跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.213) 您好!臺灣時間:2025/11/11 18:44
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:吳昀臻
研究生(外文):Yun Chen Wu
論文名稱:中鹼性金屬空氣電池中雙效n型金屬硫化物/氧化鋅柱狀陣列電極特性之探討
論文名稱(外文):The study of catalytic performance using n-type in neutral-weak basic metal-air battery
指導教授:鄭光煒
指導教授(外文):K. W. Cheng
學位類別:碩士
校院名稱:長庚大學
系所名稱:化工與材料工程學系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:中文
論文頁數:104
中文關鍵詞:化學水浴法鋅空氣電池中性電解液核殼材料氧化鋅銀錫硫化物
外文關鍵詞:Chemical bath depositionZn-air batteryNeutral electrolyteCore/shellZinc oxideSilver Tin Sulfide
相關次數:
  • 被引用被引用:0
  • 點閱點閱:137
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
為降低空氣電池的生產成本,因此需要發展於金屬空氣電池之空氣陰極上擁有良好反應動力學性能且低成本的電催化觸媒。本研究將發展金屬空氣電池用之空氣電極電觸媒,採用成本便宜、設備簡單的化學水浴法在發泡鎳網(Nickel foam)上製備氧化鋅/銀-錫硫化物(ZnO/Ag-Sn-S)核殼複合材料。實驗分為兩大部分:
第一部分,製備氧化鋅柱狀陣列/銀錫硫化物核殼複合電觸媒材料,藉由改變陰離子反應濃度、電觸媒生長時間、樣品反應總濃度以及電觸媒生長溫度,先用X光繞射分析儀(X-Ray Diffractometer,XRD)和能量分散X射線光譜儀(Energy Dispersive Analysis X-Ray,EDAX)分析結果得知樣品(A)~(D)(前驅物溶液中[Ag]/[Ag+Sn]=0.4)皆具有cubic-Ag4Sn3S8 (JCPDS No. 38-245)的晶型結構,且元素之原子比也相符合。後用場發射掃描式電子顯微鏡(Field-Emission Scanning Electron Microscope,FE-SEM)之電觸媒型態來佐證,可觀察到樣品(B)(前驅物溶液中[Ag]/[Ag+Sn]=0.4,生長溫度50℃)的氧化鋅奈米柱陣列上有著分布均勻其晶粒尺寸大約為50~100nm的Ag4Sn3S8,表示Ag4Sn3S8成功將氧化鋅奈米柱包覆完全,具有明顯的殼/核複合結構。
第二部分,首先為運用於鋅空氣電池上之電解液挑選,採用鹼性電解液:1M、6M KOH與中性電解液:NH4Cl、Na2SO4。由全文循環伏安法(Cyclic voltammetry,CV)圖可發現樣品(A)~(D) (前驅物溶液中[Ag]/[Ag+Sn]=0.4)在NH4Cl之電解液下有最小之充放電壓差,約為0.3V~0.6V。在電流10mA/cm2、電解液為1M NH4Cl之短時間充放電上,樣品(B) (前驅物溶液中[Ag]/[Ag+Sn]=0.4,生長溫度50℃)之充放電壓差最小為0.3V,以30秒充放電為一次循環可充40次且充放電壓差不變。最後由進行全電池之恆電流放電測試,在比電容量測實驗中,電流設定為為1mA/cm2時,其比電容為84.1 mA-h/g-Zn,而當定電流為10mA/cm2時,其比電容為820.1 mA-h/g-Zn。
In order to decrease the manufacturing costs of the zinc-air battery, the development of low-cost electrocatalyts with good catalytic performances in the air cathode surfaces in electrolytes is thus necessary. Therefore, the ZnO/Ag-Sn-S core-shell composite catalysts grown on a nickel foam by using the chemical water bath method with low cost and simple equipment is employed. The experiments in this studyis divided into two parts:
In the first part of this study, the ZnO/Ag-Sn-S core-shell composite samples were prepared by changing the anion concentration in the precursor solution, total reaction concentration of the reaction precursors and the sample’s growth temperature in the solution. From the X-ray diffractometer analysis results, the samples (A)~(D) ([Ag]/[Sn] molar ratio in the precursor solution is 0.4) have a crystal phase of cubic-Ag4Sn3S8 (JCPDS No. 38-245). With the energy dispersive X-ray spectroscopy analysis, these molar ratios of these ratio were also matched with that for the cubic Ag4Sn3S8 phase. From the morphological characteristics of the ZnO/Ag-Sn-S core-shell composite samples, it can be observed that the zinc oxide nanorod coated with the sample (B) ([Ag]/[Ag+Sn] molar ratio in the precursor solution is 0.4, and the sample’s growth temperature in the solution is 50℃) and the uniform grain size of ATS about 50nm~100nm, were observed at the surface, which showed that the surface of the zinc oxide nanorod was completely coated with a distinct shell / core composite samples.
