跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.54) 您好!臺灣時間:2026/01/07 15:59
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:鄧乃瑄
研究生(外文):Nai-Hsuan Teng
論文名稱:台灣西南海域四方圈合海脊冷泉區甲烷泡菌屬新種之純化與特性分析
論文名稱(外文):Isolation and Characterization of Methanofollis Species from Potential Cold Seep Area-Four Way Closure Ridge Offshore SW Taiwan
指導教授:賴美津
口試委員:湯森林黃啟裕
口試日期:2018-07-09
學位類別:碩士
校院名稱:國立中興大學
系所名稱:生命科學系所
學門:生命科學學門
學類:生物學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:中文
論文頁數:86
中文關鍵詞:古菌甲烷古菌甲烷古菌甲烷泡菌屬四方圈合海脊冷泉天然氣水合物
外文關鍵詞:ArchaeaMethanogenMethanofollisFour Way Closure RidgeCold SeepGas Hydrate
相關次數:
  • 被引用被引用:2
  • 點閱點閱:185
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
四方圈合海脊為一個背斜海脊,是一個收集甲烷的良好地形。應用高解析的測深儀(bathymetry)、深拖側掃聲納圖像(deep-towed sidescan sonar imagery)、高解析震波剖面探測(high-resolution seismic profiling)以及海底拖式攝影機(towed video observations)分析均確認四方圈合海脊是天然氣水合物累積的潛力區。四方圈合海脊亦具有強甲烷滲漏點,造就了以甲烷碳源為基礎的典型冷泉(cold seep)化學自養菌群落(chemosynthetic community)和高密度具甲烷氧化菌共生的貽貝與蝦蟹。2015年海洋研究船三號OR3-1900航次自台灣四方圈合海脊C5-6測站使用V-Corer (Video-guided multicorer)獲得的岩心底泥樣品,經增殖培養後純化出甲烷古菌FWC-SCC2。菌株FWC-SCC2與Methanofollis tationis Chile 9T的16S rDNA序列達98.2%相似性,與其它甲烷泡菌屬已發表菌株的16S rDNA相似性達96-98%。但菌株FWC-SCC2與甲烷泡菌屬的物種分析平均核苷酸一致性(Average nucleotide identity, ANI) 與基因組對基因組距離分析(Genome to genome distance analysis, GGDA),結果分別為78.2-79.8%以及17.8-23.8%,支持菌株FWC-SCC2為甲烷泡菌屬的新種。菌株FWC-SCC2細胞為直徑0.8-1.2 μm的不規則球菌,其表層蛋白分子量為116.4 kDa;可以利用甲酸和H2/CO2作為碳源進行甲烷化作用。菌株FWC-SCC2最適生長條件範圍為37C、0.17 M氯化鈉及pH 6.7-7.0。在基因體的分析上發現菌株FWC-SCC2與其他甲烷泡菌屬菌株相比具38個獨特的蛋白質直系同源群(Clusters of Orthologous Groups of proteins, COGs),在38個COGs中包含有鐵離子的ABC運輸蛋白(ABC-type iron transport system FetAB)、對苯二酚單氧化酶YgiN (Quinol monooxygenase YgiN)兩種和耐氧性相關的COGs以及維持細胞膜完整性的噬菌體休克蛋白A (Phage shock protein A)。
Four Way Closure Ridge is an anticlinal ridge that represents an ideal trap for methane hydrate accumulations through the analyses of high-resolution bathymetry, deep-towed sidescan sonar imagery, high-resolution seismic profiling and towed video observations of the seafloor. Four Way Closure Ridge is one of the sites with intensive methane seepages to bring up a typical cold seep used methane as substrate chemosynthetic community and with highly dense mussel bed with shrimps, crabs and clams was found at this site. A mesophilic, hydrogenotrophic methanogen, strain FWC-SCC2, was isolated from deep-sea sediment obtained at the C5-6 station at Four Way Closure Ridge region by the R/V Ocean Researcher III during ORIII-1900 cruise in 2015. Phylogenetic analysis revealed that strain FWC-SCC2 was most closely related to Methanofollis tationis Chile 9T (98.2% 16S rRNA gene sequence similarity) and share 96-98 % 16S rRNA gene sequence similarity with other valid Methanofollis species. Genome relatedness between strain FWC-SCC2 and Methanofollis genus was computed using both average nucleotide identity (ANI) and genome-to-genome distance analysis (GGDA) with values of 78.2-79.8% and 17.8-23.8%, respectively. Based on the morphological, phenotypic and phylogenetic characteristics presented here, it is suggested that strain FWC-SCC2 represents a new species of genus Methanofollis. The cells were irregular cocci, non-motile with 0.8-1.2 μm in diameter. The Mr of surface-layer protein was 116.4 kDa. Strain FWC-SCC2 used H2/CO2 or formate as catabolic substrates. The growth conditions were at 20-40C, 0-0.85 M NaCl and pH 5.9-8.2. Comparative genomic analysis between strain FWC-SCC2 and other Methanofollis reveals strain FWC-SCC2 have 38 unique COGs, included ABC-type iron transport system FetAB, quinol monooxygenase YgiN, two type aerotolerant COGs and phage shock protein A that can maintain cell membrane integrity.
