跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.81) 您好!臺灣時間:2025/10/05 06:59
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:黃淑媛
研究生(外文):Shu-Yuan Huang
論文名稱:MBNL3藉由Sp1/cyclin D1/Rb途徑調控肌母細胞增生及誘導老化
論文名稱(外文):Mbnl3 regulates myoblast proliferation and induces senescence through the Sp1/cyclin D1/Rb pathway
指導教授:蕭光明蕭光明引用關係李沁李沁引用關係
指導教授(外文):Kuang-Ming HsiaoChin Li
口試委員:蕭光明李沁潘惠錦江明格
口試委員(外文):Kuang-Ming HsiaoChin LiHuichin PanMing-Ko Chiang
口試日期:2015-07-23
學位類別:碩士
校院名稱:國立中正大學
系所名稱:分子生物研究所
學門:生命科學學門
學類:生物科技學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:92
中文關鍵詞:Mbnl3C2C12肌母細胞Sp1cyclin D1pRb癌症
外文關鍵詞:Mbnl3C2C12 myoblastsSp1cyclin D1pRbcancer
相關次數:
  • 被引用被引用:0
  • 點閱點閱:170
  • 評分評分:
  • 下載下載:2
  • 收藏至我的研究室書目清單書目收藏:0
MBNL3屬於Muscleblind-like(MBNL) 基因家族,與神經肌肉疾病-強直性肌肉萎縮症第一型(DM1) 之病理機制有密切關係。哺乳動物Mbnl3主要表現在高度增生的組織並在肌肉分化過程表現量大幅下降。先前實驗室發現表現shMbnl3 RNA的C2C12老鼠肌纖維母細胞(shMbnl3 C2C12)的細胞週期會受到cyclin D1相關路徑調控減緩細胞增生速率下降且提前進入老化。因此本論文第一部分的研究,我進一步探討Mbnl3在shMbnl3 C2C12調控細胞週期的路徑,我發現(1)shMbnl3 C2C12細胞的分化能力明顯受到抑制 (2)Mbnl3藉由調控Sp1表現量進一步影響cyclin D1的轉錄速率 (3)將cyclin D1下游目標基因Rb弱化後,可明顯回復shMbnl3 C2C12的生長速率及減少老化細胞 (4)將老化主要調控分子p16弱化後,亦會回復shMbnl3 C2C12生長速率及老化程度。這些結果顯示Mbnl3會透過Sp1/cyclin D1/Rb途徑調節C2C12的生長及老化,且p16亦可能會去影響cyclin D1下游路徑。第二部分的研究主要針對MBNL3對癌症細胞增生所造成的影響。在MBNL3過度表現的肝癌細胞株(Huh7、HepG2)及MBNL3無過度表現得乳癌細胞株(MCF-7、MDA-MB-231)中,將MBNL3弱化會明顯減緩細胞增生及增加老化比例;而進一步弱化Rb,則會回復增生速率及減少老化。此外,為了證實MBNL3對正常細胞的影響,我將乳房表皮細胞株(MCF-10A)弱化MBNL3,發現亦會減緩細胞增生。以上結果顯示MBNL3對細胞生長是非常重要的,但是MBNL3是否能成為癌症的標靶基因還需更進一步的研究。
Muscleblind-like 3 (MBNL3) belongs to the MBNL family which has been implicated in the pathogenesis of neuromuscular disease myotonic dystrophy. While MBNL3 is barely detectable in adult muscle, it is expressed in proliferative myoblasts and transiently during muscle regeneration. Our previous study found that Mbnl3 knockdown interferes with cell cycle progression and induces senescence through cyclin D1-mediated pathway in C2C12 myoblasts. The first aim of my study is to confirm the effect of Mbnl3 knockdown on C2C12 cells. The result indicated that the effect of shMbnl3 on cyclin D1 expression occurs at the transcriptional level through down-regulation of Sp1 expression. In addition, down-regulation of pRb as well as p16 expression greatly reversed the effect of shMbnl3 on C2C12 cells, and finally Mbnl3 depletion interferes with C2C12 differentiation. These findings provide the first experimental evidence to suggest that Mbnl3 is required for the proliferation and survival of regenerating myoblasts through cyclin D1/pRB pathway. The second aim of my study is to unravel the role of MBNL3 in cancer cells. Previous study showed that MBNL3 was specifically up-regulated in hepatoma cell lines Huh7 and HepG2, and knockdown of MBNL3 severely affected the survival of these cells. In addition, MBNL3 is not overexpression in breast cancer cell lines MCF-7、MDA-MB-231 MBNL3 but knockdown of MBNL3 also severely affects the survival of these cells. Furthermore, down-regulation of pRb expression reversed the effect of Mbnl3 knockdown on hepatoma cells. Finally, non-tumorigenic epithelial cell line MCF-10A depleted with MBNL3 also showed decreased proliferation rate. These results suggest that MBNL3 plays an important role in cell proliferation.