In the second part of this study, for the selection of the electrolytes, used in the zinc air battery, we chose alkaline electrolytes (1M, 6M KOH) and neutral electrolyte (1M NH4Cl, Na2SO4). From the cycle voltgram (CV) diagram, the samples (A)~(D) ([Ag]/[Ag+Sn] molar ratio in the precursor solution is 0.4) have the smallest difference of the charge-discharge voltage, which about 0.6V under the NH4Cl electrolyte. In the short-time charge and discharge test, the sample (B) ([Ag]/[Ag+Sn] molar ratio in the precursor solution is 0.4, and the sample’s growth temperature in the solution is 50℃) has a minimum charge-discharge voltage of 0.3V at the current density of 10 mA/cm2 in the 1M NH4Cl aqueous solution. In the tests of discharge curves of Zn-air battery with the constant current (1mA/cm2), the discharge voltage was 0.67V and the capacity is 84.1 mA-h/g-Zn, respectively. The results of discharge curves of Zn-air battery with constant current test (10mA/cm2) showed the capacity of 820.1 mA-h/g-Zn in this study.
指導教授推薦書…………………………………………………………………
口試委員會審定書………………………………………………………………
致謝……………………………………………………………………………… iii
摘要……………………………………………………………………………… iv
Abstrat……………………………………………………………………… vi
目錄…………………………………………………………………………… viii
圖目錄……………………………………………………………………… xiii
表目錄……………………………………………………………………… xvi
第一章 緒論……………………………………………………………… 1
1-1 前言…………………………………………………………………… 1
1-2 研究動機…………………………………………………………… 4
第二章 文獻回顧……………………………………………………… 5
2-1 化學電池簡介………………………………………………… 5
2-1-1 一次式化學電池……………………………………… 7
2-1-2 二次式化學電池……………………………………… 7
2-2 金屬空氣電池…………………………………………………… 8
2-2-1 金屬空氣電池之電解液……………………… 11
2-2-1-1 鹼性電解液……………………………………… 13
2-2-1-2 中性電解液……………………………………… 14
2-2-2 金屬空氣電極………………………………………… 15
2-2-2-1 氧氣生成反應(OER)電極…………… 15
2-2-2-2 氧氣還原反應(ORR)電極…………… 17
2-2-2-3 雙功能(Bifunctional)電極…… 17
2-3 I-III-V族三元化合物簡介………………………… 18
2-4 氧化鋅奈米材料簡介與其製備技術………… 20
2-4-1 氧化鋅奈米材料………………………………………… 20
2-4-2 氣相沉積法…………………………………………………… 20
2-4-2-1 熱蒸鍍沉積法(Thermal Evaporation)…… 20
2-4-2-2 金屬有機物化學氣相沉積(Meta-organic Chemical Vapor Deposition,MOCVD)……………………………… 21
2-4-2-3 濺鍍沉積法(Sputter Deposition)…… 21
2-4-3 液相反應法……………………………………………………… 23
2-4-3-1 水熱反應法(Hydrothermal Method)…… 23
2-4-3-2 電化學法(Electrochemistry)……………… 23
2-4-3-3 化學浴沉積法(Chemical Bath Deposition)…… 23
2-4-4 固相反應法……………………………………………………… 24
第三章 研究方法及實驗步驟………………………… 25
3-1 實驗藥品………………………………………………… 25
3-2 實驗設備………………………………………………… 27
3-3 實驗儀器………………………………………………… 28
3-4 實驗流程………………………………………………… 29
3-4-1 基材前處理…………………………………… 29
3-4-1-1 鈉玻璃基材之前處理………… 29
3-4-1-2 發泡鎳基材之前處理………… 30
3-4-2 基材表面之活化…………………………… 31
3-4-3 挑選氧化鋅奈米柱成長之最佳化參數…………………………………… 32
3-4-4 ZnO/Ag-Sn-S複合材料成長之最佳化參數……………………… 34
3-4-4-1 陰離子反應濃度及電觸媒反應時間………………………………… 34
3-4-4-2 Ag-Sn-S電觸媒生長濃度……………………………………………………… 38
3-4-4-3 Ag-Sn-S電觸媒生長溫度與時間……………………………………… 39
