hsieh, D., Y. Xia, D. Qian, L. Wray, J. Dil, F. Meier, J. Osterwalder, L. Patthey, J. Checkelsky, and N. Ong, A tunable topological insulator in the spin helical Dirac transport regime. Nature, 2009. 460(7259): p. 1101. 16. Coletti, C., C. Riedl, D.S. Lee, B. Krauss, L. Patthey, K. von Klitzing, J.H. Smet, and U. Starke, Charge neutrality and band-gap tuning of epitaxial graphene on SiC by molecular doping. Physical Review B, 2010. 81(23): p. 235401. 17. Wu, T., H. Shen, L. Sun, B. Cheng, B. Liu, and J. Shen, Nitrogen and boron doped monolayer graphene by chemical vapor deposition using polystyrene, urea and boric acid. New Journal of Chemistry, 2012. 36(6): p. 1385-1391. 18. Wang, H., Y. Zhou, D. Wu, L. Liao, S. Zhao, H. Peng, and Z. Liu, Synthesis of boron‐doped graphene monolayers using the sole solid feedstock by chemical vapor deposition. Small, 2013. 9(8): p. 1316-1320. 19. Dong, X., D. Fu, W. Fang, Y. Shi, P. Chen, and L.J. Li, Doping single‐layer graphene with aromatic molecules. Small, 2009. 5(12): p. 1422-1426. 20. Gao, H., Z. Liu, L. Song, W. Guo, W. Gao, L. Ci, A. Rao, W. Quan, R. Vajtai, and P.M. Ajayan, Synthesis of S-doped graphene by liquid precursor. Nanotechnology, 2012. 23(27): p. 275605. 21. Jeon, I.Y., S. Zhang, L. Zhang, H.J. Choi, J.M. Seo, Z. Xia, L. Dai, and J.B. Baek, Edge‐selectively sulfurized graphene nanoplatelets as efficient metal‐free electrocatalysts for oxygen reduction reaction: the electron spin effect. Advanced Materials, 2013. 25(42): p. 6138-6145. 22. Cragg, G.M. and D.J. Newman, Natural products: a continuing source of novel drug leads. Biochimica et Biophysica Acta (BBA)-General Subjects, 2013. 1830(6): p. 3670-3695. 23. Yu, C., Z. Liu, X. Meng, B. Lu, D. Cui, and J. Qiu, Nitrogen and phosphorus dual-doped graphene as a metal-free high-efficiency electrocatalyst for triiodide reduction. Nanoscale, 2016. 8(40): p. 17458-17464. 24. Jeon, I.-Y., Y.-R. Shin, G.-J. Sohn, H.-J. Choi, S.-Y. Bae, J. Mahmood, S.-M. Jung, J.-M. Seo, M.-J. Kim, and D.W. Chang, Edge-carboxylated graphene nanosheets via ball milling. Proceedings of the National Academy of Sciences, 2012. 109(15): p. 5588-5593. 25. Jeong, H.M., J.W. Lee, W.H. Shin, Y.J. Choi, H.J. Shin, J.K. Kang, and J.W. Choi, Nitrogen-doped graphene for high-performance ultracapacitors and the importance of nitrogen-doped sites at basal planes. Nano letters, 2011. 11(6): p. 2472-2477. 26. Wu, Z.-S., W. Ren, L. Xu, F. Li, and H.-M. Cheng, Doped graphene sheets as anode materials with superhigh rate and large capacity for lithium ion batteries. ACS nano, 2011. 5(7): p. 5463-5471. 27. Yang, S., L. Zhi, K. Tang, X. Feng, J. Maier, and K. Müllen, Efficient synthesis of heteroatom (N or S)‐doped graphene based on ultrathin graphene oxide‐porous silica sheets for oxygen reduction reactions. Advanced Functional Materials, 2012. 22(17): p. 3634-3640. 28. Li, N., Z. Wang, K. Zhao, Z. Shi, Z. Gu, and S. Xu, Large scale synthesis of N-doped multi-layered graphene sheets by simple arc-discharge method. Carbon, 2010. 48(1): p. 255-259. 29. Panchakarla, L.S., K.S. Subrahmanyam, S.K. Saha, A. Govindaraj, H.R. Krishnamurthy, U.V. Waghmare, and C.N.R. Rao, Synthesis, Structure, and Properties of Boron- and Nitrogen-Doped Graphene. Advanced Materials, 2009. 