跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.54) 您好!臺灣時間:2026/01/11 13:50
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:古璦卡
研究生(外文):Akancha Gupta
論文名稱:採用矽鍺材料設計的低電壓垂直通道穿隧場效電晶體
論文名稱(外文):Design of Low Voltage Vertical Channel-Tunnel FET (VC-TFET) Using Ge/SiGe Materials
指導教授:莊紹勳
指導教授(外文):Chung, Steve S.
口試委員:李佩雯蘇彬莊紹勳
口試委員(外文):Li, Pei-WenSu, PinChung, Steve S.
口試日期:2019-05-08
學位類別:碩士
校院名稱:國立交通大學
系所名稱:電機資訊國際學程
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:英文
論文頁數:115
中文關鍵詞:新穎穿隧式場效電晶體穿隧式場效電晶體鍺/矽鍺材料直立式通道
外文關鍵詞:Novel Tunnel FETTFETGe/SiGevertical Channel
相關次數:
  • 被引用被引用:0
  • 點閱點閱:200
  • 評分評分:
  • 下載下載:21
  • 收藏至我的研究室書目清單書目收藏:0
摘要

本篇論文主要研究利用帶對帶穿隧(band-to-band tunneling)機制的穿隧式場效電晶體(TFET)。TFET具有相當大潛力可作為下一代低功耗與低電壓操作的電晶體選項之一,由於TFET和MOSFET的操作機制並不相同,能夠避免許多可靠性問題和短通道效應。TFET具有小於60mV/dec.的次臨界擺幅和一個非常小的的漏電流,這些特性有利於操作偏壓的微縮與降低操作功耗的優點,可應用在低功耗元件。但是TFET仍有一些問題需要克服,如低操作電壓值、相對大的閘極-汲極電容。
為了進一步改善TFET操作特性,本篇論文提出一個新型TFET結構,其具有直立式源極-通道重疊區域,故稱作直立式通道穿隧式場效電晶體(vertical channel TFET, VC-TFET)。我們將此VC-TFET建構在鍺與矽鍺材料上,並利用TCAD模擬軟體做進一步的參數調變和進一步的研究討論。透過調變VC-TFET中的重要元件參數來優化元件特性,我們將可獲得高操作電流、低漏電流和較陡峭的次臨界擺幅等電特性。
在探討TFET的基礎特性和元件設計後,本篇論文還進一步探討VC-TFET的電容值和相反器特性。此外,另一個關鍵的問題即是TFET很大的閘極-汲極電容,這會使電路的操作速度變慢。我們提出的新型VC-TFET結構將可降低閘極-汲極電容並能改善電路操作速度。另外,本篇論文還提出新型的VC-TFET元件的SRAM電路架構,能夠在低操作電壓下達到較佳的SNM(static noise margin)。此新型VC-TFET SRAM架構設計比傳統CMOS SRAM還有更佳的SNM特性,因此VC-TFET有極大潛力被視為未來低電壓及低功耗應用的元件之一。
Abstract

In this thesis, tunneling field-effect-transistor (TFET) based on the mechanism of band-to-band tunneling (BTBT), has been studied extensively. TFET is considered as a potential low voltage and low power transistors in certain applications for next generation transistors. Since the operating mechanism of TFET and MOSFET are different, hence, TFET is able to avoid many of the reliability and short channel issues. TFFT has the capability of achieving the sub-threshold slope of less than 60 mV/decade and small leakage current. These characteristics allow the voltage scaling and also reduce the power consumption for low power application. TFET still has some issues such as low on-state drive current value and larger gate-to-drain capacitance.
To further improve the TFET performance, a novel TFET device with vertical source-channel overlap region is proposed. Ge and SiGe materials are used for the structural modelling of VC-TFET. Various design parameters of vertical channel Tunnel FET (VC-TFET) are discussed and studied in detail by using the TCAD simulation. By modulating the important device parameters to optimize the device, the electrical characteristics with improved ON-state drive current, reduced OFF-state leakage current and steeper sub-threshold swing have been achieved.