中文摘要 i
Abstract ii
目錄 iii
表目錄 vi
圖目錄 vii
壹、前言 1
貳、前人研究 3
一、台灣西南外海四方圈合海脊的地質特色及天然氣水合物蘊藏區 3
二、四方圈合海脊冷泉區生物 3
三、四方圈合海脊冷泉區微生物多樣性 5
四、深海底泥中以甲烷為主的生態系 6
五、甲烷古菌(Methanogen, Methanoarchaea) 8
(一)甲烷古菌分類 9
1.甲烷囊菌屬(Methanoculleus) 10
2.甲烷泡菌屬(Methanofollis) 12
六、研究目的與重要結果 14
參、材料與方法 15
一、採樣時間與地點 15
二、除氧操作系統、藥劑與培養基 15
(一)除氧操作系統(Hungate station) 15
(二)MB/W及MM/W medium配製 15
(三)還原劑與碳源製備 17
(四)抗生素制備 17
(五)TGC (thioglycollate)培養基配製 18
三、甲烷古菌增殖培養與厭氧轉殖接種 18
(一)接菌 18
(二)氣象層析儀偵測樣品甲烷氣體產量 19
(三)抗生素添加 20
(四)連續稀釋法 20
(五)厭氧操作箱(Coy chamber) 20
(六)Roll-tube方法 20
四、微生物形態觀察 21
(一)位相差顯微鏡觀察細胞形態 21
(二)穿透式電子顯微鏡經負染方式觀察細胞形態 21
(三)場發射掃描電子顯微鏡觀察細胞 22
五、生長與生理生化特性分析 23
(一)甲烷古菌使用碳源的配製與測試 23
(二)抗生素抗性測試 23
(三)生長曲線的測定 24
(四)溫度生長範圍測試 24
(五)鹽濃度生長範圍測試 24
(六)酸鹼度生長範圍測試 25
(七)SDS感受性測試 25
(八)表面蛋白(Surface layer)之製備 26
(九)蛋白質電泳分析(SDS-PAGE) 26
六、核酸萃取與分析 27
(一)甲烷古菌增殖樣品DNA萃取 27
(二)甲烷古菌染色體DNA萃取 28
(三)核酸純度與定量分析 29
(四)聚合酶連鎖反應 29
(五)核酸膠體電泳 29
(六)PCR增幅樣品回收 30
(七)DNA黏合反應 31
(八)勝任細胞製備 31
(九)質體轉形作用 32
(十)質體DNA萃取與純化 32
七、核酸定序與親緣關係分析 33
(一)16S rRNA基因定序與序列分析 33
(二)染色體DNA定序與序列比較 34
肆、結果與討論 36
一、四方圈合海脊底泥甲烷古菌之增殖培養與純化 36
二、自四方圈合海脊底泥純化之甲烷古菌菌株FWC-SCC2 36
(一)細胞形態 37
(二)16S rRNA基因序列與系統演化分析 38
(三)生理特性分析 38
(四)基因體分析 41
1.菌株FWC-SCC2與甲烷泡菌屬菌株基因體資訊 41
2.菌株FWC-SCC2與甲烷泡菌屬菌株間蛋白質直系同源群比較 42
3.菌株FWC-SCC2鞭毛基因 43
4.甲烷代謝途徑 44
三、部分純化甲烷古菌 45
(一)PR1-G0-0-10_C2_A 45
(二)PR1-G2-0-10_C2_M 45
伍、結論 46
陸、表與圖 47
柒、參考文獻 67
捌、附錄 78
鄭婉言、林曉武、陳麗雯、楊燦堯和戚務正。2015。台灣鄰近海底冷泉與泥火山:能源與生物寶藏。自然科學簡訊。27: 30-35.