21(46): p. 4726-4730. 30. Chang, C.-K., S. Kataria, C.-C. Kuo, A. Ganguly, B.-Y. Wang, J.-Y. Hwang, K.-J. Huang, W.-H. Yang, S.-B. Wang, and C.-H. Chuang, Band gap engineering of chemical vapor deposited graphene by in situ BN doping. Acs Nano, 2013. 7(2): p. 1333-1341. 31. Wei, D., Y. Liu, Y. Wang, H. Zhang, L. Huang, and G. Yu, Synthesis of N-doped graphene by chemical vapor deposition and its electrical properties. Nano letters, 2009. 9(5): p. 1752-1758. 32. Teng, C., D. Xie, J. Wang, Z. Yang, G. Ren, and Y. Zhu, Ultrahigh Conductive Graphene Paper Based on Ball‐Milling Exfoliated Graphene. Advanced Functional Materials, 2017. 27(20): p. 1700240. 33. Buzaglo, M., I.P. Bar, M. Varenik, L. Shunak, S. Pevzner, and O. Regev, Graphite-to-Graphene: Total Conversion. Adv Mater, 2017. 29(8): p. 1603528. 34. Jeon, I.Y., H.J. Choi, M. Choi, J.M. Seo, S.M. Jung, M.J. Kim, S. Zhang, L. Zhang, Z. Xia, L. Dai, N. Park, and J.B. Baek, Facile, scalable synthesis of edge-halogenated graphene nanoplatelets as efficient metal-free eletrocatalysts for oxygen reduction reaction. Sci Rep, 2013. 3: p. 1810. 35. Jeon, I.-Y., H.-J. Choi, M.J. Ju, I.T. Choi, K. Lim, J. Ko, H.K. Kim, J.C. Kim, J.-J. Lee, and D. Shin, Direct nitrogen fixation at the edges of graphene nanoplatelets as efficient electrocatalysts for energy conversion. Scientific reports, 2013. 3: p. 2260. 36. Wang, Z., Y. Lu, H. Yuan, Z. Ren, C. Xu, and J. Chen, Microplasma-assisted rapid synthesis of luminescent nitrogen-doped carbon dots and their application in pH sensing and uranium detection. Nanoscale, 2015. 7(48): p. 20743-20748. 37. Li, X., H. Wang, J.T. Robinson, H. Sanchez, G. Diankov, and H. Dai, Simultaneous nitrogen doping and reduction of graphene oxide. Journal of the American Chemical Society, 2009. 131(43): p. 15939-15944. 38. Niu, F., L.-M. Tao, Y.-C. Deng, Q.-H. Wang, and W.-G. Song, Phosphorus doped graphene nanosheets for room temperature NH 3 sensing. New Journal of Chemistry, 2014. 38(6): p. 2269-2272. 39. Maiti, U.N., W.J. Lee, J.M. Lee, Y. Oh, J.Y. Kim, J.E. Kim, J. Shim, T.H. Han, and S.O. Kim, 25th anniversary article: chemically modified/doped carbon nanotubes & graphene for optimized nanostructures & nanodevices. Advanced materials, 2014. 26(1): p. 40-67. 40. Mark Wall, P.D., Thermo Scientific, Madison, Wi, USA, The Raman Spectroscopy of Graphene and the determination of layer thickness.pdf. 41. Butler, H.J., L. Ashton, B. Bird, G. Cinque, K. Curtis, J. Dorney, K. Esmonde-White, N.J. Fullwood, B. Gardner, P.L. Martin-Hirsch, M.J. Walsh, M.R. McAinsh, N. Stone, and F.L. Martin, Using Raman spectroscopy to characterize biological materials. Nat Protoc, 2016. 11(4): p. 664-87. 42. Fleischmann, M., P.J. Hendra, and A.J. McQuillan, Raman spectra of pyridine adsorbed at a silver electrode. Chemical Physics Letters, 1974. 26(2): p. 163-166. 43. Jeanmaire, D.L. and R.P. Van Duyne, Surface Raman spectroelectrochemistry: Part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode. Journal of electroanalytical chemistry and interfacial electrochemistry, 1977. 84(1): p. 1-20. 44. Sharma, B., R.R. Frontiera, A.