跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.163) 您好!臺灣時間:2025/11/25 16:33
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:許景婷
研究生(外文):HSU, CHING-TING
論文名稱:以顧客旅程找出內容型網站之潛在顧客
論文名稱(外文):Mining the Potential Customers from Analyzing Customer Journeys
指導教授:鄭麗珍鄭麗珍引用關係
指導教授(外文):Cheng, Li-Chen
口試委員:李永銘吳牧恩
口試委員(外文):LI, YONG-MINGWU, MU-EN
口試日期:2019-06-12
學位類別:碩士
校院名稱:東吳大學
系所名稱:資訊管理學系
學門:電算機學門
學類:電算機一般學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:33
中文關鍵詞:顧客旅程網路日誌文字探勘決策樹支援向量機主成分分析
外文關鍵詞:Customer JourneysWeb LogText MiningDecision treesSupport Vector MachinePrincipal Component Analysis
相關次數:
  • 被引用被引用:1
  • 點閱點閱:277
  • 評分評分:
  • 下載下載:4
  • 收藏至我的研究室書目清單書目收藏:0
隨著科技技術與網路發達,許多使用者在有室內裝潢的需求時都會先在網路上尋找相關資訊以及喜好的設計師。因此了解消費者喜好、更清晰地理解客人的樣貌變成是企業很重視的環節。本研究以室內裝潢平台為研究範圍。透過網路日誌可以記錄顧客旅程資料,其中包括了顧客瀏覽網頁的各種行為。本研究使用決策樹、支援向量機、文字探勘以及主成分分析方式分析顧客旅程資料。結果發現決策樹分類模型具有較良好之預測效能,也發現了此平台較重要的面相。透過分析顧客旅程資料,我們不僅可以識別出網站的潛在顧客,也可以了解到顧客所在意的面相,進而改善網路用戶的體驗,最終提升消費者在網路上購物的意願。
Many customers will search information or favorite designers on the Internet when they have the needs of interior decoration with the rapid development of the Internet network. Therefore, it becomes a very important part of the company that understanding the preferences of consumers. The purpose of the study was explored the customer journey form the interior decoration platform. The data of customer journey can be recorded through the web log, including various behaviors of the customer browsing the web. This study used the decision trees, support vector machines, text mining and principal component analysis to analyze the data of customer journey. Based on the classification technology, the decision trees have the best performance. We can not only identify potential customers of the website but also improve the experience of online users by analyzing data of customer journey, and lastly enhance the willingness of consumers to shop on the Internet.
摘要 ii
Abstract iii
目錄 iv
表目錄 vi
圖目錄 vii
1. 緒論 1
1.1  研究動機與目的 1
1.2  研究流程 2
2. 相關文獻 3
2.1  顧客旅程(Customer Journey) 3
2.2  網路日誌(Web Log) 3
2.3  文字探勘(Text Mining) 4
2.4  分類技術(Classification Techniques) 5
2.4.1 決策樹(Decision trees) 5
2.4.2 支援向量機(Support Vector Machine, SVM) 6
2.5  主成分分析(Principal component analysis, PCA) 6
3. 研究方法 7
3.1  資料預處理 8
3.1.1 網路日誌(Web log) 8
3.1.2 網頁文章 10
3.2  資料篩選 13
3.3  模型建立 13
3.4  資料分析 13
4. 實驗與結果 15
4.1  實驗資料 15
4.2  實驗結果 15
4.2.1 資料預處理 15
4.2.2 資料篩選 18
4.2.3 模型建立 18
4.2.4 資料分析 22
5. 結論 24
5.1  研究貢獻 24
5.2  研究限制與未來發展方向 24
參考文獻 25
Bernard, G., & Andritsos, P. (2017). A process mining based model for customer journey mapping. Paper presented at the Proceedings of the Forum and Doctoral Consortium Papers Presented at the 29th International Conference on Advanced Information Systems Engineering (CAiSE 2017).
Chen, F., Deng, P., Wan, J., Zhang, D., Vasilakos, A. V., & Rong, X. (2015). Data mining for the internet of things: literature review and challenges. International Journal of Distributed Sensor Networks, 11(8), 431047.
Cooley, R., Mobasher, B., & Srivastava, J. (1997). Web Mining: Information and Pattern Discovery on the World Wide Web. Paper presented at the ictai.
Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine learning, 20(3), 273-297.