3-4-5 電解質溶液…………………………………… 40
3-5 電觸媒性質分析……………………………………… 41
3-6 電化學測試………………………………………………… 42
3-6-1 半電池測試………………………………………… 42
3-6-2 全電池測試………………………………………… 43
第四章 結果與討論驟………………………………………… 44
4-1 挑選氧化鋅奈米柱參數最佳化……………… 44
4-1-1 氧化鋅晶型結構分析(XRD)………… 45
4-1-2 氧化鋅表面型態分析(FE-SEM)… 46
4-1-3 氧化鋅元素組成分析(EDS)………… 48
4-2 ZnO/Ag-Sn-S核/殼半導體複合材料… 49
4-2-1 挑選Ag-Sn-S電觸媒最佳參數化… 49
4-2-1-1 陰離子反應濃度…………… 49
4-2-1-2 電觸媒生長時間…………… 51
4-2-1-3 樣品反應總濃度…………… 53
4-2-1-4 電觸媒生長溫度…………… 54
4-2-2 探討不同生長參數之電觸媒特性… 55
4-2-2-1 電觸媒晶型結構分析…… 56
4-2-2-2 電觸媒元素組成分析…… 59
4-2-2-3 電觸媒表面形態分析…… 60
4-3 空氣陰極之性能分析………………………… 62
4-3-1 循環伏安法………………………………… 62
4-3-1-1 鹼性電解液……………………… 62
4-3-1-2 中性電解液……………………… 65
4-3-2 全電池測試………………………………… 68
4-3-2-1 充放電曲線圖……………………… 68
4-3-2-2 短時間充放電循環測試… 72
4-3-2-3 恆電流放電測試……………… 75
4-3-2-4 電化學交流阻抗測試……… 77
第五章 結論……………………………………………………… 80
參考文獻…………………………………………………………………82


圖目錄
圖 1-1、比較代表性的一次/可充電電池之電能量理論值[4]。............ 2
圖 1-2、金屬空氣電池近十年所發表之相關文獻(於 2018 年 7 月整理
自 Scupos)。........................................................................................ 3
圖 2-1、金屬空氣電池示意圖。............................................................ 10
圖 2-2、金屬之電容量與單位電容密度。............................................ 11
圖 2-3、雙功能電極之催化示意圖。.................................................... 17
圖 2-4、Cubic-Ag4Sn3S8的晶型結構。................................................. 19
圖 3-1、化學浴沉積法製備 ZnO 奈米柱薄膜之反應裝置圖。 .......... 33
圖 3-2、化學浴沉積法製備電觸媒之反應裝置圖。............................ 37
圖 3-3、半電池測試裝置圖。................................................................ 42
圖 3-4、全電池測試圖。........................................................................ 43
圖 4-1、樣品(Z1)~(Z3)之 XRD 圖譜。................................................. 45
圖 4-2、樣品(Z1)於 10kX 和 50kX 之 FE-SEM 正面圖。................... 46
圖 4-3、樣品(Z2)於 10kX 和 50kX 之 FE-SEM 正面圖。................... 46
圖 4-4、樣品(Z3)於 10kX 之 FE-SEM 正面圖。.................................. 47
圖 4-5、樣品於無添加 AgNO3、SnCl2之鍍液中浸泡一小時(左)與兩
小時(右)之正面圖。......................................................................... 52
圖 4-6、樣品(A)~(D)之 XRD 圖譜。.................................................... 57
圖 4-7、樣品(A)~(D)於 20~34之 XRD 放大圖譜。 ........................... 58
圖 4-8、樣品(A)~(D)於 36~90之 XRD 放大圖譜。 ........................... 58
圖 4-9、樣品(A)於 20kX 和 50kX 之 FE-SEM 正面圖。.................... 60
圖 4-10、樣品(B)於 20kX 和 50kX 之 FE-SEM 正面圖。 .................. 61
圖 4-11、樣品(C)於 20kX 和 50kX 之 FE-SEM 正面圖。 .................. 61
圖 4-12、樣品(D)於 20kX 和 50kX 之 FE-SEM 正面圖。.................. 61
圖 4-13、樣品(A)~(D)於 1M KOH 之 CV 圖。.................................... 64
圖 4-14、樣品(A)~(D)於 6M KOH 之 CV 圖。.................................... 64
圖 4-15、樣品(A)~(D)於 Na2SO4之 CV 圖。....................................... 66
圖 4-16、樣品(A)~(D)於 NH4Cl 之 CV 圖。........................................ 66