After introducing the fundamental characteristics and device design concept of TFET device, the capacitance characteristics and inverter characteristics of the VC-TFET are also discussed in this work. Another critical issue is large gate-to-drain capacitance, Cgd in TFET, which can degrade the circuit delay. The proposed vertical channel TFET device design can reduce the Cgd value which result in lower circuit delay. Novel SRAM circuit topologies based on the proposed VC-TFET device are also proposed and discussed extensively. Better static noise margin can be achieved for lower VDD value. The proposed SRAM topologies based on VC-TFET device design give better noise-margin as compared to the conventional CMOS SRAM. These results show that the proposed VC-TFET is a potential device design for low voltage and low power applications.
Chinese Abstract …………………………………………………… i
English Abstract …………………………………………………… iii
Acknowledgement …………………………………………………… v
Table of Contents …………………………………………………… vi
Table Captions …………………………………………………… xi
Figure Captions …………………………………………………… x
Chapter 1 Introduction ………………………………….... 1
1.1 Background …………………………………….. 1
1.2 Motivation …………………………………….. 3
1.3 Thesis Organization …………………………… 5
Chapter 2 Simulation Setup and Physical Model ……… 7
2.1 Introduction …………………………………… 7
2.2 Simulation Setup ……………………………… 8
2.1.1 Sentaurus Structure Editor …………………… 9
2.1.2 Sentaurus Device ……………………………... 9
2.2 Tunneling Model……………………………… 11
Chapter 3 The Characteristics of Different Tunneling FET Device Structures …………………………… 15
3.1 Introduction …………………………………. 15
3.2 Simulation Structure and Characteristic of Double Drain U-Shaped TFET ………………………. 16
3.3 Results and Discussion ……………………… 17
3.3.1 Different Doping Concentration Effect ………. 17
3.3.2 Different Intrinsic Thickness Effect …………….. 18
3.4 Simulation Structure and Characteristic of Single Drain U-Shaped TFET …………………………. 19
3.5 Results and Discussion ………………………... 20
3.5.1 Different Doping Concentration Effect ………. 20
3.5.2 Different Intrinsic Length Effect …………….. 21
3.5.3 Distributions of Electric Field and Tunneling Rate 22
3.6 Optimization of Vertical Channel TFET………. 23
3.7 Device Design Concept ………………………... 24
3.7.1 Structural Modeling…...………………………... 24
3.7.2 Band Modeling ………...……………………….. 25
3.8 Simulation Structure and Physical Model…….. 26
3.9 Results and Discussion ………………………... 27
3.9.1 Different Doping Concentration Effect ………. 28
3.9.2 Different Channel Length Effect ……………… 29
3.9.3 Different Intrinsic Length Effect …………….. 31
3.9.4 Electric Field and Tunneling Rate Distribution … 31
3.10 Summary …………………………...……….….. 32
Chapter 4 The Capacitance Analysis of Vertical Channel TFET and Circuit Performance ……………. 76
4.1 Introduction ………………………………….... 76
4.2 Capacitance Analysis of Vertical Channel TFET …………………………………………... 78
4.3 Inverter Analysis of Vertical Channel TFET ………………………………………….. 80
4.4 SRAM using Vertical Channel TFET ………….. 81
4.4.1 Conventional 6T SRAM …….………………….. 82
4.4.2 Novel 8T SRAM Cell (I) …….…………………. 84
4.4.3 Novel 8T SRAM Cell (II) …….…………...……. 85
4.4.2 Analysis of SNM ……………..………………… 86
Chapter 5 Summary and Conclusion …………………...... 102
References …………………………………...…………......... 105
References
[1] G. E. Moore, “Cramming more components onto integrated circuits,” Electronics, vol. 38, no. 8, pp. 114–117, 1965.