Deegalla, S., & Bostrom, H. (2006). Reducing high-dimensional data by principal component analysis vs. random projection for nearest neighbor classification. Paper presented at the 2006 5th International Conference on Machine Learning and Applications (ICMLA'06).
Dharmarajan, K., & Dorairangaswamy, M. (2016). Web usage mining: improve the user navigation pattern using fp-growth algorithm. Elysium journal of engineering research and management (EJERM), 3(4).
Gupta, B., Rawat, A., Jain, A., Arora, A., & Dhami, N. (2017). Analysis of various decision tree algorithms for classification in data mining. Int J Comput Appl, 8, 15-19.
Heimerl, F., Lohmann, S., Lange, S., & Ertl, T. (2014). Word cloud explorer: Text analytics based on word clouds. Paper presented at the 2014 47th Hawaii International Conference on System Sciences.
Hotho, A., Nürnberger, A., & Paaß, G. (2005). A brief survey of text mining. Paper presented at the Ldv Forum.
Jagan, S., & Rajagopalan, S. (2015). A survey on web personalization of web usage mining. International Research Journal of Engineering and Technology, 2(1), 6-12.
Kato, R., & Goto, H. (2016). Categorization of web news documents using word2vec and deep learning. Paper presented at the Proceedings of the 2016 International Conference on Industrial Engineering and Operations Management Kuala Lumpur, Malaysia.
Kumar, S. N. (2015). World towards advance web mining: A review. American Journal of Systems and Software, 3(2), 44-61.
Lawrence, S., & Giles, C. L. (1999). Accessibility of information on the web. Nature, 400(6740), 107.
Luo, X., Wang, J., Shen, Q., Wang, J., & Qi, Q. (2017). User behavior analysis based on user interest by web log mining. Paper presented at the Telecommunication Networks and Applications Conference (ITNAC), 2017 27th International.
Nayak, T., Prasad, S., & Senapati, M. R. (2015). A Survey on Web Text Information Retrieval in Text Mining. Research Journal of Applied Sciences, Engineering and Technology, 10(10), 1164-1174.
Nithya, P., & Sumathi, P. (2012). Novel pre-processing technique for web log mining by removing global noise, cookies and web robots. International Journal of Computer Applications, 53(17).
Norton, D. W., & Pine, B. J. (2013). Using the customer journey to road test and refine the business model. Strategy & Leadership, 41(2), 12-17.
Patil, R., & Khan, A. (2015). Bisecting K-Means for Clustering Web Log data. International Journal of Computer Applications, 116(19).
Patil, T. R., & Sherekar, S. (2013). Performance analysis of Naive Bayes and J48 classification algorithm for data classification. International journal of computer science and applications, 6(2), 256-261.
Perea y Monsuwé, T., Dellaert, B. G., & De Ruyter, K. (2004). What drives consumers to shop online? A literature review. International journal of service industry management, 15(1), 102-121.
Ringnér, M. (2008). What is principal component analysis? Nature biotechnology, 26(3), 303.
Rosenbaum, M. S., Otalora, M. L., & Ramírez, G. C. (2017). How to create a realistic customer journey map. Business Horizons, 60(1), 143-150.
Subasi, A., & Gursoy, M. I. (2010). EEG signal classification using PCA, ICA, LDA and support vector machines. Expert systems with applications, 37(12), 8659-8666.
Sundar, N. A., Latha, P. P., & Chandra, M. R. (2012). Performance analysis of classification data mining techniques over heart disease database. International journal of engineering science & advanced technology, 2(3), 470-478.
Terragni, A., & Hassani, M. (2018). Analyzing Customer Journey with Process Mining: From Discovery to Recommendations. Paper presented at the 2018 IEEE 6th International Conference on Future Internet of Things and Cloud (FiCloud).
Thongpapanl, N., & Ashraf, A. R. (2011). Enhancing online performance through website content and personalization. Journal of computer information systems, 52(1), 3-13.
Vijayarani, S., Ilamathi, M. J., & Nithya, M. (2015). Preprocessing techniques for text mining-an overview. International Journal of Computer Science & Communication Networks, 5(1), 7-16.
Wolf, L., Hanani, Y., Bar, K., & Dershowitz, N. (2014). Joint word2vec Networks for Bilingual Semantic Representations. Int. J. Comput. Linguistics Appl., 5(1), 27-42.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