|
1.Steinberg, H. & Wagner, A. Hans Steinert: 100 years of myotonic dystrophy. Nervenarzt79, 961–962, 965–970 (2008). 2.Hsiao, K. M. et al. Epidemiological and genetic studies of myotonic dystrophy type 1 in Taiwan. Neuroepidemiology22, 283–289 3.Shaw, D. J. & Harper, P. S. Myotonic dystrophy: developments in molecular genetics. Br. Med. Bull.45, 745–759 (1989). 4.De Die-Smulders, C. E. M. et al. Age and causes of death in adult-onset myotonic dystrophy. Brain121, 1557–1563 (1998). 5.Udd, B., Krahe, R., Wallgren-Pettersson, C., Falck, B. & Kalimo, H. Proximal myotonic dystrophy - A family with autosomal dominant muscular dystrophy, cataracts, hearing loss and hypogonadism: Heterogeneity of proximal myotonic syndromes? Neuromuscul. Disord.7, 217–228 (1997). 6.Reardon, W. et al. Minimal expression of myotonic dystrophy: a clinical and molecular analysis. J. Med. Genet.29, 770–773 (1992). 7.Fu, Y. H. et al. An unstable triplet repeat in a gene related to myotonic muscular dystrophy. Science255, 1256–1258 (1992). 8.Mahadevan, M. et al. Myotonic dystrophy mutation: an unstable CTG repeat in the 3’ untranslated region of the gene. Science255, 1253–1255 (1992). 9.Ricker, K. et al.Proximal myotonic myopathy: a new dominant disorder with myotonia, muscle weakness, and cataracts.Neurology44, 1448–1452 (1994). 10.Liquori, C. L. et al. Myotonic dystrophy type 2 caused by a CCTG expansion in intron 1 of ZNF9. Science293, 864–867 (2001). 11.Ranum, L. P., Rasmussen, P. F., Benzow, K. A., Koob, M. D. & Day, J. W. Genetic mapping of a second myotonic dystrophy locus. Nat. Genet.19, 196–198 (1998). 12.Ranum, L. P. W. & Day, J. W. Myotonic dystrophy: RNA pathogenesis comes into focus. Am. J. Hum. Genet.74, 793–804 (2004). 13.Mankodi, A. et al. Expanded CUG repeats trigger aberrant splicing of ClC-1 chloride channel pre-mRNA and hyperexcitability of skeletal muscle in myotonic dystrophy. Mol. Cell10, 35–44 (2002). 14.Seznec, H. et al. Transgenic mice carrying large human genomic sequences with expanded CTG repeat mimic closely the DM CTG repeat intergenerational and somatic instability. 9, 1185–1194 (2000). 15.Taneja, K. L., McCurrach, M., Schalling, M., Housman, D. & Singer, R. H. Foci of trinucleotide repeat transcripts in nuclei of myotonic dystrophy cells and tissues. J. Cell Biol.128, 995–1002 (1995). 16.Michalowski, S. et al. Visualization of double-stranded RNAs from the myotonic dystrophy protein kinase gene and interactions with CUG-binding protein. Nucleic Acids Res.27, 3534–3542 (1999). 17.Tian, B. et al. Expanded CUG repeat RNAs form hairpins that activate the double-stranded RNA-dependent protein kinase PKR. RNA6, 79–87 (2000). 18.Lu, X., Timchenko, N. A. & Timchenko, L. T. Cardiac elav-type RNA-binding protein (ETR-3) binds to RNA CUG repeats expanded in myotonic dystrophy. Hum. Mol. Genet.8, 53–60 (1999). 19.Miller, J. W. et al. Recruitment of human muscleblind proteins to (CUG)(n) expansions associated with myotonic dystrophy. EMBO J.19, 4439–4448 (2000). 20.Timchenko, L. T. et al. Identification of a (CUG)(n) triplet repeat RNA-binding protein and its expression in myotonic dystrophy. Nucleic Acids Res.24, 4407–4414 (1996). 21.Mankodi, a et al. Muscleblind localizes to nuclear foci of aberrant RNA in myotonic dystrophy types 1 and 2. Hum. Mol. Genet.10, 2165–2170 (2001). 22.Fardaei, M. et al. Three proteins, MBNL, MBLL and MBXL, co-localize in vivo with nuclear foci of expanded-repeat transcripts in DM1 and DM2 cells. Hum. Mol. Genet.11, 805–814 (2002). 23.Ho, T. H. et al. Muscleblind proteins regulate alternative splicing. EMBO J.23, 3103–3112 (2004). 24.Kino, Y. et al. MBNL and CELF proteins regulate alternative splicing of the skeletal muscle chloride channel CLCN1. 37, 6477–6490 (2009). 25.Philips, A. V, Timchenko, L. T. & Cooper, T. A. Disruption of splicing regulated by a CUG-binding protein in myotonic dystrophy. Science280, 737–741 (1998). 26.Buj-Bello, A. et al. Muscle-specific alternative splicing of myotubularin-related 1 gene is impaired in DM1 muscle cells. Hum. Mol. Genet.11, 2297–2307 (2002). 