跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.11) 您好!臺灣時間:2025/09/23 10:55
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:王恩偉
研究生(外文):WANG, EN-WEI
論文名稱:鎳鈦記憶合金線材在固定應變下熱疲勞性質研究
論文名稱(外文):Research of NiTi Wires Thermal Fatigue On Constant-Strain Test
指導教授:伏和中
指導教授(外文):FU, HO-CHUNG
口試委員:蔡孟修伏和中魏嘉民
口試委員(外文):CAI, MENG-XIUFU, HO-CHUNGWEI, JIA-MIN
口試日期:2019-07-29
學位類別:碩士
校院名稱:國立高雄科技大學
系所名稱:模具工程系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:102
中文關鍵詞:NiTi合金固定應變熱疲勞R相破壞形貌
外文關鍵詞:NiTi alloyConstant-strainThermal fatigueR-phaseFracture surface
相關次數:
  • 被引用被引用:0
  • 點閱點閱:300
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
由接近等原子成分比所組成的NiTi合金,因其特有的形狀記憶效應(Shape Memory Effect ,SME),為致動器領域帶來一大衝擊,本研究以固定應變(Constant-strain)的方式對NiTi線材進行熱疲勞測試,實驗以不同線徑(0.100 mm、0.127 mm、0.150 mm)和兩種不同奧氏體轉變溫度(Af 70℃ 和Af 80℃)之鎳鈦合金線,將其掛載固定應變測試機上,以設定之電流值(480 mA、650 mA、800mA、840 mA),進行在固定應變(範圍1 ~ 5%)下不同線徑和工作溫度間的熱疲勞測試,實驗結果顯示,在應變1 ~ 5 %的範圍中,Af 80℃線材壽命基本上隨應變值的上升而下降,最大值與最小值分別達到了約30000及2000次,然而0.150mm線徑、Af 70℃的樣本卻一如反常隨應變值自1 %上升到5 %,其疲勞壽命從10000次左右上升至了20000次,研判主要原因是由R相所引發的應力誘發麻田散體為線材提供了較佳的強度和抵抗疲勞的能力所致,且R相的存在也使0.150(70)擁有更好的功能疲勞穩定性,使線材熱循環收縮應力衰弱幅度僅約20 %左右,比其他的三種疲勞樣本衰減率低了一半以上。
Nitinol alloy consisting of equal amounts of Ni and Ti (49: 51 atom%) has a unique shape memory effect (SME), which has a great impact on the field of actuators. In this study, the thermal fatigue test of Nitinol wire was performed by constant-strain. The experiment was carried out with different wire diameters (0.100 mm, 0.127 mm, 0.150 mm) and two different austenite transformation temperatures (Af 70 °C and Af 80 °C). Nitinol wire, which is mounted on a fixed strain tester with fixed strain (1 ~ 5%) and set the current value (480 mA, 650 mA, 800 mA, 840 mA) for thermal fatigue test. The experimental results of Af 80°C wire with different fixed strain shows that wires on small fixed strain has longer fatigue life than bigger ones. On the other Af 70 °C wire shows different results. The strain value increases with its fatigue life rises from 10,000 times to 20,000 times. The main reason for the investigation is that Stress-Induced Martensitic by the R phase causes to provide the better strength and fatigue property for the wire, and the presence of the R phase also gives 0.150 (70) better functional fatigue stability, so that the thermal cycle shrinkage stress of the wire is much lower than others.
摘要 iii
ABSTRACT iv
誌謝 v
目錄 vi
表目錄 ix
圖目錄 x
第一章、前言 1
第二章 文獻回顧 3
2.1形狀記憶合金簡介 3
2.1.1熱彈性麻田散體 3
2.1.2 R相簡介 5
2.1.3形狀記憶效應 7
2.1.4超彈性 8
2.2熱循環對NiTi合金的影響 9
2.2.1相變態溫度變化 9
2.2.2功能疲勞 10
2.2.3結構疲勞 12
2.3影響NiTi合金疲勞壽命的因素 15
2.3.1雜質或析出物 15
2.3.2 Ni含量 17
2.3.3不同相的抗疲勞能力 17
2.4熱機械循環之測試方法 19
2.4.1固定應力測試 19
2.4.2固定應變測試 19
第三章 實驗方法與步驟 22
3.1實驗原理 22
3.2實驗規劃 23
3.3線材性質確認 25
3.3.1線材規格 25
3.3.2相變溫度確認 26
3.3.3拉伸性質確認 28
3.4形狀記憶合金收縮力測試機 30
3.4.1收縮力測試機簡介 30
3.4.2輸出電流測試 33
3.5疲勞實驗步驟 35
3.5.1疲勞實驗流程 35
3.5.2疲勞拉伸參數設定 36
3.5.3疲勞電流參數設定 38
3.6儀器分析 42
3.6.1 SEM破斷面觀察 42
3.6.2 X光繞射分析儀 44
第四章 結果與討論 45
4.1線材基本性質分析 45
4.1.1差示掃描熱分析(DSC)結果 45
4.1.2拉伸性質結果 48
4.2固定應變熱疲勞結果 50
4.2.1 0.100 mm(80)結果 50
4.2.2 0.127 mm(80)結果 51
4.2.3 0.150 mm(80)結果 52
4.2.4 0.150 mm(70)結果 53
4.3功能疲勞結果 55
4.3.1 0.100 mm(80)收縮應力演變結果 55
4.3.2 0.127 mm(80)收縮應力演變結果 57
4.3.3 0.150 mm(80)收縮應力演變結果 59
4.3.4 0.150 mm(70)收縮應力演變結果 61
4.4破壞形貌分析 63
4.4.1 0.100(80)之破壞形貌 63
4.4.2 0.127(80)之破壞形貌 66
4.4.3 0.150(80)之破壞形貌 69
4.4.4 0.150(70)之破壞形貌 72
4.5 XRD分析結果 76
4.6疲勞結果探討 79
4.6.1不同相與應變值差異對熱循環疲勞的影響 79
4.6.2不同相組成對功能疲勞的影響 79
4.6.3破斷形貌之探討 81
4.6.4 R相的抗疲勞能力探討 82
第五章、結論 84
第六章、未來展望 85
參考文獻. 86

[1]Mehdi Modabberifara, Matthew Spenko, 2018, A shape memory alloy-actuated gecko-inspired robotic gripper, Sensors and Actuators A: Physical, 76-82.