蔣孟庭。2016。底棲性有孔蟲群集組成與冷泉生地化環境之關連―以臺灣西南海域四方圈合海脊為例。國立臺灣大學地質科學研究所碩士學位論文。
Adams, M.A., and Z. Jia.2005. Structural and biochemical evidence for an enzymatic quinone redox cycle in Escherichia coli: identification of a novel quinol monooxygenase. J. Biol. Chem. 280: 8358-8363.
Albers, S. and K. F. Jarrell. 2015. The archaellum: how Archaea swim? Front. Microbiol. doi: 10.3389/fmicb.2015.00023.
Anthony, C. 1982. The commercial exploitation of methylotrophs. p. 431., In C. Anthony. (eds.) In The Biochemistry of Methylotrophs, 6th edn. Academic Press. London.
Appenzeller, T. 1991 Fire and ice under the deep-sea floor. Science. 252: 1790-1792.
Arakawa, S., T. Sato, Y. Yoshida, R. Usami, and C. Kato. 2006. Comparison of the microbial diversity in cold-seep sediments from different depths in the Nankai Trough. J. Gen. Appl. Microbiol. 52: 47-54.
Arriö, K. R. 2007 CARBON CYCLE: Marine manipulations. Nature. 450: 491-492.
Baba, K. and A. B. Williams. 1998. New Galatheoidea (Crustacea, Decapoda, Anomura) from hydrothermal systems in the West Pacific Ocean: Bismarck Archipelago and Okinawa Trough. Zoosystema. 20: 143-156.
Balch, W. E., G. E. Fox, C. J. Magrum, C. R. Woese, and R. S. Wolfe. 1979. Methanogens: revalutation of a unique biological group. Microbial. Rev. 43: 260-296.
Banning, N., F. Brock, J. C. Fry, R. J. Parkes, E. R. Hornibrook, and A. J. Weightman. 2005. Investigation of the methanogen population structure and activity in a brackish lake sediment. Environ. Microbiol. 7: 947-960.
Barry J.P., K. R. Buck, R. K. Kochevar, D. C. Nelson, Y. Fujiwara, S. K. Goffredi, and J. Hashimoto. 2002. Methane-based symbiosis in a mussel, Bathymodiolus platifrons, from cold seeps in Sagami bay, Japan. Invertebrate Biology. 121: 47-54.
Boetius, A., K. Ravenschlag, C. J. Schubert, D. Rickert, F. Widdel, A. Gieseke, R. Amann, B. B. Jùrgensen, U Witte, and O. Pfannkuche. 2000. A marine microbial consortium apparently mediating anaerobic oxidation of methane. Nature. 407: 623 -626.
Boone, D. R. & Whitman, W. B. 1988. Proposal of minimal standards for describing new taxa of methanogenic bacteria. Int J Syst Bacteriol 38: 212-219.
Buünz, S., J. Mienert, and C. Berndt. 2003. Geological controls on the Storegga gas-hydrate system of the mid-Norwegian continental margin. Earth Planet. Sci. Lett. 209: 291-307.
Chaban, B., S. Y. Ng, M. Kanbe, I. Saltzman, G. Nimmo, S. Aizawa and K. F. Jarrell. 2007. Systematic deletion analyses of the fla genes in the flagella operon identify several genes essential for proper assembly and function of flagella in the archaeon, Methanococcus maripaludis. Mol. Microbiol. 66: 596-609.
Chan, T. Y. and T. Komai. 2017. A new shrimp species of the genus Lebbeus White, 1847 (Crustacea: Deacpoda: Caridea) from a deep-sea cold seep site off southwestern Taiwan. Zootaxa. 4238: 426-432.
Chan, T. Y., D. A. Lee, and C. S. Lee. 2000. The first deep-sea hydrothermal animal recorded from Taiwan: Shinkaia crosnieri Baba and Williams, 1998 (Crustacea: Decapoda: Galatheidae). Bull. Mar. Sci. 67: 799-804.
Charlou, J. L., J. P. Donval, T. Zitter, N. Roy, P. Jean-Baptiste, J. P. Foucher, J. Woodside, and M. S. Party. 2003. Evidence of methane venting and geochemistry of brines on mud volcanoes of the eastern Mediterranean. Sea-Deep Sea Res. Part I: Oceanogr. Res. Pap. 50: 941-958.
Chen, S. C., M. F. Chen, M. C. Lai, C. Y. Weng, S. Y. Wu, S. Lin, T. F. Yang, and P. C. Chen. 2015. Methanoculleus sediminis sp. nov., a methanogen from sediments near a submarine mud volcano. Int. J. Syst. Evol. Microbiol. 65: 2141-2147.