[2] C. T. Sah, “Evolution of the MOS transistor-from conception to VLSI,” Proc. IEEE, vol. 76, pp. 1280–1326, Oct. 1988.
[3] N. Weste and E. Eshraghian, Principles of CMOS VLSI Design, A System Perspective. Reading, MA, USA: Addison-Wesley, 1985.
[4] A. P. Chandrakasan and R.W. Brodersen, “Minimizing power consumption in digital CMOS circuits,” Proc. IEEE, vol. 83, no. 4, pp. 498–523, Apr. 1995.
[5] A. C. Seabaugh and Q. Zhang, “Low-voltage tunnel transistors for beyond CMOS logic,” IEEE Proc., vol. 98, no. 12, pp. 2095–2110, Dec. 2010.
[6] T. Nirschl, P. F. Wang, C. Weber, J. Sedlmeir, R. Heinrich, R. Kakoschke, K. Schrufe, J. Holz, C. Pacha, T. Schulz, M. Ostermayr, A. Olbrich, G. Georgakos, E. Ruderer, W. Hansch, and D. Schmitt-Landsiedell, “The tunneling field-effect transistor (TFET) as an add-on for ultra-low voltage analog and digital processes,” in IEDM Tech. Dig., Dec. 2004, pp. 195–198.
[7] Q. Zhang, W. Shao, and A. Seabaugh, “Low-subthreshold-swing tunnel transistors,” IEEE Electron Device Lett., vol. 27, no. 4, pp. 297–300, Apr. 2006.
[8] A. Makosiej et. Al., “A 32nm Tunnel FET SRAM for Ultra Low Leakage” IEEE, 2012, pp. 2517-2520.
[9] G. Zhou, Y. Lu, R. Li, Q. Zhang, Q. Liu, T. Vasen, H. Zhu, J. M. Kuo, T. Kosel, M. Wistey, P. Fay, A. Seabaugh, and H. Xing “InGaAs/InP Tunnel FETs With a Subthreshold Swing of 93 mV/dec and Ion/Ioff Ratio Near 106”, IEEE Electron Dev Lett 2012.
[10] S. Richter, L. Knoll, A. Schafer, S. Trellenkamp, J. M. Hartmann, Q.T. Zhao, and S. Mantl, “SiGe on SOI nanowire array TFETs with homo-and heterostructure tunnel junctions”, in International Conference on Ultimate Integration on Silicon, 2013, pp. 25-28.
[11] S. Richter, C. Sandow, A. Nichau, S. Trellenkamp, M. Schmidt, R. Luptak, K. K. Bourdelle, Q. T. Zhao, and S. Mantl, “Ω-Gated silicon and strained silicon nanowire array tunneling FETs”, IEEE Electron Dev Letter, vol. 33, no. 11, pp. 1535-1537, Nov. 2012..
[12] V. Saripalli, A. Mishra, S. Datta, and V. Narayanan, “An energy-efficient heterogeneous CMP based on hybrid TFET-CMOS cores,” in Proc. 48th DAC, San Diego, CA, USA, Jun. 2011, pp. 729–734.
[13] K. Swaminathan, E. Kultursay, V. Saripalli, V. Narayanan, M. Kandemir, and S. Datta, “Improving energy efficiency of multi-threaded applications using heterogeneous CMOS-TFET multicores,” in Proc. 17th IEEE/ACM Int. Symp. Low-Power Electron. Design, 2011, pp. 247–252.
[14] Steve S. Chung, “High performance design of tunneling FET for low voltage/power applications: Strategies and solutions”, 2016 IEEE International Nano-electronics Conference (INEC), pp. 1-2
[15] U. E. Avci, D. H. Morris and I. A. Young, “Tunnel Field Effect Transistors: Prospects and Challenges”, IEEE Journal of the Electron Devices Society, 2015, vol. 3, pp. 88-95.