致謝 I
目錄 III
圖表目錄 VI
中文摘要 1
Abstract 3
序論 5
•強直型肌肉萎縮症(myotonic dystrophy;DM) 5
•DM致病分子機制 6
•Muscleblind-like (MBNL)基因家族 8
•肌肉再生(muscle regeneration) 10
•細胞週期 (cell cycle ) 12
•細胞老化 (Cellular senescence) 13
•腫瘤生成(tumorigenesis) 15
材料與方法 17
一、細胞培養(Cell Culture): 17
二、慢病毒製備(Production of VSVG-pseudotyped lentiviral particles): 18
三、慢病毒感染(Lentiviral infection): 19
四、Sp1 3’UTR選殖 (Cloning of Sp1 3’UTR): 20
五、Sp1 3’UTR活性測試 (Sp1 3’UTR activity analysis): 21
六、細菌轉型(Transformation): 22
七、及時定量之反轉錄聚合酵素連鎖反應(Real-time RT-PCR): 23
八、蛋白質萃取與西方點墨法(Protein extraction and Western blotting): 24
九、MTT細胞存活檢測(MTT cell viability assay): 27
十、老化指標-Galactosidase染色 (Senescence-associated -Galactosidase (S.A--gal) staining): 28
十一、統計分析(Statistical analysis) 28
結果 29
一、Mbnl3透過轉錄機制調控Sp1的基因表現 29
二、Rb參與Mbnl3調控細胞生長之路徑 30
三、p16參與Mbnl3調控細胞生長及老化途徑 32
四、弱化Mbnl3會抑制肌肉細胞分化及再生 33
五、Mbnl3在癌細胞中所扮演的角色 35
六、建立弱化MBNL3的癌細胞株 36
七、Mbnl3在肝癌細胞中所扮演的角色 36
八、Mbnl3對乳房細胞及乳癌細胞所造成的影響 38
討論 41
未來展望 48
圖表 49
附錄 66
參考文獻 77

1.Steinberg, H. & Wagner, A. Hans Steinert: 100 years of myotonic dystrophy. Nervenarzt79, 961–962, 965–970 (2008).
2.Hsiao, K. M. et al. Epidemiological and genetic studies of myotonic dystrophy type 1 in Taiwan. Neuroepidemiology22, 283–289
3.Shaw, D. J. & Harper, P. S. Myotonic dystrophy: developments in molecular genetics. Br. Med. Bull.45, 745–759 (1989).
4.De Die-Smulders, C. E. M. et al. Age and causes of death in adult-onset myotonic dystrophy. Brain121, 1557–1563 (1998).
5.Udd, B., Krahe, R., Wallgren-Pettersson, C., Falck, B. & Kalimo, H. Proximal myotonic dystrophy - A family with autosomal dominant muscular dystrophy, cataracts, hearing loss and hypogonadism: Heterogeneity of proximal myotonic syndromes? Neuromuscul. Disord.7, 217–228 (1997).
6.Reardon, W. et al. Minimal expression of myotonic dystrophy: a clinical and molecular analysis. J. Med. Genet.29, 770–773 (1992).
7.Fu, Y. H. et al. An unstable triplet repeat in a gene related to myotonic muscular dystrophy. Science255, 1256–1258 (1992).
8.Mahadevan, M. et al. Myotonic dystrophy mutation: an unstable CTG repeat in the 3’ untranslated region of the gene. Science255, 1253–1255 (1992).
9.Ricker, K. et al.Proximal myotonic myopathy: a new dominant disorder with myotonia, muscle weakness, and cataracts.Neurology44, 1448–1452 (1994).
10.Liquori, C. L. et al. Myotonic dystrophy type 2 caused by a CCTG expansion in intron 1 of ZNF9. Science293, 864–867 (2001).
11.Ranum, L. P., Rasmussen, P. F., Benzow, K. A., Koob, M. D. & Day, J. W. Genetic mapping of a second myotonic dystrophy locus. Nat. Genet.19, 196–198 (1998).
