|
Bagust, A., Place, M., & Posnett, J. W. (1999). Dynamics of bed use in accommodating emergency admissions: Stochastic simulation model. British Medical Journal, 319, 155-158. Bergs, J., Heerinckx, P., & Verelst, S. (2014). Knowing what to expect, forecasting monthly emergency department visits: A time-series analysis. International Emergency Nursing, 22(2), 112-115. Carvalho-Silva, M., Monteiro, M. T. T., Sá-Soares, F. d., & Dória-Nóbrega, S. (2017).Assessment of forecasting models for patients arrival at emergency department. Operations Research for Health Care, 18, 112-118. Chu, F.-L. (2009). Forecasting tourism demand with ARMA-based methods. Tourism Management, 30(5), 740-751. de Faria, E. L., Albuquerque, M. P., Gonzalez, J. L., Cavalcante, J. T. P., & Albuquerque, M. P. (2009). Predicting the Brazilian stock market through neural networks and adaptive exponential smoothing methods. Expert Systems with Applications, 36(10), 12506-12509. Demchenko, Y., Laat, C. d., & Membrey, P. (2014). Defining architecture components of the big data ecosystem. Paper presented at the 2014 International Conference on Collaboration Technologies and Systems (CTS). Gadepally, V., & Kepner, J. (2014). Big data dimensional analysis. Paper presented at the 2014 IEEE High Performance Extreme Computing Conference (HPEC). Gandomi, A., & Haider, M. (2015). Beyond the hype: Big data concepts, methods, and analytics. International Journal of Information Management, 35(2), 137-144. Haiges, R., Wang, Y. D., Ghoshray, A., & Roskilly, A. P. (2017). Forecasting electricity generation capacity in Malaysia: An auto regressive integrated moving average approach. Energy Procedia, 105, 3471-3478. Hay, K. L., & Bull, B. S. (2009). Statistical clues to postoperative blood loss: Moving averages applied to medical data. Blood Cells, Molecules, and Diseases, 43(3), 250-255. Hikichi, S. E., Salgado, E. G., & Beijo, L. A. (2017). Forecasting number of ISO 14001 certifications in the Americas using ARIMA models. Journal of Cleaner Production, 147, 242-253. Ho, S. L., & Xie, M. (1998). The use of ARIMA models for reliability forecasting and analysis. Computers & Industrial Engineering, 35(1), 213-216. Hurwitz, J., Nugent, A., Halper, F., & Kaufman, M. (2013), Big Data for Dummies. Ji, H., Songlin, W., Qinglin, W., & Xiaonan, C. (2012). Douhe reservoir flood forecasting model based on data mining technology. Procedia Environmental Sciences, 12, 93-98. Kim, M., Zimmermann, T., DeLine, R., & Begel, A. (2016). The emerging role of data scientists on software development teams. Paper presented at the 2016 IEEE/ACM 38th International Conference on Software Engineering (ICSE). Laney, D. (2001). 3D data management: Controlling data volume, velocity, and variety. Application Delivery Strategies, File: 949 Abbendum, META Group. Laouafi, A., Mordjaoui, M., & Dib, D. (2014). Very short-term electricity demand forecasting using adaptive exponential smoothing methods. Paper presented at the 2014 15th International Conference on Sciences and Techniques of Automatic Control and Computer Engineering (STA). Larburu, N., Bults, R., van Sinderen, M., & Hermens, H. (2015). Quality-of-data management for telemedicine systems. Procedia Computer Science, 63, 451-458. Li, M., Chen, G., Lin, Z., & Cai, B. (2009). Combination forecasting model based on drift. Paper presented at the 2009 International Joint Conference on Computational Sciences and Optimization. Pratyaksa, H., Permanasari, A. E., Fauziati, S., & Fitriana, I. (2016). ARIMA implementation to predict the amount of antiseptic medicine usage in veterinary hospital. Paper presented at the 2016 1st International Conference on Biomedical Engineering (IBIOMED). Runkler, T. A. (2016), Data Analytics-Models and Algorithms for Intelligent Data Analysis. Seematter-Bagnoud, L., Fustinoni, S., Dung, D. H., Santos-Eggimann, B., Koehn, V., Bize, R., Oettli, A., & Wasserfallen, J. B. (2015). Comparison of different methods to forecast hospital bed needs. European Geriatric Medicine, 6(3), 262-266. Silva, N., Ferreira, L. M. D. F., Silva, C., Magalhães, V., & Neto, P. (2017). Improving supply chain visibility with artificial neural networks. Procedia Manufacturing, 11, 2083-2090. Sun, X., Young, J., Liu, J.-H., & Newman, D. (2018). Prediction of pork loin quality using online computer vision system and artificial intelligence model. Meat Science, 140, 72-77. Suyantohadi, A., Mulyati, G. T., Supartono, W., & Djafar, T. F. (2001). Identification of the maturity level of mango “arumanis” using artificial neural network. IFAC Proceedings Volumes, 34(11), 325-329. Waller Matthew, A., & Fawcett Stanley, E. (2013). Data science, predictive analytics, and big data: A revolution that will transform supply chain design and management. Journal of Business Logistics, 34(2), 77-84. Xie, J., Wang, Y., Zheng, X., Yang, Q., Wang, T., Zou, Y., Xing, J., & Dong, Y. (2015). Modeling and forecasting Acinetobacter Baumannii resistance to set appropriate use of cefoperazone-sulbactam: Results from trend analysis of antimicrobial consumption and development of resistance in a tertiary care hospital. American Journal of Infection Control, 43(8), 861-864. Yu, Z., Lei, G., Jiang, Z., & Liu, F. (2017). ARIMA modelling and forecasting of water level in the middle reach of the Yangtze River. Paper presented at the 2017 4th International Conference on Transportation Information and Safety (ICTIS). Zhang, M., Fulcher, J., & Scofield, R. A. (1997). Rainfall estimation using artificial neural network group. Neurocomputing, 16(2), 97-115
|