[2]Hamid Basaeri, Aghil Yousefi-Koma, Mohammad Reza Zakerzadeh , Seyed Saeid Mohtasebi, 2014, Experimental study of a bio-inspired robotic morphing wing mechanism actuated by shape memory alloy wires , Mechatronics , 1231–1241.
[3]Jaronie Mohd Jani, Martin Leary and Aleksandar Subic, 2017, Designing shape memory alloy linear actuators: A review, Journal of Intelligent Material Systems and Structures, 1699–1718
[4]L. C Chang ond T A Read, 1951, Plastic Deformation and Diffusionless Phase Changes In Metals - The Gold-Cadmium Beta Phase, Journal of metals.
[5]W. J. Buehler, J. V. Gilfrich, and R. C. Wiley, 1963, Effect of Low Temperature Phase Changes on the Mechanical Properties of Alloys near Composition TiNi, J. Appl. Phys.
[6]K. OTSUKA, 1971, Crystal Structure and Internal Defects of Equiatomie TiNi Martensite, J. Appl. Phys.
[7]H. WARLIMONT, 1974, Review Thermoelasticity, pseudoelasticity and the memory effects associated with martensitic transformations, JOURNAL OF MATERIALS SCIENCE, 1545-1555
[8]Larry Kau]mant, 1958, THERMODYNAMICS AND KINETICS OF MARTENSITIC TRANSFORMATIONS, PROGRESS IN .WIETAL PHYSICS, 166-246
[9]K. Lygin, S. Langbein, P. Labenda, and T. Sadek, 2012, Methodology for the Development, Production, and Validation of R-Phase Actuators, Journal of Materials Engineering and Performance, 2657–2662.
[10]H. Sadiq, M.B. Wong, R. Al-Mahaidi, and X.L. Zhao, The Effects of Heat Treatment on the Recovery Stresses of Shape Memory Alloys, Smart Mater. Struct., 2010, 19, p 35021–35027
[11]D. Treppman, Thermomechanical Treatment of NiTi, VDI-Verlag, Du¨ sseldorf, 1997 (in German)
[12]V.B. Krishnan, R.M. Manjeri, B. Clausen, D.W. Brown, and R. Vaidyanathan, 2008, Analysis of Neutron Diffraction Spectra Acquired In Situ During Mechanical Loading of Shape Memory NiTiFe at Low Temperatures, Mater. Sci. Eng. A, 481–482, p 3–10
[13]T. Saburi, Ti-Ni Shape Memory Alloys, Shape Memory Materials, K. Otsuka and C.M. Wayman, Ed., Cambridge University Press, Cambridge, 1998, p 49–96.
[14]T. W. Duerig, 2015, The Influence of the R-Phase on the Superelastic Behavior of NiTi, Shap. Mem. Superelasticity
[15]Z. Zhoua, G. Fana, J. Zhang, X. Ding, X. Ren, J. Suna, and K. Otsuka, Understanding of Multi-Stage R-Phase Transformation in Aged Ni-Rich Ti-Ni Shape Memory Alloys, Mater. Sci. Eng. A, 2006,438–440, p 602–607
[16]P. Sˇittner, M. Landa, P. Luka´sˇ, V. Nova´k, Mechanics of Materials, 38 475–492 (2006).
[17]S. MIYAZAKI, 1986, EFFECT OF THERMAL CYCLING ON THE TRANSFORMATION TEMPERATURES OF Ti-Ni ALLOYS, Acta metall. Vol. 34, No. 10, pp. 2045-2051,
[18]Jung-Hong Ha, 2013, Effect of R-phase Heat Treatment on Torsional Resistance and Cyclic Fatigue Fracture, JOE
[19]K. Otsuka, 2005, Physical metallurgy of Ti–Ni-based shape memory alloys, Progress in Materials Science, 511–678
[20]I. Ohkata and Y. Suzuki, The Design of SMA Actuators and Their Applications, Shape Memory.