-I. Henry, E. Ringe, and R.P. Van Duyne, SERS: Materials, applications, and the future. Materials Today, 2012. 15(1-2): p. 16-25. 45. Natan, M.J., Concluding remarks - Surface enhanced Raman scattering. Faraday Discussions, 2006. 132: p. 321-328. 46. Lin, X.M., Y. Cui, Y.H. Xu, B. Ren, and Z.Q. Tian, Surface-enhanced Raman spectroscopy: substrate-related issues. Analytical and Bioanalytical Chemistry, 2009. 394(7): p. 1729-1745. 47. Hu, C., Y. Liu, J. Qin, G. Nie, B. Lei, Y. Xiao, M. Zheng, and J. Rong, Fabrication of Reduced Graphene Oxide and Sliver Nanoparticle Hybrids for Raman Detection of Absorbed Folic Acid: A Potential Cancer Diagnostic Probe. ACS Applied Materials & Interfaces, 2013. 5(11): p. 4760-4768. 48. Chen, Y.-W., T.-Y. Liu, P.-J. Chen, P.-H. Chang, and S.-Y. Chen, A High-Sensitivity and Low-Power Theranostic Nanosystem for Cell SERS Imaging and Selectively Photothermal Therapy Using Anti-EGFR-Conjugated Reduced Graphene Oxide/Mesoporous Silica/AuNPs Nanosheets. Small, 2016. 12(11): p. 1458-1468. 49. Guo, Y., H. Wang, X. Ma, J. Jin, W. Ji, X. Wang, W. Song, B. Zhao, and C. He, Fabrication of Ag–Cu2O/Reduced Graphene Oxide Nanocomposites as Surface-Enhanced Raman Scattering Substrates for in Situ Monitoring of Peroxidase-Like Catalytic Reaction and Biosensing. ACS Applied Materials & Interfaces, 2017. 9(22): p. 19074-19081. 50. Qu, L., N. Wang, H. Xu, W. Wang, Y. Liu, L. Kuo, T.P. Yadav, J. Wu, J. Joyner, Y. Song, H. Li, J. Lou, R. Vajtai, and P.M. Ajayan, Gold Nanoparticles and g-C3N4-Intercalated Graphene Oxide Membrane for Recyclable Surface Enhanced Raman Scattering. Advanced Functional Materials, 2017. 27(31): p. 1701714. 51. Nguyen, T.H.D., Z. Zhang, A. Mustapha, H. Li, and M. Lin, Use of Graphene and Gold Nanorods as Substrates for the Detection of Pesticides by Surface Enhanced Raman Spectroscopy. Journal of Agricultural and Food Chemistry, 2014. 62(43): p. 10445-10451. 52. Cabrera, F.C., P.H.B. Aoki, R.F. Aroca, C.J.L. Constantino, D.S. dos Santos, and A.E. Job, Portable smart films for ultrasensitive detection and chemical analysis using SERS and SERRS. Journal of Raman Spectroscopy, 2012. 43(4): p. 474-477. 53. Willets, K.A. and R.P. Van Duyne, Localized surface plasmon resonance spectroscopy and sensing. Annu Rev Phys Chem, 2007. 58: p. 267-97. 54. Kneipp Katrin, Harald Kneipp, and Irving Itzkan, Surface-enhanced Raman scattering and biophysics. JOURNAL OF PHYSICS: Condensed Matter, 2002: p. R597-R624. 55. Jensen, L., C.M. Aikens, and G.C. Schatz, Electronic structure methods for studying surface-enhanced Raman scattering. Chem Soc Rev, 2008. 37(5): p. 1061-73. 56. Vivoni, A., R.L. Birke, R. Foucault, and J.R. Lombardi, Ab initio frequency calculations of pyridine adsorbed on an adatom model of a SERS active site of a silver surface. The Journal of Physical Chemistry B, 2003. 107(23): p. 5547-5557. 57. Wu, D.Y., S. Duan, B. Ren, and Z.Q. Tian, Density functional theory study of surface‐enhanced Raman scattering spectra of pyridine adsorbed on noble and transition metal surfaces. Journal of Raman Spectroscopy: An International Journal for Original Work in all Aspects of Raman Spectroscopy, Including Higher Order Processes, and also Brillouin and Rayleigh Scattering, 2005. 