跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.134) 您好!臺灣時間:2025/11/14 14:12
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:黃韋儒
研究生(外文):HUANG, WEI-RU
論文名稱:製備鈀-金/二氧化鈦-三氧化鎢奈米顆粒應用於二氧化碳光還原反應為甲烷及一氧化碳
論文名稱(外文):Prepared Pd-Au/TiO2-WO3 Nanoparticle Applied in Photoreduction of CO2 into CO and CH4
指導教授:吳仁彰
指導教授(外文):WU, REN-JANG
口試委員:葉君棣汪成斌
口試委員(外文):YEH, CHUN-TIWANG, CHENG-PIN
口試日期:2018-07-23
學位類別:碩士
校院名稱:靜宜大學
系所名稱:應用化學系
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:中文
論文頁數:100
中文關鍵詞:光還原二氧化鈦三氧化鎢甲烷一氧化碳
外文關鍵詞:PhotoreductionTiO2WO3MethaneCO
相關次數:
  • 被引用被引用:0
  • 點閱點閱:226
  • 評分評分:
  • 下載下載:27
  • 收藏至我的研究室書目清單書目收藏:0
本研究使用水熱法和溶膠凝膠兩種方法製備Pd-Au/TiO2-WO3納米顆粒作為光還原二氧化碳的光觸媒。使用X光繞射儀(XRD),描式電子顯微鏡(SEM),穿透式電子顯微鏡(TEM),X光光電子能譜儀(XPS),BET,UV-vis,光致發光光譜儀(PL)對製備的鑑定。與市售TiO2(P25)相比,在TiO2-WO3複合材料加入適量的Pd和Au會有較高的光還原活性。CH4產率(39.1 μmol g-1 h-1)是TiO2 (P25)的100倍;除此之外,還產出有大量的CO (271.3 μmol g-1 h-1)是TiO2 (P25)的300倍。光催化活性的大幅提高可能來自比表面積的增加(72.9 m2 g-1),及在可見光吸收的增加。摻入Pd-Au於TiO2也提高了太陽能的利用率及減少Pd-Au/TiO2-WO3複合材料電子電洞對再結合的機會而提高光還原活性。CH4產量的量子產率計算為(1.05 %)。最後在Pd-Au / TiO2-WO3的光還原反應中提出了CO2的還原反應機構,而本研究可以為TiO2應用於太陽能轉換和儲存等帶來新的發展。
This study presents Pd-Au/TiO2-WO3 nanoparticle prepared by a hydrothermal and sol-gel method as a CO2 conversion photocatalysts. The catalysts were characterized by X-ray diffraction (XRD), Scan electron microscope (SEM), Tunneling electron microscope (TEM), XPS, BET, UV-visible and Photoluminescence (PL) instruments. The appropriate amounts of Pd and Au on TiO2-WO3 composites exhibited enhanced photocatalytic activity for CO2 reduction compared with commercial TiO2 (P25). It showed the photocatalytic CH4 production rate (39.1 μmol g-1 h-1) was 100 fold that of TiO2 (P25); moreover, a large amount of CO was produced (at a rate of 271.3 μmol g-1 h-1) was 300 fold that of TiO2 (P25). The significantly improved photocatalytic activity was not only due to the increased specific surface area (72.9 m2g-1) but also UV-vis showed a remarkable enhancement of light absorption. It owes to the incorporation Pd-Au with TiO2 the visiblelight active the UV light-responsive for increased solar energy utilization. Furthermore, PL spectra revealed that the Pd-Au content can influence the charge transfer efficiency of the Pd-Au/TiO2-WO3 composites. The quantum yield of CH4 production was calculated as 1.05 %. A CO2 reduction reaction mechanism was proposed on Pd-Au/TiO2-WO3. This study can bring new insights into designing TiO2 nanostructures for applications such as solar energy conversion and storage.