[16] H. Lu and A. Seabaugh, “Tunnel Field-Effect Transistors: State-of-the-Art”, IEEE Journal of the Electron Devices Society, 2014, vol. 2, pp. 44-49.
[17] Hraziia, A. Vladimirescu, A. Amara, C. Anghel, “An Analysis on Ambipolar Current in Si Double-Gate Tunnel FETs” Solid-State Electronics 70 (2012), pp. 67-72.
[18] C. L. Royer and F. Mayer “Exhaustive study of Tunnel Field Effect Transistors (TFETs): From Material to Architecture”, 2009 10th International Conference on Ultimate Integration of Silicon, 2009, pp. 53-56.
[19] T. Krishnamohan, D. Kim, S. Raghunathan, and K. Saraswat, “Doublegate strained-Ge heterostructure tunneling FET (TFET) with record high drive currents and< 60 mV/dec subthreshold slope,” in IEDM Tech. Dig., 2008, pp. 947–949.
[20] S. M. Sze, “Physics of Semiconductor Devices”, 3rd ed. New York, NY, USA: Wiley, 2007.
[21] A. C. Seabaugh and Q. Zhang, “Low-voltage tunnel transistors for beyond CMOS logic,” IEEE Proc., vol. 98, no. 12, pp. 2095–2110, Dec. 2010.
[22] A. Vandooren, D. Leonelli, R. Rooyackers, A. Hikavyy, K. Devriendt, M. Demand, R. Loo, G. Groeseneken, and C. Huyghebaert, “Analysis of trap-assisted tunneling in vertical Si homo-junction and SiGe hetero-junction Tunnel-FETs,” Solid-State Electron., vol. 83, pp. 50–55, May 2013.
[23] A. Vandooren, D. Leonelli, R. Rooyackers, A. Hikavyy, K. Devriendt, R. Loo, M. Demand, G. Groeseneken, and C. Huyghebaert, “Trap-assisted tunneling in vertical Si and SiGe hetero-tunnel-FETs,” in Proc. Int. SiGe Tech. Device Meet., Jun. 2012, pp. 1–2.
[24] . Qiu, R. Wang, Q. Huang, and R. Huang, “A comparative study on the impacts of interface traps on tunneling FET and MOSFET,” IEEE Trans. Electron Devices, vol. 61, no. 5, pp. 1284–1291, May 2014
[25] TCAD Sentaurus Device Manual, Synopsys, Mountain View, CA, USA, Jun. 2014.
[26] R. People and J. C. Bean, “Calculation of critical layer thickness versus lattice mismatch for GexSi1−x/Si strained-layer hetero-structures,” Appl. Phys. Lett., vol. 47, no. 3, pp. 322–324, Aug. 1985.
[27] D. Leonelli, A. Vandooren, R. Rooyackers, A. S. Verhulst, C. Huyghebaert, S. De Gendt, M. M. Heyns, and G. Groeseneken, “Novel architecture to boost the vertical tunneling in tunnel field effect transistors,” in Proc. IEEE Int. SOI Conf., 2011, pp. 1–2.
[28] Y. Morita, T. Mori, S. Migita, W. Mizubayashi, A. Tanabe, K. Fukuda, M. Masahara, and H. Ota, “First demonstration of drain current enhancement in SOI tunnel FET with vertical-tunnel-multiplication,” in Proc. IEEE Int. SOI Conf., Oct. 2012, pp. 1–2.
[29] A. M. Walke, A. Vandooren, R. Rooyackers, D. Leonelli, A. Hikavyy, R. Loo, A.S. Verhulst, K. H. Kao, C. Huyghebaert, G. Groeseneken, V. R. Rao, K. K. Bhuwalka, M. M. Heyns, N. Collaert, and A. V.-Y. Thean, “Fabrication and Analysis of a Si/Si0.55Ge0.45 Heterojunction Line Tunnel FET”, IEEE Trans. Electron Devices, vol. 61, no. 3, pp. 707–715, Mar. 2014.