36(6‐7): p. 533-540. 58. Cardini, G. and M. Muniz-Miranda, Density functional study on the adsorption of pyrazole onto silver colloidal particles. The Journal of Physical Chemistry B, 2002. 106(27): p. 6875-6880. 59. Cardini, G., M. Muniz-Miranda, M. Pagliai, and V. Schettino, A density functional study of the SERS spectra of pyridine adsorbed on silver clusters. Theoretical Chemistry Accounts, 2007. 117(3): p. 451-458. 60. Feng, S., M.C. dos Santos, B.R. Carvalho, R. Lv, Q. Li, K. Fujisawa, A.L. Elías, Y. Lei, N. Perea-López, and M. Endo, Ultrasensitive molecular sensor using N-doped graphene through enhanced Raman scattering. Science advances, 2016. 2(7): p. e1600322. 61. Lombardi, J.R., R.L. Birke, T. Lu, and J. Xu, Charge‐transfer theory of surface enhanced Raman spectroscopy: Herzberg–Teller contributions. The Journal of chemical physics, 1986. 84(8): p. 4174-4180. 62. Barros, E.B. and M.S. Dresselhaus, Theory of Raman enhancement by two-dimensional materials: Applications for graphene-enhanced Raman spectroscopy. Physical Review B, 2014. 90(3): p. 035443. 63. Arenas, J.F., D.J. Fernández, J. Soto, I. López-Tocón, and J.C. Otero, Role of the Electrode Potential in the Charge-Transfer Mechanism of Surface-Enhanced Raman Scattering. The Journal of Physical Chemistry B, 2003. 107(47): p. 13143-13149. 64. Xie, L., X. Ling, Y. Fang, J. Zhang, and Z. Liu, Graphene as a substrate to suppress fluorescence in resonance Raman spectroscopy. Journal of the American Chemical Society, 2009. 131(29): p. 9890-9891. 65. Ling, X., L. Xie, Y. Fang, H. Xu, H. Zhang, J. Kong, M.S. Dresselhaus, J. Zhang, and Z. Liu, Can graphene be used as a substrate for Raman enhancement? Nano Lett, 2010. 10(2): p. 553-61. 66. Huang, S., X. Ling, L. Liang, Y. Song, W. Fang, J. Zhang, J. Kong, V. Meunier, and M.S. Dresselhaus, Molecular selectivity of graphene-enhanced Raman scattering. Nano Lett, 2015. 15(5): p. 2892-901. 67. Ling, X. and J. Zhang, First‐Layer Effect in Graphene‐Enhanced Raman Scattering. Small, 2010. 6(18): p. 2020-2025. 68. Ling, X., J. Wu, W. Xu, and J. Zhang, Probing the Effect of Molecular Orientation on the Intensity of Chemical Enhancement Using Graphene‐Enhanced Raman Spectroscopy. Small, 2012. 8(9): p. 1365-1372. 69. Huang, S., X. Ling, L. Liang, Y. Song, W. Fang, J. Zhang, J. Kong, V. Meunier, and M.S. Dresselhaus, Molecular selectivity of graphene-enhanced Raman scattering. Nano letters, 2015. 15(5): p. 2892-2901. 70. Ling, X., J. Wu, L. Xie, and J. Zhang, Graphene-Thickness-Dependent Graphene-Enhanced Raman Scattering. The Journal of Physical Chemistry C, 2013. 117(5): p. 2369-2376. 71. Xu, H., L. Xie, H. Zhang, and J. Zhang, Effect of graphene Fermi level on the Raman scattering intensity of molecules on graphene. ACS nano, 2011. 5(7): p. 5338-5344. 72. Huh, S., J. Park, Y.S. Kim, K.S. Kim, B.H. Hong, and J.-M. Nam, UV/ozone-oxidized large-scale graphene platform with large chemical enhancement in surface-enhanced Raman scattering. ACS nano, 2011. 5(12): p. 9799-9806. 