謝誌 I
摘要 III
ABSTRACT IV
目錄 V
圖目錄 IX
表目錄 XII
第一章 緒論 1
1-1前言 1
1-2甲烷發展狀況 3
1-2-1開發天然資源(海洋、沼澤) 3
1-2-2 利用微生物產甲烷 3
1-2-3有機物分解 4
1-2-4全球議題 5
1-4 觸媒簡介 5
1-4-1觸媒奈米化 5
1-4-2二氧化鈦(TiO2)介紹 6
1-4-3三氧化鎢(WO3) 介紹 10
1-4-4鈀(Pd)金屬介紹 10
1-4-4金(Au)金屬介紹 12
1-5光催化反應 13
1-5-1光觸媒 13
1-5-2光還原二氧化碳轉化成甲烷原理 15
第二章 文獻回顧 20
2-1文獻回顧 20
2-2研究動機 29
第三章 實驗方法 30
3-1 實驗藥品 30
3-2光觸媒製備 31
3-2-1 TiO2-WO3複合材料製作 31
3-2-2 摻雜金屬到TiO2-WO3複合材料 33
3-2-3 Pd-Au/TiO2-WO3複合材料製作 33
3-3 材料定性之貴重儀器簡介 35
3-3-1簡易水熱釜 35
3-3-2 X光繞射儀(X-ray Diffraction, XRD) 36
3-3-3反射式紫外-可見光光譜儀(UV-Vis Spectrophotometer) 39
3-3-4掃描式電子顯微鏡(Scaning Electron Microscope, SEM) 42
3-3-4穿透式電子顯微鏡(Transmission Electron Microscope, TEM) 及能量分散光譜儀(Energy Dispersive Spectrometer, EDX) 44
3-3-5 X光光電子能譜儀(XPS/ESCA) 47
3-3-6光致發光光譜儀(Photoluminescence) 49
3-3-7高解析比表面積分析儀(High Resolution surface Area and Porosimetry Analyser,ASAP/BET) 50
3-4 實驗儀器 51
3-4-1氣相層析儀(Gas Chromatography) 51
3-4-2甲烷校正氣體 53
3-4-3光催化反應使用之光源(light source) 54
3-4-4光催化反應系統(Photocatalyst reactor) 56
第四章 結果與討論 57
4-1 XRD繞射分析 57
4-2掃描式電子顯微鏡(SEM)分析 60
4-3穿透式電子顯微鏡(TEM)分析 62
4-4反射式紫外-可見光光譜儀(UV-Vis Spectrophotometer)分析 67
4-5光致發光光譜儀(Photoluminescence)分析 71
4-6高解析比表面積分析儀((High Resolution surface Area and Porosimetry Analyser,ASAP/BET) 72
4-7 X光光電子能譜儀(XPS/ESCA)分析 73
4-8光還原反應實驗結果 77
4-9觸媒再利用性測試 86
4-10量子產率 87
4-11反應機構討論 89
第五章 結論 93
參考資料 95
Roy, S. C.; Varghese, O. K.; Paulose, M.; Grimes, C. A., Toward Solar Fuels: Photocatalytic Conversion of Carbon Dioxide to Hydrocarbons. ACS Nano 2010, 4 (3), 1259-1278.
Khatib, H., IEA World Energy Outlook 2011—A comment. Energy Policy 2012, 48, 737-743.
Li, L.; Li, P.; Wang, Y.; Lin, L.; Shah, A. H.; He, T., Modulation of oxygen vacancy in hydrangea-like ceria via Zr doping for CO2 photoreduction. Applied Surface Science 2018, 452, 498-506.
He, Z.; Tang, J.; Shen, J.; Chen, J.; Song, S., Enhancement of photocatalytic reduction of CO2 to CH4 over TiO2 nanosheets by modifying with sulfuric acid. Applied Surface Science 2016, 364, 416-427.
Zhu, Z.; Chen, J.-Y.; Su, K.-Y.; Wu, R.-J., Efficient hydrogen production by water-splitting over Pt-deposited C–HS–TiO2 hollow spheres under visible light. Journal of the Taiwan Institute of Chemical Engineers 2016, 60, 222-228.
Tahir, M.; Amin, N. S., Recycling of carbon dioxide to renewable fuels by photocatalysis: Prospects and challenges. Renewable and Sustainable Energy Reviews 2013, 25, 560-579.
Yamashita, H.; Harada, M.; Misaka, J.; Takeuchi, M.; Neppolian, B.; Anpo, M., Photocatalytic degradation of organic compounds diluted in water using visible light-responsive metal ion-implanted TiO2 catalysts: Fe ion-implanted TiO2. Catalysis Today 2003, 84 (3), 191-196.
Mahdy, A.; Mendez, L.; Ballesteros, M.; González-Fernández, C., Protease pretreated Chlorella vulgaris biomass bioconversion to methane via semi-continuous anaerobic digestion. Fuel 2015, 158, 35-41.
Kondratenko, E. V.; Mul, G.; Baltrusaitis, J.; Larrazabal, G. O.; Perez-Ramirez, J., Status and perspectives of CO2 conversion into fuels and chemicals by catalytic, photocatalytic and electrocatalytic processes. Energy & Environmental Science 2013, 6 (11), 3112-3135.
Biswas, M. R. U. D.; Ali, A.; Cho, K. Y.; Oh, W.-C., Novel synthesis of WSe2-Graphene-TiO2 ternary nanocomposite via ultrasonic technics for high photocatalytic reduction of CO2 into CH3OH. Ultrasonics Sonochemistry 2018, 42, 738-746.