27.Charlet-B., N. et al. Loss of the muscle-specific chloride channel in type 1 myotonic dystrophy due to misregulated alternative splicing. Mol. Cell10, 45–53 (2002). 28.Kanadia, R. N. et al. A Muscleblind Knockout Model for Myotonic Dystrophy. 1978, 10–13 (2010). 29.Savkur, R. S., Philips, A. V & Cooper, T. A. Aberrant regulation of insulin receptor alternative splicing is associated with insulin resistance in myotonic dystrophy. Nat. Genet.29, 40–47 (2001). 30.Sergeant, N. et al. Dysregulation of human brain microtubule-associated tau mRNA maturation in myotonic dystrophy type 1. Hum. Mol. Genet.10, 2143–2155 (2001). 31.Gadalla, S. M. et al. NIH Public Access. 306, 2480–2486 (2012). 32.Mueller, C. M. et al. Hypothesis: Neoplasms in myotonic dystrophy. Cancer Causes Control20, 2009–2020 (2009). 33.Begemann, G. et al. muscleblind, a gene required for photoreceptor differentiation in Drosophila, encodes novel nuclear Cys3His-type zinc-finger-containing proteins. Development124, 4321–4331 (1997). 34.Vicente, M. et al. Muscleblind isoforms are functionally distinct and regulate α-actinin splicing. Differentiation75, 427–440 (2007). 35.Holt, I. et al. Muscleblind-like proteins: similarities and differences in normal and myotonic dystrophy muscle. Am. J. Pathol.174, 216–227 (2009). 36.Adereth, Y., Dammai, V., Kose, N., Li, R. & Hsu, T. RNA-dependent integrin alpha3 protein localization regulated by the Muscleblind-like protein MLP1. Nat. Cell Biol.7, 1240–1247 (2005). 37.Squillace, R. M., Chenault, D. M. & Wang, E. H. Inhibition of muscle differentiation by the novel muscleblind-related protein CHCR. Dev. Biol.250, 218–230 (2002). 38.Lee, K., Squillace, R. M. & Wang, E. H. Expression pattern of muscleblind-like proteins differs in differentiating myoblasts. 361, 151–155 (2007). 39.Ke, W.-H. (Master’s thesis) Investigation of effect of MBNL3 knockdown on cell cycle progression in C2C12 myoblasts. (2011). 40.Tidball, J. G. Inflammatory cell response to acute muscle injury. Med. Sci. Sports Exerc.27, 1022–1032 (1995). 41.Karalaki, M., Fili, S., Philippou, A. & Koutsilieris, M. Muscle regeneration: cellular and molecular events. In Vivo23, 779–96 (2009). 42.Relaix, F. & Zammit, P. S. Satellite cells are essential for skeletal muscle regeneration: the cell on the edge returns centre stage. 2856, 2845–2856 (2012). 43.Montarras, D., Lindon, C., Pinset, C. & Domeyne, P. Cultured myf5 null and myoD null muscle precursor cells display distinct growth defects. Biol. Cell92, 565–572 (2000). 44.Shi, X. & Garry, D. J. Muscle stem cells in development, regeneration, and disease. Genes Dev.20, 1692–1708 (2006). 45.Pavlath, G. K., Dominov, J. A., Kegley, K. M. & Miller, J. B. Regeneration of transgenic skeletal muscles with altered timing of expression of the basic helix-loop-helix muscle regulatory factor MRF4. Am. J. Pathol.162, 1685–1691 (2003). 46.Poulos, M. G. et al. Progressive impairment of muscle regeneration in muscleblind-like 3 isoform knockout mice. Hum. Mol. Genet.22, 3547–58 (2013). 47.Leland H. Hartwell, Tim Hunt, S. P. N. The Nobel Prize in Physiology or Medicine 2001. Nobelprize.org (2001). 48.Nigg, E. A. Cyclin-dependent protein kinases: key regulators of the eukaryotic cell cycle. Bioessays17, 471–480 (1995). 49.Hayflick, L. The limited in vitro lifetime of human diploid cell strains. Exp. Cell Res.37, 614–636 (1965). 50.Schneider, E. L. & Shorr, S. S. Alteration in cellular RNAs during the in vitro lifespan of cultured human diploid fibroblasts. Cell6, 179–184 (1975). 51.De Cecco, M., Jeyapalan, J., Zhao, X., Tamamori-Adachi, M. & Sedivy, J. M. Nuclear protein accumulation in cellular senescence and organismal aging revealed with a novel single-cell resolution fluorescence microscopy assay. Aging (Albany. NY).3, 955–967 (2011). 52.Campisi, J. Replicative senescence: An old lives’ tale? Cell84, 497–500 (1996). 53.Goldstein, S. Replicative senescence: the human fibroblast comes of age. Science249, 1129–1133 (1990). 54.Kurz, D. J., Decary, S., Hong, Y. & Erusalimsky, J. D. Senescence-associated β -galactosidase reflects an increase in lysosomal mass during replicative ageing of human endothelial cells. 