Chen, S. C., S. K. Hsu, Y. Wang, S. H. Chung, P. C. Chen, C. H. Tsai, C. S. Liu, H. S. Lin, and Y. W. Lee. 2014. Distribution and characters of the mud diapirs and mud volcanoes off southwest Taiwan. J. Asian Earth Sci. 92: 201-214.
Cheng, L. L. Qiu, X. Liu, W. D. Wang, Y. Deng, X. B. Yin, and H. Zhang. 2008. Isolation and characterization of Methanoculleus receptaculi sp. nov. from Shengli oil field, China. FEMS Microbiol. Lett. 285: 65-71.
Conti, S., A. Artoni, and G. Piola. 2007. Seep-carbonates in a thrust-related anticline at the leading edge of an orogenic wedge: the case of the middle late Miocene Salsomaggiore Ridge (northern Apennines, Italy). Sediment Geol. 199: 233-251.
Cordes, E. E., D. C. Bergquist, and C. R. Fisher. 2009. Macro-ecology of Gulf of Mexico cold seeps. Annu Rev Marine Sci. 1: 143-168.
Crutchley, G. J., C. Berndt1, S. Geiger, D. Klaeschen, C. Papenberg, I. Klaucke, M. J. Hornbach, N. L. B. Bangs, and C Maier. 2013. Drivers of focused fluid flow and methane seepage at south Hydrate Ridge, offshore Oregon, USA. Geology. 41: 551-554.
Crutchley, G. J., S. Geiger, I. A. Pecher, A. R. Gorman, H.Zhu, and S. A. Henrys. 2009. The potential influence of shallow gas and gas hydrates on sea floor erosion of Rock Garden, an uplifted ridge offshore of New Zealand. Geo-Mar Lett. 30: 283-303.
Dabir, A., V. Honkalas, P. Arora, S. Pore, D.R. Ranade, and P. K. Dhakephalkar. 2014. Draft genome sequence of Methanoculleus sp. MH98A, a novel methanogen isolated from sub-seafloor methane hydrate deposits in Krishna Godavari basin. Mar. Genom.18: 139-140.
Darwin, A. J. 2005. The phage-shock-protein response. Mol Microbiol. 57: 621-8.
DeLong, E. F. 1992. Archaea in coastal marine environments. Proc. Natl. Acad. Sci. U. S. A. 89: 5685-5689.
Dianou, D., T. Miyaki, S. Asakawa, H. Morii, K. Nagaoka, H. Oyaizu, and S. Matsumoto. 2001. Methanoculleus chikugoensis sp. nov., a novel methanogenic archaeon isolated from paddy field soil in Japan, and DNA-DNA hybridization among Methanoculleus species. Int. J. Syst. Evol. Microbiol. 51: 1663-1669.
Donnelly, M. I. and R. S. Wolfeg. 1986. The role of formylmethanofuran: tetrahydromethanopterin formyltransferase in methanogenesis from carbon dioxide. J Biol Chem. 261:16653-9.
Fang, J., S. Arakawa, C. Kato, and S. Schouten. 2006. Microbial diversity of cold-seep sediments in Sagami Bay, Japan, as determined by 16S rRNA gene and lipid analyses. FEMS Microbiol. Ecol. 57: 429-441.
Felden, J., S. E. Ruff, T. Ertefai, F. Inagaki, K. U. Hinrichs, and F. Wenzhöfer. 2014. Anaerobic methanotrophic community of a 5346-m-deep vesicomyid clam colony in the Japan Trench. Geobiology. 12: 183-199.
Feng, D., M. Cheng, S. Kiel, J. W. Qiu, Q. Yang, H. Zhou, Y. Peng, and D. Chen. 2015. Using Bathymodiolus tissue stable carbon, nitrogen and sulfur isotopes to infer biogeochemical process at a cold seep in the South China Sea. Deep-Sea Res Pt I. 104: 52-59.
Ferguson, T. J. and R. A Mah. 1983. Isolation and characterization of a H2-oxidizing thermophilic methanogen. Appl. Environ. Microbiol. 45: 265-274.
Firtel, M., G. Southam, T. Mok, R. Harris, and T. J. Beveridge. 1995. Electron microscopy techniques for the Archaea. p. 123-139. In K. R. Sowers & H. T. Schreier (ed.), Archaea: a Laboratory Manual, vol. 2, Methanogens. Cold Spring Habor, NY: Cold Spring Harbor Laboratory.