12.Ranum, L. P. W. & Day, J. W. Myotonic dystrophy: RNA pathogenesis comes into focus. Am. J. Hum. Genet.74, 793–804 (2004).
13.Mankodi, A. et al. Expanded CUG repeats trigger aberrant splicing of ClC-1 chloride channel pre-mRNA and hyperexcitability of skeletal muscle in myotonic dystrophy. Mol. Cell10, 35–44 (2002).
14.Seznec, H. et al. Transgenic mice carrying large human genomic sequences with expanded CTG repeat mimic closely the DM CTG repeat intergenerational and somatic instability. 9, 1185–1194 (2000).
15.Taneja, K. L., McCurrach, M., Schalling, M., Housman, D. & Singer, R. H. Foci of trinucleotide repeat transcripts in nuclei of myotonic dystrophy cells and tissues. J. Cell Biol.128, 995–1002 (1995).
16.Michalowski, S. et al. Visualization of double-stranded RNAs from the myotonic dystrophy protein kinase gene and interactions with CUG-binding protein. Nucleic Acids Res.27, 3534–3542 (1999).
17.Tian, B. et al. Expanded CUG repeat RNAs form hairpins that activate the double-stranded RNA-dependent protein kinase PKR. RNA6, 79–87 (2000).
18.Lu, X., Timchenko, N. A. & Timchenko, L. T. Cardiac elav-type RNA-binding protein (ETR-3) binds to RNA CUG repeats expanded in myotonic dystrophy. Hum. Mol. Genet.8, 53–60 (1999).
19.Miller, J. W. et al. Recruitment of human muscleblind proteins to (CUG)(n) expansions associated with myotonic dystrophy. EMBO J.19, 4439–4448 (2000).
20.Timchenko, L. T. et al. Identification of a (CUG)(n) triplet repeat RNA-binding protein and its expression in myotonic dystrophy. Nucleic Acids Res.24, 4407–4414 (1996).
21.Mankodi, a et al. Muscleblind localizes to nuclear foci of aberrant RNA in myotonic dystrophy types 1 and 2. Hum. Mol. Genet.10, 2165–2170 (2001).
22.Fardaei, M. et al. Three proteins, MBNL, MBLL and MBXL, co-localize in vivo with nuclear foci of expanded-repeat transcripts in DM1 and DM2 cells. Hum. Mol. Genet.11, 805–814 (2002).
23.Ho, T. H. et al. Muscleblind proteins regulate alternative splicing. EMBO J.23, 3103–3112 (2004).
24.Kino, Y. et al. MBNL and CELF proteins regulate alternative splicing of the skeletal muscle chloride channel CLCN1. 37, 6477–6490 (2009).
25.Philips, A. V, Timchenko, L. T. & Cooper, T. A. Disruption of splicing regulated by a CUG-binding protein in myotonic dystrophy. Science280, 737–741 (1998).
26.Buj-Bello, A. et al. Muscle-specific alternative splicing of myotubularin-related 1 gene is impaired in DM1 muscle cells. Hum. Mol. Genet.11, 2297–2307 (2002).
27.Charlet-B., N. et al. Loss of the muscle-specific chloride channel in type 1 myotonic dystrophy due to misregulated alternative splicing. Mol. Cell10, 45–53 (2002).
28.Kanadia, R. N. et al. A Muscleblind Knockout Model for Myotonic Dystrophy. 1978, 10–13 (2010).
29.Savkur, R. S., Philips, A. V & Cooper, T. A. Aberrant regulation of insulin receptor alternative splicing is associated with insulin resistance in myotonic dystrophy. Nat. Genet.29, 40–47 (2001).
30.Sergeant, N. et al. Dysregulation of human brain microtubule-associated tau mRNA maturation in myotonic dystrophy type 1. Hum. Mol. Genet.10, 2143–2155 (2001).
31.Gadalla, S. M. et al. NIH Public Access. 306, 2480–2486 (2012).
32.Mueller, C. M. et al. Hypothesis: Neoplasms in myotonic dystrophy. Cancer Causes Control20, 2009–2020 (2009).
33.Begemann, G. et al. muscleblind, a gene required for photoreceptor differentiation in Drosophila, encodes novel nuclear Cys3His-type zinc-finger-containing proteins. Development124, 4321–4331 (1997).
