|
[1] M. R. Palacin, "Recent advances in rechargeable battery materials: a chemist's perspective," Chem Soc Rev, vol. 38, no. 9, pp. 2565-75, 2009. [2] Z. Yang, J. Zhang, Michael C. W. K-M, X. Lu, D. Choi, J. P. Lemmon,J. Liu., "Electrochemical energy storage for green grid," Chem Rev, vol. 111, no. 5, pp. 3577-613, 2011. [3] M. A. a. J.-M. Tarascon, "Building better batteries," Nature, vol. 451, pp. 652-657, 2008. [4] F. Cheng and J. Chen, "Metal-air batteries: from oxygen reduction electrochemistry to cathode catalysts," Chem Soc Rev, vol. 41, no. 6, pp. 2172-92, 2012. [5] B. Peng and J. Chen, "Functional materials with high-efficiency energy storage and conversion for batteries and fuel cells," Coordination Chemistry Reviews, vol. 253, no. 23-24, pp. 2805-2813, 2009. [6] G. Girishkumar, B. McCloskey, A. C. Luntz, S. Swanson, and W. Wilcke, "Lithium−Air Battery: Promise and Challenges," The Journal of Physical Chemistry Letters, vol. 1, no. 14, pp. 2193-2203, 2010. [7] B. C. H. S. A. Heinze, "Materials for fuel-cell technologies," NATURE, vol. 414, pp. 345-352, 2001. [8] W. Tahil, "The Zinc Air Battery and the Zinc Economy: A Virtuous Circle," Meridian International Research, 2007. [9] Ü. Özgür et al., "A comprehensive review of ZnO materials and devices," Journal of Applied Physics, vol. 98, no. 4, p. 041301, 2005. [10] K.-W. Cheng, W.-T. Tsai, and Y.-H. Wu, "Photo-enhanced salt-water splitting using orthorhombic Ag8SnS6 photoelectrodes in photoelectrochemical cells," Journal of Power Sources, vol. 317, pp. 81-92, 2016. [11] "What Are Batteries, Fuel Cells, and Supercapacitors?," Chemical Reviews, vol. 104, no. 10, pp. 4245-4269, 2004. [12] D. L. a. T. B. Reddy, "Handbook of Batteries," McGraw-Hill New York, 3rd edn, 2002.
[13] M. Asadi, B. Sayahpour, P. Abbasi, A. T. Ngo, K. Karis, J. R. Jokisaari, C. Liu, B.Narayanan, M. Gerard, P. Yasaei, X. Hu, A. Mukherjee, K. C. Lau, R. S. Assary, F. K-A., R F. Klie, L. A. Curtiss ,A. S-K. "A lithium–oxygen battery with a long cycle life in an air-like atmosphere, "Nature, vol. 555, pp.502-507, 2018. [14] K. Kinoshita, Electrochemical Oxygen Technology, Wiley, New York, 1992. [15] J.Lee, S. Kim, R.Cao, N.Choi, M.Liu, K. Lee,J.Cho, "Metal-Air Batteries with High Energy Density: Li-Air versus Zn-Air," Advanced Energy Materials, vol. 1, no. 1, pp. 34-50, 2011. [16] 温. 张三佩, 靳 俊,吴相伟,胡英瑛,吴梅芬, "二次钠-空气电池的研究进展," 电化学, vol. 21, no. 5, pp. 425-432, 2015. [17] I. Kowalczk, J. Read, and M. Salomon, "Li-air batteries: A classic example of limitations owing to solubilities," Pure and Applied Chemistry, vol. 79, no. 5, pp. 851-860, 2007. [18] B. D. McCloskey, D. S. Bethune, R. M. Shelby, G. Girishkumar, and A. C. Luntz, "Solvents' Critical Role in Nonaqueous Lithium-Oxygen Battery Electrochemistry," J Phys Chem Lett, vol. 2, no. 10, pp. 1161-6, 2011. [19] R. Padbury and X. Zhang, "Lithium–oxygen batteries—Limiting factors that affect performance," Journal of Power Sources, vol. 196, no. 10, pp. 4436-4444, 2011. [20] V. Neburchilov, H. Wang, J. J. Martin, and W. Qu, "A review on air cathodes for zinc–air fuel cells," Journal of Power Sources, vol. 195, no. 5, pp. 1271-1291, 