Fujiwara, Y., K. Takai, K. Uematsu, S. Tsuchida, J. C. Hunt, and J. Hashimoto. 2000. Phylogenetic characterization of endosymbionts in three hydrothermal vent mussels: influence on host distributions. Mar Ecol Prog Ser. 208: 147-155.
Garcia, J. L., B. K. Patel, and B. Ollivier. 2000. Taxonomic, phylogenetic, and ecological diversity of methanogenic Archaea. Anaerobe 6: 205-226.
Ghosh, A, and S. V. Albers. 2011. Assembly and function of the archaeal flagellum. Biochem. Soc. Trans. 39: 64-69.
Gorby, Y. A., S. Yanina, J. S. McLean, K. M. Rosso, D. Moyles, A.Dohnalkova, T. J. Beveridge, I. S. Chang, B. H. Kim, K. S. Kim, D. E. Culley, S. B. Reed, M. F. Romine, D. A. Saffarini, E. A. Hill, L. Shi, D. A. Elias, D. W. Kennedy, G. Pinchuk, K. Watanabe, S. Ishii, B. Logan, K. H. Nealson, and Jim K. Fredrickson. 2006. Electrically conductive bacterial nanowires produced by Shewanella oneidensis strain MR-1 and other microorganisms. Proc. Natl. Acas. Sci. USA. 103: 11358-11363.
Haynes, C.A., and R. Gonzalez. 2014. Rethinking biological activation of methane and conversion to liquid fuels. Nat Chem Biol 10: 331-339.
Hinrichs, K. U. and A. Boetius. 2002. The anaerobic oxidation of methane: new insights in microbial ecology and biogeochemistry. p. 457-477. In Wefer, G., Billett, D., .Hebbeln, D., Jørgensen, B. B., Schlüter, M. and Weering, T. Van, (ed.), Ocean Margin Systems. Springer, Berlin, Germany.
Hinrichs, K. U., J. M. Hayes, S. P. Sylva, P. G. Brewer, and E.F. DeLong. 1999 Methane-consuming archaebacteria in marine sediments. Nature. 398: 802-805.
Hoedt, E. C., P. Ó. Cuív, P. N. Evans, W. J.M. Smith, C. S McSweeney, S. E. Denman, and M. Morrison. 2016. Differences down-under: alcohol-fueled methanogenesis by archaea present in Australian macropodids. ISME J. 10: 2376-88.
Hornbach, M. J., D. M. Saffer, and W. S. Holbrook. 2004. Critically pressured free-gas reservoirs below gas-hydrate provinces. Nature. 427: 142-144.
Hungate, R. E. 1969. A rolltube method for cultivation of strict anaerobes, p.117-132. In J. R. Norris and D. W. Ribbons (ed.) Method in microbiology, vol 3B. Academic press Inc., New York, N. Y.
Imachi, H., S. Sakai, H. Nagai, T. Yamaguchi, and K. Takai. 2009. Methanofollis ethanolicus sp. nov., an ethanolutilizing methanogen isolated from a lotus field. Int. J. Syst. Bacteriol. 59:800-805.
Jarrell, K. F., D. Faguy, A. M. Hebert and M. L. Kalmokoff. 1992. A general method of isolating high molecular weight DNA from methanogenic archaea (archaebacteria). Can. J. Microbiol. 38: 65-68.
Kinosita, Y., and T. Nishizaka. 2018. Cross-kymography analysis to simultaneously quantify the function and morphology of the archaellum. Phys. Biol. 15: 121-128.
Klaucke, Ingo., C. Berndt, G. Crutchley, W. C. Chi, S. Lin, and S, Muff. 2016. Fluid venting and seepage at accretionary ridges: the Four Way Closure Ridge offshore SW Taiwan. Geo. Mar. Lett. 36: 165-174.
Kleindienst, S., A. Ramette, R. Amann, and K. Knittel. 2012. Distribution and in situ abundance of sulfate-reducing bacteria in diverse marine hydrocarbon seep sediments. Environ. Microbiol. 14: 2689-2710.
Knittel, K. and A. Boetius. 2009. Anaerobic oxidation of methane: progress with an unknown process. Annu. Rev. Microbiol. 63: 311-334.
Knittel, K., T. Lösekann, A. Boetius, R. Kort, and R. Amann, 2005. Diversity and distribution of methanotrophic archaea at cold seeps. Appl. Environ. Microbiol. 71: 467-479.
König, H. 1995. Isolation and analysis of cell walls from methanogenic archaea. p. 315-328. In K. R. Sowers & H. T. Schreier (ed.), Archaea: a Laboratory Manual, vol. 2, Methanogens. Cold Spring Habor, NY: Cold Spring Harbor Laboratory.