34.Vicente, M. et al. Muscleblind isoforms are functionally distinct and regulate α-actinin splicing. Differentiation75, 427–440 (2007).
35.Holt, I. et al. Muscleblind-like proteins: similarities and differences in normal and myotonic dystrophy muscle. Am. J. Pathol.174, 216–227 (2009).
36.Adereth, Y., Dammai, V., Kose, N., Li, R. & Hsu, T. RNA-dependent integrin alpha3 protein localization regulated by the Muscleblind-like protein MLP1. Nat. Cell Biol.7, 1240–1247 (2005).
37.Squillace, R. M., Chenault, D. M. & Wang, E. H. Inhibition of muscle differentiation by the novel muscleblind-related protein CHCR. Dev. Biol.250, 218–230 (2002).
38.Lee, K., Squillace, R. M. & Wang, E. H. Expression pattern of muscleblind-like proteins differs in differentiating myoblasts. 361, 151–155 (2007).
39.Ke, W.-H. (Master’s thesis) Investigation of effect of MBNL3 knockdown on cell cycle progression in C2C12 myoblasts. (2011).
40.Tidball, J. G. Inflammatory cell response to acute muscle injury. Med. Sci. Sports Exerc.27, 1022–1032 (1995).
41.Karalaki, M., Fili, S., Philippou, A. & Koutsilieris, M. Muscle regeneration: cellular and molecular events. In Vivo23, 779–96 (2009).
42.Relaix, F. & Zammit, P. S. Satellite cells are essential for skeletal muscle regeneration: the cell on the edge returns centre stage. 2856, 2845–2856 (2012).
43.Montarras, D., Lindon, C., Pinset, C. & Domeyne, P. Cultured myf5 null and myoD null muscle precursor cells display distinct growth defects. Biol. Cell92, 565–572 (2000).
44.Shi, X. & Garry, D. J. Muscle stem cells in development, regeneration, and disease. Genes Dev.20, 1692–1708 (2006).
45.Pavlath, G. K., Dominov, J. A., Kegley, K. M. & Miller, J. B. Regeneration of transgenic skeletal muscles with altered timing of expression of the basic helix-loop-helix muscle regulatory factor MRF4. Am. J. Pathol.162, 1685–1691 (2003).
46.Poulos, M. G. et al. Progressive impairment of muscle regeneration in muscleblind-like 3 isoform knockout mice. Hum. Mol. Genet.22, 3547–58 (2013).
47.Leland H. Hartwell, Tim Hunt, S. P. N. The Nobel Prize in Physiology or Medicine 2001. Nobelprize.org (2001).
48.Nigg, E. A. Cyclin-dependent protein kinases: key regulators of the eukaryotic cell cycle. Bioessays17, 471–480 (1995).
49.Hayflick, L. The limited in vitro lifetime of human diploid cell strains. Exp. Cell Res.37, 614–636 (1965).
50.Schneider, E. L. & Shorr, S. S. Alteration in cellular RNAs during the in vitro lifespan of cultured human diploid fibroblasts. Cell6, 179–184 (1975).
51.De Cecco, M., Jeyapalan, J., Zhao, X., Tamamori-Adachi, M. & Sedivy, J. M. Nuclear protein accumulation in cellular senescence and organismal aging revealed with a novel single-cell resolution fluorescence microscopy assay. Aging (Albany. NY).3, 955–967 (2011).
52.Campisi, J. Replicative senescence: An old lives’ tale? Cell84, 497–500 (1996).
53.Goldstein, S. Replicative senescence: the human fibroblast comes of age. Science249, 1129–1133 (1990).
54.Kurz, D. J., Decary, S., Hong, Y. & Erusalimsky, J. D. Senescence-associated β -galactosidase reflects an increase in lysosomal mass during replicative ageing of human endothelial cells. 3622, 3613–3622 (2000).
55.Marcotte, R. & Wang, E. Replicative Senescence Revisited. 57, 257–269 (2002).
56.Stein, G. H., Drullinger, L. F. & Soulard, A. Differential Roles for Cyclin-Dependent Kinase Inhibitors p21 and p16 in the Mechanisms of Senescence and Differentiation in Human Fibroblasts. 19, 2109–2117 (1999).
57.Malatesta, M. et al. Cultured myoblasts from patients affected by myotonic dystrophy type 2 exhibit senescence-related features: ultrastructural evidence. Eur. J. Histochem.55, (2011).