[30] R. Zhang, N. Taoka, S. Takagi et.al., “High-Mobility Ge p- and nMOSFETs with 0.7-nm EOT using HfO2/Al2O3/GeOx/Ge Gate Stacks Fabricated by Plasma Postoxidation”, IEEE Transactions on Electron Devices,2013, vol. 60, pp. 927-934.
[31] W. Y. Choi, B.-G. Park, J. D. Lee, and T.-J. K. Liu, “Tunneling field effect transistors (TFETs) with subthreshold swing (SS) less than 60 mv/dec,” IEEE Electron Device Letter, vol. 28, no. 8, pp. 743–745, Aug. 2007.
[32] L. Knoll, A. Nichau, A. Schaefer, K. K. Bourdelle, Q. T. Zhao, and S. Mant, “Gate-all-around Si nanowire array tunnelling FETs with high on-current of 75 mA/mm @ VDD = 1.1 V,” in Proc. ULIS, 2013, pp. 1–14.
[33] S. Mookerjea, D. Mohata, R. Krishnan, J. Singh, A. Vallett, A. Ali, T. Mayer, V. Narayanan, D. Schlom, A. Liu, and S. Datta, “Experimental Demonstration of 100nm Channel Length In0.53Ga0.47As-based Vertical
Inter-Band Tunnel Field Effect Transistors (TFETs) for Ultra Low-Power
Logic and SRAM Applications,” in Int. Electron Devices Meeting, 2009, pp. 1-3.
[34] L. Knoll, Q-T Zhao, A. Nichau, S. Trellenkamp, S. Richter, A. Schäfer, D. Esseni, L. Selmi, K. K. Bourdelle, and S. Mantl, “Inverters With Strained Si Nanowire Complementary Tunnel Field-Effect Transistors,” IEEE Electron Device Letter, vol. 34, no. 6, pp. 813-815, Jun. 2013.
[35] S. Mookerjea, R. Krishnan, S. Datta, and V. Narayanan, “Effective capacitance and drive current for tunnel FET TFET CV/I estimation,” IEEE Trans. Electron Devices, vol. 56, no. 9, pp. 2092–2098, Sep. 2009.
[36] S.Richter, S. Trellenkamp, A. Schäfer, J. M. Hartmann, K. K. Bourdelle, Q. T. Zhao, and S. Mantl, “Tunnel-FET Inverters for Ultra-low Power Logic with Supply Voltage down to VDD = 0.2 V”, in Proc. ULIS, 2014, pp. 1316.
[37] K. Subramanyam, S. Shaik, and R. Vaddi, “Tunnel FET based Low Voltage Static vs Dynamic Logic Families for Energy Efficiency,” in Proc. Int. VLSI Design and Test Symp., 2014, pp. 1-2.
[38] J. Singh, K. Ramakrishnan, S. Mookerjea, S. Datta, N. Vijaykrishnan, and D. Pradhan, “A novel Si-tunnel FET based SRAM design for ultra-low-power 0.3 VDD applications,” in Proc. ASP-DAC, 2010, pp. 181-186.
[39] Y. Lee, D. Kim, J. Cai, I. Lauer, L. Chang, S. J. Koester, D. Blaauw, and D. Sylvester, “Low Power Circuit Design Based on Heterojunction Tunneling Transistors (HETTs),” IEEE Trans. VLSI Systems, 2009, pp. 1632-1643.
[40] Y.-N. Chen, M.-L. Fan, Pi-Ho Hu, Pin Su, and C.-T. Chuang, “Ultra-low voltage mixed TFET-MOSFET 8T SRAM cell,” in Proc. Int. Symp. Low Power Electron. Design, 2014, pp. 389-399.