[21]T. SABURI, 1979, CRYSTALLOGRAPHIC SIMILARITIES, Acta metal. Vol 27, 979-995.
[22]Deepak Kapoor, 2017, Nitinol for Medical Applications: A Brief Introduction to the Properties and Processing of Nickel Titanium Shape Memory Alloys and their Use in Stents, Johnson Matthey Technol., 66–76
[23]Junwon Seo, 2015, Pilot Study for Investigating the Cyclic Behavior of Slit Damper Systems with Recentering Shape Memory Alloy (SMA) Bending Bars Used for Seismic Restrainers, Appl. Sci. 2015, 5, 187-208
[24]A. A. Churakova, 2016, Effect of Thermocycling on the Temperatures of Phase Transformations, Structure, and Properties of the Equiatomic Alloy Ti50.0Ni50.0, The Physics of Metals and Metallography, 99–106.
[25]G. Airoldi, B. Rivolta, C. Turco, 1986, Heats of Transformations as a Function of Thermal Cycling in NiTi Alloys, in Proc. Int. Conf. of Martensitic Transformations, JIM Ed., 691-696.
[26]A.R. Pelton, 2010, Nitinol Fatigue: A Review of Microstructures and Mechanisms,
[27]Guozheng Kang, 2015, Review on structural fatigue of NiTi shape memory alloys: Pure mechanical and thermo-mechanical ones, Theoretical and Applied Mechanics Letters, 245–254
[28]S.K. Bhaumik, 2008, Understanding the Fatigue Behaviour of NiTiCu Shape Memory Alloy Wire Thermal Actuators, Key Engineering Materials, 301-316
[29]A.R. Pelton, G.H. Huang, P. Moine, and R. Sinclair, Transformation-Induced Dislocations in Ti-Ni, Unpublished 2010
[30]Francis R. Phillips, 2019, Evolution of internal damage during actuation fatigue in shape memory alloys, International Journal of Fatigue, 315–327
[31]K.V. Ramaiah, 2011, Fracture of thermally activated NiTi shape memory alloy wires, Materials Science and Engineering A, 5502–5510
[32]Marjaana Karhu and Tomi Lindroos, 2012, Microstructure analysis and damage patterns of thermally cycled Ti–49.7Ni (at.%) wires, SMART MATERIALS AND STRUCTURES,
[33]M. Patel, 2005, The Effects of Varying Active Af Temperatures on the Fatigue Properties of Nitinol Wire, MPMD
[34]R. Casati, 2011, Effect of electrical heating conditions on functional fatigue of thin NiTi wire for shape memory actuators, Procedia Engineering, 3423–3428
[35]C. Velmurugan, 2018, Review on phase transformation behavior of NiTi shape memory alloys, Materials Today: Proceedings, 14597–14606
[36]J.I. Kim, 2005, Effect of nano-scaled precipitates on shape memory behavior of Ti-50.9at.%Ni alloy, Acta Materialia, 4545–4554
[37]N. Zhou, 2010, Effect of Ni4Ti3 precipitation on martensitic transformation in Ti–Ni, Acta Materialia, 6685–6694
[38]J. KWARCIAK, 1987, Effect of thermal cycling and Ti2Ni precipitation on the stability of the Ni-Ti alloys, JOURNAL OF MATERIALS SCIENCE, 2341-2345
[39]J. Bhagyaraj, 2013, Behavior and effect of Ti2Ni phase during processing of NiTi shape memory alloy wire from cast ingot, Journal of Alloys and Compounds, 344–351
[40]B. StrnadeP, 1995, Cyclic stress-strain characteristics of Ti-Ni and Ti-Ni-Cu shape memory alloys, Materials Science and Engineering A202, 148-156
[41]B. StrnadeP, 1995, Effect of mechanical cycling on the pseudoelasticity characteristics of Ti-Ni and Ti-Ni-Cu alloys, Materials Science and Engineering A203, 187-196
[42]A.L. McKELVEY, 2001, Fatigue-Crack Growth Behavior in the Superelastic and Shape-Memory Alloy Nitinol, Metallurgical and Materials Transactions A, Volume 32A.
[43]Ana Maria Figueiredo, 2009, Low-cycle fatigue life of superelastic NiTi wires, International Journal of Fatigue 31, 751-758
[44]Jéssica Dornelas Silva, 2019, Effects of aging treatments on the fatigue resistance of superelastic NiTi wires, Materials Science & Engineering A 756, 54-60
[45]Jéssica Dornelas Silva, 2019, Fatigue resistance of dual-phase NiTi wires at different maximum strain amplitudes, International Journal of Fatigue 125, 97-100
[46]G. Scirè Mammano and E. Dragoni , 2011, Functional fatigue of shape memory wires under constant-stress and constant-strain loading conditions, Procedia Engineering 10, 3692–3707.
[47]吳政華,2018,形狀記憶合金收縮力測試機之研發,國立高雄應用科技大學,碩士論文。
[48]X. B. Wang, 2014, R-phase transformation in NiTi alloys, Materials Science and Technology, 30:13, 1517-1529

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top