58.Lowe, S. W., Cepero, E. & Evan, G. Intrinsic tumour suppression. Nature432, 307–315 (2004).
59.Hanahan, D. & Folkman, J. Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell86, 353–364 (1996).
60.Su, H.-C. (Master’s thesis) The effect of MBNL3 knockdown on cell proliferation and senescence. (2013).
61.Marampon, F. et al. Nerve Growth factor regulation of cyclin D1 in PC12 cells through a p21RAS extracellular signal-regulated kinase pathway requires cooperative interactions between Sp1 and nuclear factor-kappaB. Mol. Biol. Cell19, 2566–2578 (2008).
62.Klein, E. a & Assoian, R. K. Transcriptional regulation of the cyclin D1 gene at a glance. J. Cell Sci.121, 3853–3857 (2008).
63.Dimri, G. P. et al. A biomarker that identifies senescent human cells in culture and in aging skin in vivo. 92, 9363–9367 (1995).
64.Campisi, J. & d’Adda di Fagagna, F. Cellular senescence: when bad things happen to good cells. Nat. Rev. Mol. Cell Biol.8, 729–740 (2007).
65.Ikezoe, K. et al. Endoplasmic reticulum stress in myotonic dystrophy type 1 muscle. Acta Neuropathol.114, 527–535 (2007).
66.Uaesoontrachoon, K. et al. Osteopontin and skeletal muscle myoblasts: Association with muscle regeneration and regulation of myoblast function in vitro. Int. J. Biochem. Cell Biol.40, 2303–2314 (2008).
67.Zanotti, S. et al. Osteopontin is highly expressed in severely dystrophic muscle and seems to play a role in muscle regeneration and fibrosis. Histopathology59, 1215–1228 (2011).
68.Gadalla, S. M. et al. Cancer risk among patients with myotonic muscular dystrophy. JAMA306, 2480–6 (2011).
69.Win, A. K., Perattur, P. G., Pulido, J. S., Pulido, C. M. & Lindor, N. M. Increased cancer risks in myotonic dystrophy. Mayo Clin. Proc.87, 130–135 (2012).
70.Kanadia, R. N. et al. A muscleblind knockout model for myotonic dystrophy. Science302, 1978–1980 (2003).
71.Kimberly, K. L., Paul, S. & Wang, E. H. MBNL3 / CHCR prevents myogenic differentiation by inhibiting MyoD- dependent gene transcription. 299–309 (2008). doi:10.1111/j.1432-0436.2007.00209.x
72.Peeper, D. S., Van Der Eb, A. J. & Zantema, A. The G1/S cell-cycle checkpoint in eukaryotic cells. Biochim. Biophys. Acta - Rev. Cancer1198, 215–230 (1994).
73.Weinberg, R. A. The retinoblastoma protein and cell cycle control. Cell81, 323–330 (1995).
74.Kitagawa, M. et al. The consensus motif for phosphorylation by cyclin D1-Cdk4 is different from that for phosphorylation by cyclin A/E-Cdk2. EMBO J.15, 7060–7069 (1996).
75.Zarkowska, T. & Mittnacht, S. Differential phosphorylation of the retinoblastoma protein by G1/S cyclin-dependent kinases. J. Biol. Chem.272, 12738–12746 (1997).
76.Sousa-Victor, P. et al. Geriatric muscle stem cells switch reversible quiescence into senescence. Nature506, 316–21 (2014).
77.Aso, M., Shimao, S. & Takahashi, K. Pilomatricomas: association with myotonic dystrophy.Dermatologica162, 197–202 (1981).
78.Stockman, J. a. Cancer Risk Among Patients With Myotonic Muscular Dystrophy. Yearb. Pediatr.2013, 412–414 (2013).
79.Jinnai, K., Sugio, T., Mitani, M., Hashimoto, K. & Takahashi, K. Elongation of (CTG)n repeats in myotonic dystrophy protein kinase gene in tumors associated with myotonic dystrophy patients. Muscle and Nerve22, 1271–1274 (1999).
80.Kanadia, R. N. et al. Developmental expression of mouse muscleblind genes Mbnl1, Mbnl2 and Mbnl3. Gene Expr. Patterns3, 459–462 (2003).
81.Lu, Z. -x. et al. Transcriptome-wide Landscape of Pre-mRNA Alternative Splicing Associated with Metastatic Colonization. Mol. Cancer Res.13, 305–318 (2014).

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top