73. Ling, X., S. Huang, S. Deng, N. Mao, J. Kong, M.S. Dresselhaus, and J. Zhang, Lighting up the Raman signal of molecules in the vicinity of graphene related materials. Acc Chem Res, 2015. 48(7): p. 1862-70. 74. Deng, S., W. Xu, J. Wang, X. Ling, J. Wu, L. Xie, J. Kong, M.S. Dresselhaus, and J. Zhang, Direct measurement of the Raman enhancement factor of rhodamine 6G on graphene under resonant excitation. Nano Research, 2014. 7(9): p. 1271-1279. 75. Lai, H., F. Xu, Y. Zhang, and L. Wang, Recent progress on graphene-based substrates for surface-enhanced Raman scattering applications. Journal of Materials Chemistry B, 2018. 6(24): p. 4008-4028. 76. Wang, Z., S. Wu, L. Colombi Ciacchi, and G. Wei, Graphene-based nanoplatforms for surface-enhanced Raman scattering sensing. Analyst, 2018. 143(21): p. 5074-5089. 77. Majdalawieh, A., M.C. Kanan, O. El-Kadri, and S.M. Kanan, Recent advances in gold and silver nanoparticles: synthesis and applications. Journal of nanoscience and nanotechnology, 2014. 14(7): p. 4757-4780. 78. Yi, N., C. Zhang, Q. Song, and S. Xiao, A hybrid system with highly enhanced graphene SERS for rapid and tag-free tumor cells detection. Scientific reports, 2016. 6: p. 25134. 79. Wang, Y., L. Polavarapu, and L.M. Liz-Marzán, Reduced graphene oxide-supported gold nanostars for improved SERS sensing and drug delivery. ACS applied materials & interfaces, 2014. 6(24): p. 21798-21805. 80. Xue, X., F. Wang, and X. Liu, One-step, room temperature, colorimetric detection of mercury (Hg2+) using DNA/nanoparticle conjugates. Journal of the American Chemical Society, 2008. 130(11): p. 3244-3245. 81. Bera, R.K., A.K. Das, and C.R. Raj, Enzyme-cofactor-assisted photochemical synthesis of Ag nanostructures and shape-dependent optical sensing of Hg (II) ions. Chemistry of Materials, 2010. 22(15): p. 4505-4511. 82. Ding, X., L. Kong, J. Wang, F. Fang, D. Li, and J. Liu, Highly sensitive SERS detection of Hg2+ ions in aqueous media using gold nanoparticles/graphene heterojunctions. ACS applied materials & interfaces, 2013. 5(15): p. 7072-7078. 83. Lin, D., T. Qin, Y. Wang, X. Sun, and L. Chen, Graphene oxide wrapped SERS tags: multifunctional platforms toward optical labeling, photothermal ablation of bacteria, and the monitoring of killing effect. ACS applied materials & interfaces, 2014. 6(2): p. 1320-1329. 84. Lin, T.-W., H.-Y. Wu, T.-T. Tasi, Y.-H. Lai, and H.-H. Shen, Surface-enhanced Raman spectroscopy for DNA detection by the self-assembly of Ag nanoparticles onto Ag nanoparticle–graphene oxide nanocomposites. Physical Chemistry Chemical Physics, 2015. 17(28): p. 18443-18448. 85. Dresselhaus, M.S., G. Dresselhaus, and M. Hofmann, Raman spectroscopy as a probe of graphene and carbon nanotubes. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2008. 366(1863): p. 231-236. 86. Cançado, L.G., A. Jorio, E.M. Ferreira, F. Stavale, C. Achete, R. Capaz, M. Moutinho, A. Lombardo, T. Kulmala, and A.C. Ferrari, Quantifying defects in graphene via Raman spectroscopy at different excitation energies. Nano letters, 2011. 11(8): p. 3190-3196. 87. Fang, H., C. Yu, T. Ma, and J. Qiu, Boron-doped graphene as a high-efficiency counter electrode for dye-sensitized solar cells. Chemical Communications, 2014. 50(25): p. 3328-3330. 