圖 4-17、樣品在 NH4Cl 電解液充放電過程中產生之沉澱物。......... 67
圖 4-18、樣品(B)於各種電解液之 CV 圖。......................................... 67
圖 4-19、樣品(A)~(D) Charge-discharge 測試圖。 .............................. 69
圖 4-20、樣品(A) Charge-discharge 測試圖。...................................... 69
圖 4-21、樣品(B) Charge-discharge 測試圖。 ...................................... 70
圖 4-22、樣品(C) Charge-discharge 測試圖。 ...................................... 70
圖 4-23、樣品(D) Charge-discharge 測試圖。...................................... 71
圖 4-24、樣品(A)~(D)於 NH4Cl 之短時間充放電循環測試圖。........ 72
圖 4-25、樣品(A)於 NH4Cl 之短時間充放電循環測試圖。 ............... 73
圖 4-26、樣品(B)於 NH4Cl 之短時間充放電循環測試圖。 ............... 73
圖 4-27、樣品(C)於 NH4Cl 之短時間充放電循環測試圖。 ............... 74
圖 4-28、樣品(D)於 NH4Cl 之短時間充放電循環測試圖。 ............... 74
圖 4-29、樣品(B)於 NH4Cl 以定電流 1mA/cm2之比電容量圖。 ...... 76
圖 4-30、樣品(B)於 NH4Cl 以定電流 10mA/cm2之比電容量圖。.... 76
圖 4-31、樣品(Z2)與(B)在放電時的阻抗圖。 ..................................... 78
圖 4-32、樣品(Z2)與(B)在充電時的阻抗圖。 ..................................... 78
圖 4-33、樣品(Z2)之等效電路模擬圖。............................................... 79
圖 4-34、樣品(B)之等效電路模擬圖。................................................79

表目錄
表 2-1、常見的一次、二次式化學電池總表。...................................... 6
表 2-2、比較不同類型的金屬空氣電池。............................................ 10
表 2-3、鋅空氣電池於不同 pH 值之理論標準電位。......................... 12
表 2-4、金屬空氣電池與鹼性電解質水溶液的理論標準電位。........ 12
表 2-5、文獻中水溶液中性電解質。.................................................... 14
表 2-6、鋅空氣電池之空氣催化劑總整理。........................................ 16
表 3-1、基材表面活化之參數。............................................................ 31
表 3-2、製備 ZnO 奈米柱薄膜之實驗參數。 ...................................... 33
表 3-3、製備 Ag-Sn-S 電觸媒之實驗參數。........................................ 36
表 3-4、製備 Ag-Sn-S 電觸媒之實驗參數。........................................ 38
表 3-5、製備 Ag-Sn-S 電觸媒之實驗參數。........................................ 39
表 4-1、樣品(Z1)~(Z3)之元素組成比例。 ........................................... 48
表 4-2、樣品(A3)、(A6)及(B1)~(D2)之元素組成比例。.................... 50
表 4-3、樣品(A1)~(A6)之元素組成比例。........................................... 51
表 4-4、樣品(E1)~(E3)之元素組成比例。 ........................................... 54
表 4-5、樣品(E1)~(E3)之前驅物元素組成比例。 ............................... 54
表 4-6、樣品 F1~G4 之元素組成比例。............................................... 55
表 4-7、樣品 A~D 之元素組成比例。.................................................. 59
表 4-8、樣品(A)~(D)在鹼性電解液之充放電壓差(10mA/cm2
)。 ...... 63
表 4-9、樣品(A)~(D)在中性電解液之充放電壓差(10mA/cm2
)。 ...... 65
表 4-10、等效電路模擬(Z2)在電解液為 NH4Cl 之充放電。.............. 79
表 4-11、等效電路模擬樣品(B)在電解液 NH4Cl 之充放電。............ 79
[1] M. R. Palacin, "Recent advances in rechargeable battery materials: a chemist's perspective," Chem Soc Rev, vol. 38, no. 9, pp. 2565-75, 2009.