Hussain, E.; Majeed, I.; Nadeem, M. A.; Badshah, A.; Chen, Y.; Nadeem, M. A.; Jin, R., Titania-Supported Palladium/Strontium Nanoparticles (Pd/Sr-NPs@P25) for Photocatalytic H2 Production from Water Splitting. The Journal of Physical Chemistry C 2016, 120 (31), 17205-17213.
Liu, S.; Qu, X., Construction of nanocomposite film of Dawson-type polyoxometalate and TiO2 nanowires for electrochromic applications. Applied Surface Science 2017, 412, 189-195.
Haider, A. J.; Al– Anbari, R. H.; Kadhim, G. R.; Salame, C. T., Exploring potential Environmental applications of TiO2 Nanoparticles. Energy Procedia 2017, 119, 332-345.
Yu, J.; Low, J.; Xiao, W.; Zhou, P.; Jaroniec, M., Enhanced Photocatalytic CO2-Reduction Activity of Anatase TiO2 by Coexposed {001} and {101} Facets. Journal of the American Chemical Society 2014, 136 (25), 8839-8842.
Zhu, Z.; Wu, R.-J., The degradation of formaldehyde using a Pt@TiO2 nanoparticles in presence of visible light irradiation at room temperature. Journal of the Taiwan Institute of Chemical Engineers 2015, 50, 276-281.
Jing, D.; Guo, L.; Zhao, L.; Zhang, X.; Liu, H.; Li, M.; Shen, S.; Liu, G.; Hu, X.; Zhang, X.; Zhang, K.; Ma, L.; Guo, P., Efficient solar hydrogen production by photocatalytic water splitting: From fundamental study to pilot demonstration. International Journal of Hydrogen Energy 2010, 35 (13), 7087-7097.
Hakamizadeh, M.; Afshar, S.; Tadjarodi, A.; Khajavian, R.; Fadaie, M. R.; Bozorgi, B., Improving hydrogen production via water splitting over Pt/TiO2/activated carbon nanocomposite. International Journal of Hydrogen Energy 2014, 39 (14), 7262-7269.
Tahir, M.; Tahir, B.; Amin, N. A. S.; Muhammad, A., Photocatalytic CO2 methanation over NiO/In2O3 promoted TiO2 nanocatalysts using H2O and/or H2 reductants. Energy Conversion and Management 2016, 119, 368-378.
Jin, C.; Dai, Y.; Wei, W.; Ma, X.; Li, M.; Huang, B., Effects of single metal atom (Pt, Pd, Rh and Ru) adsorption on the photocatalytic properties of anatase TiO2. Applied Surface Science 2017, 426, 639-646.
Zhu, S.; Liang, S.; Bi, J.; Liu, M.; Zhou, L.; Wu, L.; Wang, X., Photocatalytic reduction of CO2 with H2O to CH4 over ultrathin SnNb2O6 2D nanosheets under visible light irradiation. Green Chemistry 2016, 18 (5), 1355-1363.
Wang, W.; Xu, D.; Cheng, B.; Yu, J.; Jiang, C., Hybrid carbon@TiO2 hollow spheres with enhanced photocatalytic CO2 reduction activity. Journal of Materials Chemistry A 2017, 5 (10), 5020-5029.
Yang, G.; Chen, D.; Ding, H.; Feng, J.; Zhang, J. Z.; Zhu, Y.; Hamid, S.; Bahnemann, D. W., Well-designed 3D ZnIn2S4 nanosheets/TiO2 nanobelts as direct Z-scheme photocatalysts for CO2 photoreduction into renewable hydrocarbon fuel with high efficiency. Applied Catalysis B: Environmental 2017, 219, 611-618.
Zayadi, R. A.; Bakar, F. A., Comparative study on the performance of Au/F-TiO2 photocatalyst synthesized from Zamzam water and distilled water under blue light irradiation. Journal of Photochemistry and Photobiology A: Chemistry 2017, 346, 338-350.
Tahir, M.; Tahir, B.; Saidina Amin, N. A.; Alias, H., Selective photocatalytic reduction of CO2 by H2O/H2 to CH4 and CH3OH over Cu-promoted In2O3/TiO2 nanocatalyst. Applied Surface Science 2016, 389, 46-55.
Brun, M.; Berthet, A.; Bertolini, J. C., XPS, AES and Auger parameter of Pd and PdO. Journal of Electron Spectroscopy and Related Phenomena 1999, 104 (1), 55-60.
蕭奕,“鉑摻雜於中孔洞含碳二氧化鈦應用於光還原轉化二氧化碳為甲烷氣體”,靜宜大學碩士論文,2015.