88. Yu, X. and H.S. Park, Sulfur-incorporated, porous graphene films for high performance flexible electrochemical capacitors. Carbon, 2014. 77: p. 59-65. 89. Laref, A., A. Ahmed, S. Bin-Omran, and S. Luo, First-principle analysis of the electronic and optical properties of boron and nitrogen doped carbon mono-layer graphenes. Carbon, 2015. 81: p. 179-192. 90. Yu, X., H. Cai, W. Zhang, X. Li, N. Pan, Y. Luo, X. Wang, and J. Hou, Tuning chemical enhancement of SERS by controlling the chemical reduction of graphene oxide nanosheets. ACS nano, 2011. 5(2): p. 952-958. 91. Zhang, M., Y. Leng, J. Huang, J. Yu, Z. Lan, and C. Huang, Surface-enhanced Raman scattering of dipolar molecules by the graphene Fermi surface modulation with different dipole moments. Applied Surface Science, 2017. 425: p. 654-662. 92. Wang, L., Y. Zhang, Y. Yang, and J. Zhang, Strong dependence of surface enhanced raman scattering on structure of graphene oxide film. Materials, 2018. 11(7): p. 1199. 93. Zhang, K., S. Yu, B. Jv, and W. Zheng, Interaction of Rhodamine 6G molecules with graphene: a combined computational–experimental study. Physical Chemistry Chemical Physics, 2016. 18(41): p. 28418-28427. 94. Xu, W., N. Mao, and J. Zhang, Graphene: a platform for surface-enhanced Raman spectroscopy. Small, 2013. 9(8): p. 1206-24. 95. Kang, L., J. Chu, H. Zhao, P. Xu, and M. Sun, Recent progress in the applications of graphene in surface-enhanced Raman scattering and plasmon-induced catalytic reactions. Journal of Materials Chemistry C, 2015. 3(35): p. 9024-9037. 96. Kumar, V., V. Singh, S. Umrao, V. Parashar, S. Abraham, A.K. Singh, G. Nath, P.S. Saxena, and A. Srivastava, Facile, rapid and upscaled synthesis of green luminescent functional graphene quantum dots for bioimaging. Rsc Advances, 2014. 4(40): p. 21101-21107. 97. Duvenhage, M.-M., M. Ntwaeaborwa, H.G. Visser, P.J. Swarts, J.C. Swarts, and H.C. Swart, Determination of the optical band gap of Alq3 and its derivatives for the use in two-layer OLEDs. Optical Materials, 2015. 42: p. 193-198. 98. Poorali, M.-S. and M.-M. Bagheri-Mohagheghi, Comparison of chemical and physical reduction methods to prepare layered graphene by graphene oxide: optimization of the structural properties and tuning of energy band gap. Journal of Materials Science: Materials in Electronics, 2016. 27(1): p. 260-271. 99. Ren, P., E. Pu, D. Liu, Y. Wang, B. Xiang, and X. Ren, Fabrication of nitrogen-doped graphenes by pulsed laser deposition and improved chemical enhancement for Raman spectroscopy. Materials Letters, 2017. 204: p. 65-68. 100. Lv, R., Q. Li, A.R. Botello-Méndez, T. Hayashi, B. Wang, A. Berkdemir, Q. Hao, A.L. Elías, R. Cruz-Silva, H.R. Gutiérrez, Y.A. Kim, H. Muramatsu, J. Zhu, M. Endo, H. Terrones, J.-C. Charlier, M. Pan, and M. Terrones, Nitrogen-doped graphene: beyond single substitution and enhanced molecular sensing. Scientific Reports, 2012. 2: p. 586. 101. Yang, L., J. Hu, L. He, J. Tang, Y. Zhou, J. Li, and K. Ding, One-pot synthesis of multifunctional magnetic N-doped graphene composite for SERS detection, adsorption separation and photocatalytic degradation of Rhodamine 6G. Chemical Engineering Journal, 2017. 327: p. 694-704.
|