[2] Z. Yang, J. Zhang, Michael C. W. K-M, X. Lu, D. Choi, J. P. Lemmon,J. Liu., "Electrochemical energy storage for green grid," Chem Rev, vol. 111, no. 5, pp. 3577-613, 2011.
[3] M. A. a. J.-M. Tarascon, "Building better batteries," Nature, vol. 451, pp. 652-657, 2008.
[4] F. Cheng and J. Chen, "Metal-air batteries: from oxygen reduction electrochemistry to cathode catalysts," Chem Soc Rev, vol. 41, no. 6, pp. 2172-92, 2012.
[5] B. Peng and J. Chen, "Functional materials with high-efficiency energy storage and conversion for batteries and fuel cells," Coordination Chemistry Reviews, vol. 253, no. 23-24, pp. 2805-2813, 2009.
[6] G. Girishkumar, B. McCloskey, A. C. Luntz, S. Swanson, and W. Wilcke, "Lithium−Air Battery: Promise and Challenges," The Journal of Physical Chemistry Letters, vol. 1, no. 14, pp. 2193-2203, 2010.
[7] B. C. H. S. A. Heinze, "Materials for fuel-cell technologies," NATURE, vol. 414, pp. 345-352, 2001.
[8] W. Tahil, "The Zinc Air Battery and the Zinc Economy: A Virtuous Circle," Meridian International Research, 2007.
[9] Ü. Özgür et al., "A comprehensive review of ZnO materials and devices," Journal of Applied Physics, vol. 98, no. 4, p. 041301, 2005.
[10] K.-W. Cheng, W.-T. Tsai, and Y.-H. Wu, "Photo-enhanced salt-water splitting using orthorhombic Ag8SnS6 photoelectrodes in photoelectrochemical cells," Journal of Power Sources, vol. 317, pp. 81-92, 2016.
[11] "What Are Batteries, Fuel Cells, and Supercapacitors?," Chemical Reviews, vol. 104, no. 10, pp. 4245-4269, 2004.
[12] D. L. a. T. B. Reddy, "Handbook of Batteries," McGraw-Hill New York, 3rd edn, 2002.


[13] M. Asadi, B. Sayahpour, P. Abbasi, A. T. Ngo, K. Karis, J. R. Jokisaari, C. Liu, B.Narayanan, M. Gerard, P. Yasaei, X. Hu, A. Mukherjee, K. C. Lau, R. S. Assary, F. K-A., R F. Klie, L. A. Curtiss ,A. S-K. "A lithium–oxygen battery with a long cycle life in an air-like atmosphere, "Nature, vol. 555, pp.502-507, 2018.
[14] K. Kinoshita, Electrochemical Oxygen Technology, Wiley, New York, 1992.
[15] J.Lee, S. Kim, R.Cao, N.Choi, M.Liu, K. Lee,J.Cho, "Metal-Air Batteries with High Energy Density: Li-Air versus Zn-Air," Advanced Energy Materials, vol. 1, no. 1, pp. 34-50, 2011.
[16] 温. 张三佩, 靳 俊,吴相伟,胡英瑛,吴梅芬, "二次钠-空气电池的研究进展," 电化学, vol. 21, no. 5, pp. 425-432, 2015.
[17] I. Kowalczk, J. Read, and M. Salomon, "Li-air batteries: A classic example of limitations owing to solubilities," Pure and Applied Chemistry, vol. 79, no. 5, pp. 851-860, 2007.
[18] B. D. McCloskey, D. S. Bethune, R. M. Shelby, G. Girishkumar, and A. C. Luntz, "Solvents' Critical Role in Nonaqueous Lithium-Oxygen Battery Electrochemistry," J Phys Chem Lett, vol. 2, no. 10, pp. 1161-6, 2011.
[19] R. Padbury and X. Zhang, "Lithium–oxygen batteries—Limiting factors that affect performance," Journal of Power Sources, vol. 196, no. 10, pp. 4436-4444, 2011.
[20] V. Neburchilov, H. Wang, J. J. Martin, and W. Qu, "A review on air cathodes for zinc–air fuel cells," Journal of Power Sources, vol. 195, no. 5, pp. 1271-1291, 2010.