Kumar, S., G. Stecher, and K. Tamura. 2016. MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. Mol Biol Evol. 33: 1870-1874.
Lai, M. C. and S. C. Chen. 2001. Methanofollis aquaemaris sp. nov., a methanogen isolated from an aquaculture fish pond. Int. J. Syst. Bacteriol. 51: 1873-1880
Lai, M. C., C. M. Shu, S. C. Chen, L. J. Lai, M. S. Chiou and J. J. Hua. 2000. Methanosarcina mazei strain O1M9704, methanogen with novel tubule isolated from estuarine environment. Curr. Microbiol. 41: 15-20.
Lai, M. C., D. R. Yang, and M. J. Chuang. 1999. Regulatory factors associated with synthesis of the osmolyte glycine betaine in the halophilic methanoarchaeon Methanohalophilus portucalensis Appl. Envi. Microbiol. 65: 828-833.
Li , X. 2015. Report on two deep-water caridean shrimp species (Crustacea: Decapoda: Caridea: Alvinocarididae, Acanthephyridae) from the northeastern South China Sea. Zootaxa. 3911: 130-138.
Lin, C. W., S. Tsuchida, S. Lin, C. Berndt, and T.Y. Chan. 2013. Munidopsis lauensis Baba & de Saint Laurent, 1992 (Decapoda, Anomura, Munidopsidae), a newly recorded squat lobster from a cold seep in Taiwan. Zootaxa. 3737: 92-96.
Liu, C. S., I. L. Huang, and L. S. Teng. 1997. Structural features off southwestern Taiwan. Mar. Geo. 137: 305-319.
Lloyd, K.G., L. Lapham, and A. Teske. 2006. An anaerobic methane-oxidizing community of ANME-1b archaea in hypersaline Gulf of Mexico sediments. Appl Environ Microbiol. 72: 7218-7230.
Lösekann, T., K. Knittel, T. Nadalig, B. Fuchs, H. Niemann, A. Boetius, and R. Amann. 2007. Diversity and abundance of aerobic and anaerobic methane oxidizers at the Haakon Mosby Mud Volcano, Barents Sea. Appl Environ Microbiol. 73: 3348-3362.
Maestrojuan, G. M., D. R. Boone, L. Y. Xun, R. A. Mah, and L. F. Zhang. 1990. Transfer of Methanogenium bourgense, Methanogenium marisnigri, Methanogenium olentangyi, and Methanogenium thermophilicum to the Genus Methanoculleus gen. nov., Emendation of Methanoculleus marisnigri and Methanogenium, and Description of New Strains of Methanoculleus bourgense and Methanoculleus marisnigri. Int J Syst Bacteriol. 40: 117-122.
Makarova, K. S., L. Aravind, Y. I. Wolf, and E. V. Koonin. 2011. Unification of Cas protein families and a simple scenario for the origin and evolution of CRISPR-Cas systems. Biol. Direct. 6: 38.
Makarova, K. S., Y. I. Wolf, and E. V. Koonin. 2013 The basic building blocks and evolution of CRISPR-CAS systems. Biochem. Soc. Trans. 41: 1392-1400.
Mikucki, J. A., Y. T. Liu, M. Delwiche, F. S. Colwell, and D. R. Boone. 2003. Isolation of a methanogen from deep marine sediments that contain methane hydrates, and description of Methanoculleus submarinus sp. nov. Appl. Environ. Microbiol. 69: 3311-3316.
Milkov, A. V. 2004. Global estimates of hydrate-bound gas in marine sediments: how much is really out there? Earth Sci Rev. 66: 183-197.
Mohanraju, P., K. S. Makarova, B. Zetsche, F. Zhang, E. V. Koonin, and J. van der Oost. 2016. Diverse evolutionary roots and mechanistic variations of the CRISPR-Cas systems. Science. 353: aad5147.
Montzka, S. A., E. J. Dlugokencky, and J. H. Butler. 2011. Non-CO2 greenhouse gases and climate change. Nature 476: 43-50.
Mukhopadhyay, B., S. F. Stoddard, and R. S. Wolfe. 1998. Purification, Regulation, and Molecular and Biochemical Characterization of Pyruvate Carboxylase from Methanobacterium thermoautotrophicum Strain ΔH*. J Biol Chem. 273: 5155-66.
Nicolaou, S. A., A. G. Fast, E. Nakamaru-Ogiso, and E. T. Papoutsakisa. 2013. Overexpression of fetA (ybbL) and fetB (ybbM), Encoding an Iron Exporter, Enhances Resistance to Oxidative Stress in Escherichia coli. Appl. Environ. Microbiol. 79: 7210-7219.