林淑靜,“製備二氧化鈦奈米線材料應用於二氧化氮氣體感測器”,靜宜大學碩士論文,2017.
蘇康揚,“製備鈀/二氧化鈦奈米線應用於二氧化碳光還原反應為甲烷及一氧化碳”,靜宜大學碩士論文,2017.
王晨洋,“以Pt/SnO2-WO3材料應用於一氧化氮氣體感測器”,靜宜大學碩士論文,2013.
Adekoya, D. O.; Tahir, M.; Amin, N. A. S., g-C3N4/(Cu/TiO2) nanocomposite for enhanced photoreduction of CO2 to CH3OH and HCOOH under UV/visible light. Journal of CO2 Utilization 2017, 18, 261-274.
Xu, Q.; Yu, J.; Zhang, J.; Zhang, J.; Liu, G., Cubic anatase TiO2 nanocrystals with enhanced photocatalytic CO2 reduction activity. Chemical Communications 2015, 51 (37), 7950-7953.
Zhang, Y.; Park, S.-J., Au–Pd bimetallic alloy nanoparticle-decorated BiPO4 nanorods for enhanced photocatalytic oxidation of trichloroethylene. Journal of Catalysis 2017, 355, 1-10.
AlOtaibi, B.; Fan, S.; Wang, D.; Ye, J.; Mi, Z., Wafer-Level Artificial Photosynthesis for CO2 Reduction into CH4 and CO Using GaN Nanowires. ACS Catalysis 2015, 5 (9), 5342-5348.
Lu, B.; Li, X.; Wang, T.; Xie, E.; Xu, Z., WO3 nanoparticles decorated on both sidewalls of highly porous TiO2 nanotubes to improve UV and visible-light photocatalysis. Journal of Materials Chemistry A 2013, 1 (12), 3900-3906.
Zheng, H.; Wang, C.; Zhang, X.; Kong, L.; Li, Y.; Liu, Y.; Liu, Y., Ultrasonic spray pyrolysis assembly of a TiO2-WO3-Pt multi-heterojunction microsphere photocatalyst using highly crystalline WO3 nanosheets: less is better. New Journal of Chemistry 2016, 40 (4), 3225-3232.
Cai, J.; Wu, X.; Li, S.; Zheng, F., Synthesis of TiO2@WO3/Au Nanocomposite Hollow Spheres with Controllable Size and High Visible-Light-Driven Photocatalytic Activity. ACS Sustainable Chemistry & Engineering 2016, 4 (3), 1581-1590.
Riboni, F.; Bettini, L. G.; Bahnemann, D. W.; Selli, E., WO3–TiO2 vs. TiO2 photocatalysts: effect of the W precursor and amount on the photocatalytic activity of mixed oxides. Catalysis Today 2013, 209, 28-34.
Riboni, F.; Dozzi, M. V.; Paganini, M. C.; Giamello, E.; Selli, E., Photocatalytic activity of TiO2-WO3 mixed oxides in formic acid oxidation. Catalysis Today 2017, 287, 176-181.
Li, Y.; Liu, Z.; Wu, Y.; Chen, J.; Zhao, J.; Jin, F.; Na, P., Carbon dots-TiO2 nanosheets composites for photoreduction of Cr(VI) under sunlight illumination: Favorable role of carbon dots. Applied Catalysis B: Environmental 2018, 224, 508-517
Nagarjuna, R.; Challagulla, S.; Sahu, P.; Roy, S.; Ganesan, R., Polymerizable sol–gel synthesis of nano-crystalline WO3 and its photocatalytic Cr(VI) reduction under visible light. Advanced Powder Technology 2017, 28 (12), 3265-3273.
Cao, S.; Li, Y.; Zhu, B.; Jaroniec, M.; Yu, J., Facet effect of Pd cocatalyst on photocatalytic CO2 reduction over g-C3N4. Journal of Catalysis 2017, 349, 208-217.
Abedini, A.; Razak Daud, A.; abdul hamid, m. a.; Othman, N. K.; Saion, E., A review on radiation-induced nucleation and growth of colloidal metallic nanoparticles. 2013, 8,474.
Kudo, A.; Miseki, Y., Heterogeneous photocatalyst materials for water splitting. Chemical Society reviews, 2009, 381, 253-78.
Sahu, M.; Biswas, P., Single-step processing of copper-doped titania nanomaterials in a flame aerosol reactor. Nanoscale Research Letters 2011, 6, 1-14.
Sadrieyeh, S.; Malekfar, R., Photocatalytic performance of plasmonic Au/Ag-TiO2 aerogel nanocomposites. Journal of Non-Crystalline Solids 2018, 489, 33-39.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