2010. [21] Y. Li and H. Dai, "Recent advances in zinc-air batteries," Chem Soc Rev, vol. 43, no. 15, pp. 5257-75, 2014. [22] 李美靜, "用於金屬空氣電池之空氣電極表面改質對其電性之影響," 2015. [23] 于华章,周德璧,罗素朴,彭业成,赵晶,梁雨南, "锌空气电池准中性电解液的研究," 应 用 化 工, vol. 43, pp. 121-123, 2014. [24] 王智民, "鋁空氣電池特性研究," 2012. [25] A. R. Mainar et al., "An overview of progress in electrolytes for secondary zinc-air batteries and other storage systems based on zinc," Journal of Energy Storage, vol. 15, pp. 304-328, 2018. [26] A. R. Mainar et al., "Alkaline aqueous electrolytes for secondary zinc-air batteries: an overview," International Journal of Energy Research, vol. 40, no. 8, pp. 1032-1049, 2016. [27] E. J. C. Frank R. McLarnon, "The Secondary Alkaline Zinc Electrode," J. Electrochem. Soc., vol. 138, pp. 645-664, 1991. [28] B. R. W. J. Wruck, K. R. Bullock, and W.-H. Kao, "Rechargeable Zn-Mn02 Alkaline Batteries," J. Electrochem. Soc., vol. 138, pp. 3560-3567, 1991. [29] P. Sapkota and H. Kim, "Zinc–air fuel cell, a potential candidate for alternative energy," Journal of Industrial and Engineering Chemistry, vol. 15, no. 4, pp. 445-450, 2009. [30] M. Mokaddem, P. Volovitch, and K. Ogle, "The anodic dissolution of zinc and zinc alloys in alkaline solution. I. Oxide formation on electrogalvanized steel," Electrochimica Acta, vol. 55, no. 27, pp. 7867-7875, 2010. [31] J. JINDRA, J. MRHA, M. MUSILOVA., "Zinc-air cell with neutral electrolyte," Journal of applied electrochemistry, pp. 297-301, 1973. [32] Amendola, Metal-Air Battery Systems and Methods, WO 2012/012558 A3 2012. [33] J.-E. Won et al., "PtIr/Ti4O7 as a bifunctional electrocatalyst for improved oxygen reduction and oxygen evolution reactions," Journal of Catalysis, vol. 358, pp. 287-294, 2018. [34] P. M. P. S. P. a. Fernandes, a. F. da Cunha, "CuxSnSx+1 (x = 2, 3) thin films grown by sulfurization of metallic precursors deposited by dc magnetron sputtering," Phys. Status Solidi, vol. 904, no. 3, 2010. [35] K. C. J. Koike, N. Aihara, H. Araki, R. Nakamura, K. Jimbo, H. Katagiri, "Cu2SnS3 Thin-Film Solar Cells from Electroplated Precursors," Jpn. J. Appl. Phys., vol. 51, no. 10, pp. 32-25, 2012. [36] K. S. Z. Su, Z. Han, F. Liu, Y. Lai, J. Li, Y. Liu, "Fabrication of ternary Cu–Sn–S sulfides by a modified successive ionic layer adsorption and reaction (SILAR) method," J. Mater. Chem, vol. 22, no. 32, 2012 [37] M. Z. B. Qu, D. Lei, Y. Zeng, Y. Chen, L. Chen, Q. Li, Y. Wang, T. Wang, "Facile solvothermal synthesis of mesoporous Cu₂SnS₃ spheres and their application in lithium-ion batteries.," Nanoscale, vol. 3, no. 9, pp. 3646-3651, 2011. [38] X. W. X. Chen, C. An, J. Liu, and Y. Qianvop, "Preparation and characterization of ternary Cu-Sn-E (E=S, Se) semiconductor nanocrystallites via a solvothermal element reaction route,," J. Cryst. Growth, vol. 256, no. 3-4, pp. 368-376, 2003. [39] Z. L. Y. Tan, W. Ren, W. Long, Y. Wang, and X. Ouyang, "Facile solvothermal synthesis of Cu2SnS3 architectures and their visible-light-driven photocatalytic properties," Mater. Lett., vol. 89, pp. 240-242, 2012. [40] M. A. M. Bouaziz, and S. Belgacem, "Structural and optical properties of Cu2SnS3 sprayed thin