Niu, M., X. Fan, G. Zhuang, Q. Liang, and F. Wang. 2017. Methane-metabolizing microbial communities in sediments of the Haima cold seep area, northwest slope of the South China Sea. FEMS Microbiol Ecol. 93(9).
Ollivier, B. M., R. A. Mah, J. L. Garcia, and D. R. Boone. 1986. Isolation and Characterization of Methanogenium bourgense sp. nov. Int. J. Syst. Bacteriol. 36: 297-301.
Omoregie, E. O., H. Niemann, V. Mastalerz, G. J. de Lange, A. Stadnitskaia, J. Mascle, J. P. Foucher, A. Boetius. 2009. Microbial methane oxidation and sulfate reduction at cold seeps of the deep Eastern Mediterranean Sea. Mar. Geol. 261: 114-127.
Orcutt, B. N., J. B. Sylvan, N. J. Knab, and K. J. Edwards. 2011. Microbial ecology of the dark ocean above, at, and below the seafloor. Microbiol. Mol. Biol. Rev. 75: 361-422.
Oren. 2014. The Family Methanomicrobiaceae. P. 231-246., In E. Rosenberg, E. F. DeLong, S. Lory, E. Stackebrandt and F. Thompson (eds.) In The Prokaryotes, 4th edn. Springer-Verlag. New York, NY.
Orphan, V.J., K. U. Hinrichs, W. III. Ussler, C. K. Paul, L. T. Taylor, S. P. Sylva, J. M. Hayes, and E. F. Delong. 2001. Comparative Analysis of Methane-Oxidizing Archaea and Sulfate-Reducing Bacteria in Anoxic Marine Sediments. Appl Environ Microbiol. 67: 1922-34.
Park, J.O., T. Tsuru, S. Kodaira, P. R. Cummins, and Y. Kaneda. 2002. Splay Fault Branching Along the Nankai Subduction Zone. Science. 297: 1157-1160.
Paul, K., J. O. Nonoh, L. Mikulski and A. Brune. 2012. “Methanoplasmatales,” Thermoplasmatales-related archaea in termite guts and other environments, are the seventh order of methanogens. Appl. Environ. Microbiol. 78: 8245-8253.
Portnoy, V. A., M. J. Herrgård, and B. Ø. Palsson. 2008. Aerobic fermentation of D-glucose by an evolved cytochrome oxidase-deficient Escherichia coli strain. Appl. Environ. Microbiol. 74: 7561-7569.
Rivard, C. J. and P. H. Smith. 1982. Isolation and characterization of a thermophilic marine methanogenic bacterium, Methanogenium thermophilicum sp. nov. Int J Syst Bacteriol. 32: 430-436.
Romesser, J.A., Wolfe, F. Mayer, E. Spiess, and A. Walther-Mauruschat. 1979. Methanogenium, a new genus of marine methanogenic bacteria, and characterization of Methanogenium cariaci sp. nov. and Methanogenium marisnigri sp. nov. Arch. Microbiol. 121: 147-153.
Ruff, S. E., J. Arnds, K. Knittel, R. Amann, G. Wegener, A. Ramette, and A. Boetius. 2013. Microbial Communities of Deep-Sea Methane Seeps at Hikurangi Continental Margin (New Zealand). Plos One. 8: 726-727.
Ruff, S. E., J. F. Biddle, A. P. Teske, K. Knittel, A. Boetius, and A. Ramette. 2015. Global dispersion and local diversification of the methane seep microbiome. Proc Natl Acad Sci U S A. 112: 4015-4020.
Ryan, P. R. 1984. Deep-sea hot springs and cold seeps (ed.). p.32-33. Oceanus 27, 32-33.
Schreiber, L., T. Holler, K. Knittel, A. Meyerdierks, and R. Amann. 2010. Identification of the dominant sulfate-reducing bacterial partner of anaerobic methanotrophs of the ANME-2 clade. Environ Microbiol. 12: 2327-2340.
Shimizu, S., A. Ueno, S. Tamamura, T. Naganuma, and K. Kaneko. 2013. Methanoculleus horonobensis sp. nov., a methanogenic archaeon isolated from a deep diatomaceous shale formation. Int. J. Syst. Evol. Microbiol. 63: 4320-4323.