[21] Y. Li and H. Dai, "Recent advances in zinc-air batteries," Chem Soc Rev, vol. 43, no. 15, pp. 5257-75, 2014.
[22] 李美靜, "用於金屬空氣電池之空氣電極表面改質對其電性之影響," 2015.
[23] 于华章,周德璧,罗素朴,彭业成,赵晶,梁雨南, "锌空气电池准中性电解液的研究," 应 用 化 工, vol. 43, pp. 121-123, 2014.
[24] 王智民, "鋁空氣電池特性研究," 2012.
[25] A. R. Mainar et al., "An overview of progress in electrolytes for secondary zinc-air batteries and other storage systems based on zinc," Journal of Energy Storage, vol. 15, pp. 304-328, 2018.
[26] A. R. Mainar et al., "Alkaline aqueous electrolytes for secondary zinc-air batteries: an overview," International Journal of Energy Research, vol. 40, no. 8, pp. 1032-1049, 2016.
[27] E. J. C. Frank R. McLarnon, "The Secondary Alkaline Zinc Electrode," J. Electrochem. Soc., vol. 138, pp. 645-664, 1991.
[28] B. R. W. J. Wruck, K. R. Bullock, and W.-H. Kao, "Rechargeable Zn-Mn02 Alkaline Batteries," J. Electrochem. Soc., vol. 138, pp. 3560-3567, 1991.
[29] P. Sapkota and H. Kim, "Zinc–air fuel cell, a potential candidate for alternative energy," Journal of Industrial and Engineering Chemistry, vol. 15, no. 4, pp. 445-450, 2009.
[30] M. Mokaddem, P. Volovitch, and K. Ogle, "The anodic dissolution of zinc and zinc alloys in alkaline solution. I. Oxide formation on electrogalvanized steel," Electrochimica Acta, vol. 55, no. 27, pp. 7867-7875, 2010.
[31] J. JINDRA, J. MRHA, M. MUSILOVA., "Zinc-air cell with neutral electrolyte," Journal of applied electrochemistry, pp. 297-301, 1973.
[32] Amendola, Metal-Air Battery Systems and Methods, WO 2012/012558 A3 2012.
[33] J.-E. Won et al., "PtIr/Ti4O7 as a bifunctional electrocatalyst for improved oxygen reduction and oxygen evolution reactions," Journal of Catalysis, vol. 358, pp. 287-294, 2018.
[34] P. M. P. S. P. a. Fernandes, a. F. da Cunha, "CuxSnSx+1 (x = 2, 3) thin films grown by sulfurization of metallic precursors deposited by dc magnetron sputtering," Phys. Status Solidi, vol. 904, no. 3, 2010.
[35] K. C. J. Koike, N. Aihara, H. Araki, R. Nakamura, K. Jimbo, H. Katagiri, "Cu2SnS3 Thin-Film Solar Cells from Electroplated Precursors," Jpn. J. Appl. Phys., vol. 51, no. 10, pp. 32-25, 2012.
[36] K. S. Z. Su, Z. Han, F. Liu, Y. Lai, J. Li, Y. Liu, "Fabrication of ternary Cu–Sn–S sulfides by a modified successive ionic layer adsorption and reaction (SILAR) method," J. Mater. Chem, vol. 22, no. 32, 2012
[37] M. Z. B. Qu, D. Lei, Y. Zeng, Y. Chen, L. Chen, Q. Li, Y. Wang, T. Wang, "Facile solvothermal synthesis of mesoporous Cu₂SnS₃ spheres and their application in lithium-ion batteries.," Nanoscale, vol. 3, no. 9, pp. 3646-3651, 2011.
[38] X. W. X. Chen, C. An, J. Liu, and Y. Qianvop, "Preparation and characterization of ternary Cu-Sn-E (E=S, Se) semiconductor nanocrystallites via a solvothermal element reaction route,," J. Cryst. Growth, vol. 256, no. 3-4, pp. 368-376, 2003.
[39] Z. L. Y. Tan, W. Ren, W. Long, Y. Wang, and X. Ouyang, "Facile solvothermal synthesis of Cu2SnS3 architectures and their visible-light-driven photocatalytic properties," Mater. Lett., vol. 89, pp. 240-242, 2012.