films," Thin Solid Films, vol. 517, no. 7, pp. 2527-2530, 2009. [41] J. O. M. Bouaziz, S. K. Srivastava, J. C. Bernde, and M. Amlouk, "Growth of Cu2SnS3 thin films by solid reaction under sulphur atmosphere," Vacuum, vol. 85, no. 8, pp. 783–786, 2011. [42] T. K. C. D. Tiwari, T. Shripathi, U. Deshpande, "Synthesis of earth-abundant Cu2SnS3 powder using solid state reaction," J. Phys. Chem. Solids, vol. 75, no. 3, pp. 410-415, 2014. [43] Z. A. T. N. Sabli, W. M. M. Yunus, Z. Zainal, H. S. Hilal, M. Fujii,, "New technique for efficiency enhancement of film electrodes deposited by argon gas condensation from metal chalcogenide sources," Int. J. Electrochem. Sci., vol. 8, pp. 12038–12050, 2013. [44] K.-W. Cheng, W.-C. Lee, and M.-S. Fan, "Photoelectrochemical performance of Cu–Zn–In–S film grown using one-step electrodeposition," Electrochimica Acta, vol. 87, pp. 53-62, 2013. [45] C.-C. Chang, C.-J. Liang, and K.-W. Cheng, "Physical properties and photoresponse of Cu–Ag–In–S semiconductor electrodes created using chemical bath deposition," Solar Energy Materials and Solar Cells, vol. 93, no. 8, pp. 1427-1434, 2009. [46] L.-Y. Yeh and K.-W. Cheng, "Preparation of chemical bath synthesized ternary Ag–Sn–S thin films as the photoelectrodes in photoelectrochemical cell," Journal of Power Sources, vol. 275, pp. 750-759, 2015.
[47] K.-W. Cheng and C.-H. Yeh, "Ternary AgInSe2 film electrode created using selenization of RF magnetron sputtered Ag–In metal precursor for photoelectrochemical applications," International Journal of Hydrogen Energy, vol. 37, no. 18, pp. 13638-13644, 2012. [48] A. O. Fedorchuk et al., "Synthesis and spectral features of Ag2SnS3 crystals," Materials Chemistry and Physics, vol. 135, no. 2-3, pp. 249-253, 2012. [49] M. H. Huang et al., "Room-Temperature Ultraviolet Nanowire Nanolasers," Science, vol. 292, no. 5523, pp. 1897-1899, 2001. [50] Y. Dai, Y. Zhang, Q. K. Li, and C. W. Nan, "Synthesis and optical properties of tetrapod-like zinc oxide nanorods," Chemical Physics Letters, vol. 358, no. 1, pp. 83-86, 2002. [51] S.Iwan, J.L.Zhao, S.T.Tan, X.W.Sun, "Enhancement of UV photoluminescence in ZnO tubes grown by metal organic chemical vapour deposition (MOCVD)," Vacuum, vol. 155, pp. 408-411, 2018. [52] J. Song and S. Lim, "Effect of Seed Layer on the Growth of ZnO Nanorods," The Journal of Physical Chemistry C, vol. 111, no. 2, pp. 596-600, 2007. [49] Y. Dai, Y. Zhang, Q. K. Li, and C. W. Nan, "Synthesis and optical properties of tetrapod-like zinc oxide nanorods," Chemical Physics Letters, vol. 358, no. 1, pp. 83-86, 2002. [50] 李冠儀, "奈米柱狀氧化鋅於藥物釋放與光電化學海水製氫之研究," 2017. [51] M. S. Arnold, P. Avouris, Z. W. Pan, and Z. L. Wang, "Field-Effect Transistors Based on Single Semiconducting Oxide Nanobelts," The Journal of Physical Chemistry B, vol. 107, no. 3, pp. 659-663, 2003. [52] T. Dedova, J. Wienke, M. Goris and M. Krunks, "Characterization of the chemical bath deposited In(OH)xSy films: Effect of the growth conditions." Thin Solid Films, 515, p.6064-6067, 2007. [53] 高振裕,” 鋅空氣電池系統之陽極與電解液基本性質研究,”2000. [54] G. Christian, G. Sylvie, " Les accumulateurs électrochimiques au plomb, " Lavoisier, 2012.
|