3622, 3613–3622 (2000). 55.Marcotte, R. & Wang, E. Replicative Senescence Revisited. 57, 257–269 (2002). 56.Stein, G. H., Drullinger, L. F. & Soulard, A. Differential Roles for Cyclin-Dependent Kinase Inhibitors p21 and p16 in the Mechanisms of Senescence and Differentiation in Human Fibroblasts. 19, 2109–2117 (1999). 57.Malatesta, M. et al. Cultured myoblasts from patients affected by myotonic dystrophy type 2 exhibit senescence-related features: ultrastructural evidence. Eur. J. Histochem.55, (2011). 58.Lowe, S. W., Cepero, E. & Evan, G. Intrinsic tumour suppression. Nature432, 307–315 (2004). 59.Hanahan, D. & Folkman, J. Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell86, 353–364 (1996). 60.Su, H.-C. (Master’s thesis) The effect of MBNL3 knockdown on cell proliferation and senescence. (2013). 61.Marampon, F. et al. Nerve Growth factor regulation of cyclin D1 in PC12 cells through a p21RAS extracellular signal-regulated kinase pathway requires cooperative interactions between Sp1 and nuclear factor-kappaB. Mol. Biol. Cell19, 2566–2578 (2008). 62.Klein, E. a & Assoian, R. K. Transcriptional regulation of the cyclin D1 gene at a glance. J. Cell Sci.121, 3853–3857 (2008). 63.Dimri, G. P. et al. A biomarker that identifies senescent human cells in culture and in aging skin in vivo. 92, 9363–9367 (1995). 64.Campisi, J. & d’Adda di Fagagna, F. Cellular senescence: when bad things happen to good cells. Nat. Rev. Mol. Cell Biol.8, 729–740 (2007). 65.Ikezoe, K. et al. Endoplasmic reticulum stress in myotonic dystrophy type 1 muscle. Acta Neuropathol.114, 527–535 (2007). 66.Uaesoontrachoon, K. et al. Osteopontin and skeletal muscle myoblasts: Association with muscle regeneration and regulation of myoblast function in vitro. Int. J. Biochem. Cell Biol.40, 2303–2314 (2008). 67.Zanotti, S. et al. Osteopontin is highly expressed in severely dystrophic muscle and seems to play a role in muscle regeneration and fibrosis. Histopathology59, 1215–1228 (2011). 68.Gadalla, S. M. et al. Cancer risk among patients with myotonic muscular dystrophy. JAMA306, 2480–6 (2011). 69.Win, A. K., Perattur, P. G., Pulido, J. S., Pulido, C. M. & Lindor, N. M. Increased cancer risks in myotonic dystrophy. Mayo Clin. Proc.87, 130–135 (2012). 70.Kanadia, R. N. et al. A muscleblind knockout model for myotonic dystrophy. Science302, 1978–1980 (2003). 71.Kimberly, K. L., Paul, S. & Wang, E. H. MBNL3 / CHCR prevents myogenic differentiation by inhibiting MyoD- dependent gene transcription. 299–309 (2008). doi:10.1111/j.1432-0436.2007.00209.x 72.Peeper, D. S., Van Der Eb, A. J. & Zantema, A. The G1/S cell-cycle checkpoint in eukaryotic cells. Biochim. Biophys. Acta - Rev. Cancer1198, 215–230 (1994). 73.Weinberg, R. A. The retinoblastoma protein and cell cycle control. Cell81, 323–330 (1995). 74.Kitagawa, M. et al. The consensus motif for phosphorylation by cyclin D1-Cdk4 is different from that for phosphorylation by cyclin A/E-Cdk2. EMBO J.15, 7060–7069 (1996). 75.Zarkowska, T. & Mittnacht, S. Differential phosphorylation of the retinoblastoma protein by G1/S cyclin-dependent kinases. J. Biol. Chem.272, 12738–12746 (1997). 76.Sousa-Victor, P. et al. Geriatric muscle stem cells switch reversible quiescence into senescence. Nature506, 316–21 (2014). 77.Aso, M., Shimao, S. & Takahashi, K. Pilomatricomas: association with myotonic dystrophy.Dermatologica162, 197–202 (1981). 78.Stockman, J. a. Cancer Risk Among Patients With Myotonic Muscular Dystrophy. Yearb. Pediatr.2013, 412–414 (2013). 79.Jinnai, K., Sugio, T., Mitani, M., Hashimoto, K. & Takahashi, K. Elongation of (CTG)n repeats in myotonic dystrophy protein kinase gene in tumors associated with myotonic dystrophy patients. Muscle and Nerve22, 1271–1274 (1999). 80.Kanadia, R. N. et al. Developmental expression of mouse muscleblind genes Mbnl1, Mbnl2 and Mbnl3. Gene Expr. Patterns3, 459–462 (2003). 81.Lu, Z. -x. et al. Transcriptome-wide Landscape of Pre-mRNA Alternative Splicing Associated with Metastatic Colonization. Mol. Cancer Res.13, 305–318 (2014).
|