Sun, Y., M. Wang, L. Li, L. Zhou, X. Wang, P. Zheng, H. Yu, C. Li, and S. Sun. 2017. Molecular identification of methane monooxygenase and quantitative analysis of methanotrophic endosymbionts under laboratory maintenance in Bathymodiolus platifrons from the South China Sea. PeerJ. 5: e3565.
Tamura, K. and M. Nei. 1993. Estimation of the Number of Nucleotide Substitutions in the Control Region of Mitochondrial DNA in Humans and Chimpanzees. Mol Biol Evol. 10: 512-526.
Tavormina, P. L., W. Ussler III, S. B. Joye, B. K. Harrison and V. J. Orphan. 2010. Distributions of putative aerobic methanotrophs in diverse pelagic marine environments. ISME. 4: 700-710.
Thauer, R. K., A. K. Kaster, H. Seedorf, W. Buckel, and R. Hedderich. 2008. Methanogenic archaea: ecologically relevant differences in energy conservation. Nat Rev Microbiol. 6: 579-91.
Turner, S., K. M. Pryer, V. P. Miao and J. D. Palmer. 1999. Investigating deep phylogenetic relationships among cyanobacteria and plastids by small subunit rRNA sequence analysis. J. Eukaryot. Microbiol. 46: 327-338.
Wang, T. W., S. T. Ahyong, and T. Y. Chan. 2016. First records of Lithodes longispina Sakai, 1971 (Crustacea: Decapoda: Anomura: Lithodidae) from southwestern Taiwan, including a site in the vicinity of a cold seep. Zootaxa. 4066: 173-176.
Wasmund, K., D. Kurtboke, A. B. Burns, and D. G. Bourne. 2009. Microbial diversity in sediments associated with a shallow methane seep in the tropical Timor Sea of Australia reveals a novel aerobic methanotrophy diversity. FEMS Microbiol. Ecol. 68: 142-151.
Weng, C. Y., S. C. Chen, M. C. Lai, S. Y. Wu, S. Lin, T. F. Yang and P. C. Chen. 2015. Methanoculleus taiwanensis sp. nov., a methanogen isolated from deep marine sediment at the deformation front area near Taiwan. Int. J. Syst. Evol. Microbiol. 65: 1044-1049.
Wildgruber, G., M. Thomm, H. König, K. Ober, T. Richiuto, and K. O. Stetter. 1982. Methanoplanus limicola, a plate-shaped methanogen representing a novel family, the methanoplanaceae. Arch Microbiol. 132: 31-36.
Wolin, E. A., M. J. Wolin, and R. S. Wolfe. 1963. Formation of methane by bacterial extracts. J. Biol. Chem. 238: 2882-2886.
Wu, S. Y., S. C. Chen, and M. C. Lai. 2005. Methanofollis formosanus sp. nov., isolated from a fish pond. Int. J. Syst. Bacteriol. 55: 837-842.
Yanagawa, K., M. Sunamura, M. A. Lever, Y. Morono, A. Hiruta, O. Ishizaki, R. Matsumoto, T. Urabe, and F. Inagaki. 2011. Niche Separation of Methanotrophic Archaea (ANME-1 and -2) in Methane-Seep Sediments of the Eastern Japan Sea Offshore Joetsu. Geomicrobiol. J. 28: 118-129.
Yang, C.H., S. Tsuchida, K. Fujikura, Y. Fujiwara, M. Kawato, and T.Y. Chan. 2016. Connectivity of the squat lobsters Shinkaia crosnieri (Crustacea: Decapoda: Galatheidae) between cold seep and hydrothermal vent habitats. Bull. Mar. Sci. 92: 17-31.
Zellner, G., D. R. Boone, J. Keswani, W. B. Whitman, C. R. Woese, A. Hagelstein, B. J. Tindall and E. Stackebrandt. 1999. Reclassification of Methanogenium tationis and Methanogenium liminatans as Methanofollis tationis gen. nov., comb. now and Methanofollis liminatans comb. nov. and description of a new strain of Methanofollis liminatans. Int. J. Syst. Bacteriol. 49: 247-255.
Zellner, G., P. Messner, J. Winter, and E. Stackebrandt. 1998. Methanoculleus palmolei sp. nov., an irregularly coccoid methanogen from an anaerobic digester treating wastewater of a palm oil plant in North-Sumatra, Indonesia. Int. J. Syst. Bacteriol. 48: 1111-1117.
Zellner, G., U. B. Sleytr, P. Messner, H. Kneifel, and J. Winter. 1990. Methanogenium liminatans spec. nov., a new coccoid, mesophilic methanogen able to oxidize secondary alcohols. Arch Microbiol. 153: 287-293.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