[41] K. Swaminathan, Huichu Liu, J. Sampson and V. Narayanan, “An Examination of the Architecture and System-level Tradeoffs of Employing Steep Slope Devices in 3D CMPs”, in International Symposium of Computer Architecture (ISCA’14), Minneapolis, MN, June, 2014. Y.-N. Chen, M.-L. Fan, Pi-Ho Hu, Pin Su, and C.-T. Chuang, “Ultra-low voltage mixed TFET-MOSFET 8T SRAM cell,” in Proc. Int. Symp. Low Power Electron. Design, 2014, pp. 389-399.
[42] K. Swaminathan, Huichu Liu, X. Li, M. Kim, J. Sampson and V. Narayanan, “Steep Slope Devices: Enabling New Architectural Paradigms”, 51st ACM/EDAC/IEEE Design Automation Conference (DAC), 2014, pp. 1-6.
[43] Liu, H, et al, “Tunnel FET based ultra-low power, high sensitivity UHF RFID rectifier,” International Symposium on Low Power Electronics and Design (ISLPED), 2013, pp. 157-162.
[44] Mazumder, P., et al, "Tunneling-based cellular nonlinear network architectures for image processing," in IEEE Trans. on Very Large Scale Integration (VLSI) Systems, vol.17, no.4, pp.487-495, April 2009.
[45] H. Liu, M. Shoaran, X. Li, S. Datta, A. Schmid, V. Narayanan, “Tunnel FET-Based Ultra-Low Power, Low-Noise Amplifier Design for Bio-signal Acquisition”, in 2014 IEEE International Symposium on Low Power Electronics and Design (ISLPED’14), La Jolla, CA, Aug. 2014, pp. 57-62.
[46] H. Liu, S. Datta and V. Narayanan, “Steep Switching Tunnel FET: A Promise to Extend the Energy Efficient Roadmap for Post-CMOS Digital and Analog/RF Application”, in 2013 IEEE International Symposium on Low Power Electronics and Design (ISLPED’13), pp.145-150, Sep.2013.
[47] Saripalli, V. et al, "Variation-tolerant ultra-low power heterojunction tunnel FET SRAM design", IEEE/ACM International Symposium on Nanoscale Architectures, 2011, pp. 45-52.
[48] S. Strangio, P. Palestri et. Al., “Impact of TFET Unidirectionality and Ambipolarity on the Performance of 6T SRAM Cells”, IEEE Journal of the Electron Devices Society, September 2014, vol. 3, pp. 223-232.
[49] Yin-Nien Chen ; Ming-Long Fan ; Vita Pi-Ho Hu ; Pin Su ; Ching-Te Chuang, “Evaluation of stability, performance of ultra-low voltage MOSFET, TFET and mixed TFET-MOSFET SRAM cell with write assist circuit”, IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 2014, vol. 4, pp. 389-399.
[50] Y. V. Bhuvaneshwari ; Nama Prem Sai ; N. Vinodh Kumar ; C. Thiruvenkatesan ; R. Srinivasan, "SEU study of 4T, 6T, 7T, 8T, 10T MOSFET based SRAM using TCAD simulation", International Conference on Information Communication and Embedded Systems (ICICES2014), 2014, pp. 1-7.
[51] Anupreet Gupta ; Hajra Anwer ; B. S. Reniwal ; S. K. Vishvakarma "Analysis of stability issues and power efficiency of symmetric and asymmetric low power nanoscaled SRAM cells", 2nd International Conference on Devices, Circuits and Systems (ICDCS), 2014, pp. 1-6.
[52] Akira Toriumi ; Choong Hyun Lee ; Toshiyuki Tabata ; Shengkai Wang ; Dandan Zhao ; Tomonori Nishimura ; Koji Kita ; Kosuke Nagashio, "Recent Progress of Germanium Gate Stack Technology", International Silicon-Germanium Technology and Device Meeting (ISTDM), 2012, pp. 1-2.
[53] Che-Tsung Chang ; Akira Toriumi, "Preferential oxidation of Si in SiGe for shaping Ge-rich SiGe gate stacks", IEEE International Electron Devices Meeting (IEDM), 2015, pp. 2151-2154.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top