[40] M. A. M. Bouaziz, and S. Belgacem, "Structural and optical properties of Cu2SnS3 sprayed thin films," Thin Solid Films, vol. 517, no. 7, pp. 2527-2530, 2009.
[41] J. O. M. Bouaziz, S. K. Srivastava, J. C. Bernde, and M. Amlouk, "Growth of Cu2SnS3 thin films by solid reaction under sulphur atmosphere," Vacuum, vol. 85, no. 8, pp. 783–786, 2011.
[42] T. K. C. D. Tiwari, T. Shripathi, U. Deshpande, "Synthesis of earth-abundant Cu2SnS3 powder using solid state reaction," J. Phys. Chem. Solids, vol. 75, no. 3, pp. 410-415, 2014.
[43] Z. A. T. N. Sabli, W. M. M. Yunus, Z. Zainal, H. S. Hilal, M. Fujii,, "New technique for efficiency enhancement of film electrodes deposited by argon gas condensation from metal chalcogenide sources," Int. J. Electrochem. Sci., vol. 8, pp. 12038–12050, 2013.
[44] K.-W. Cheng, W.-C. Lee, and M.-S. Fan, "Photoelectrochemical performance of Cu–Zn–In–S film grown using one-step electrodeposition," Electrochimica Acta, vol. 87, pp. 53-62, 2013.
[45] C.-C. Chang, C.-J. Liang, and K.-W. Cheng, "Physical properties and photoresponse of Cu–Ag–In–S semiconductor electrodes created using chemical bath deposition," Solar Energy Materials and Solar Cells, vol. 93, no. 8, pp. 1427-1434, 2009.
[46] L.-Y. Yeh and K.-W. Cheng, "Preparation of chemical bath synthesized ternary Ag–Sn–S thin films as the photoelectrodes in photoelectrochemical cell," Journal of Power Sources, vol. 275, pp. 750-759, 2015.

[47] K.-W. Cheng and C.-H. Yeh, "Ternary AgInSe2 film electrode created using selenization of RF magnetron sputtered Ag–In metal precursor for photoelectrochemical applications," International Journal of Hydrogen Energy, vol. 37, no. 18, pp. 13638-13644, 2012.
[48] A. O. Fedorchuk et al., "Synthesis and spectral features of Ag2SnS3 crystals," Materials Chemistry and Physics, vol. 135, no. 2-3, pp. 249-253, 2012.
[49] M. H. Huang et al., "Room-Temperature Ultraviolet Nanowire Nanolasers," Science, vol. 292, no. 5523, pp. 1897-1899, 2001.
[50] Y. Dai, Y. Zhang, Q. K. Li, and C. W. Nan, "Synthesis and optical properties of tetrapod-like zinc oxide nanorods," Chemical Physics Letters, vol. 358, no. 1, pp. 83-86, 2002.
[51] S.Iwan, J.L.Zhao, S.T.Tan, X.W.Sun, "Enhancement of UV photoluminescence in ZnO tubes grown by metal organic chemical vapour deposition (MOCVD)," Vacuum, vol. 155, pp. 408-411, 2018.
[52] J. Song and S. Lim, "Effect of Seed Layer on the Growth of ZnO Nanorods," The Journal of Physical Chemistry C, vol. 111, no. 2, pp. 596-600, 2007.
[49] Y. Dai, Y. Zhang, Q. K. Li, and C. W. Nan, "Synthesis and optical properties of tetrapod-like zinc oxide nanorods," Chemical Physics Letters, vol. 358, no. 1, pp. 83-86, 2002.
[50] 李冠儀, "奈米柱狀氧化鋅於藥物釋放與光電化學海水製氫之研究," 2017.
[51] M. S. Arnold, P. Avouris, Z. W. Pan, and Z. L. Wang, "Field-Effect Transistors Based on Single Semiconducting Oxide Nanobelts," The Journal of Physical Chemistry B, vol. 107, no. 3, pp. 659-663, 2003.
[52] T. Dedova, J. Wienke, M. Goris and M. Krunks, "Characterization of the chemical bath deposited In(OH)xSy films: Effect of the growth conditions." Thin Solid Films, 515, p.6064-6067, 2007.
[53] 高振裕,” 鋅空氣電池系統之陽極與電解液基本性質研究,”2000.
[54] G. Christian, G. Sylvie, " Les accumulateurs électrochimiques au plomb, " Lavoisier, 2012.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