跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.19) 您好!臺灣時間:2025/09/04 14:39
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:羅欣宜
研究生(外文):Hsin-Yi Lo
論文名稱:基於中醫藥治療糖尿病之經驗研究開發以胰島素受體為標的之藥物
論文名稱(外文):Research and Development of Insulin Receptor Targeting Anti-diabetic Drug Based on Experiences of Traditional Chinese Medicine
指導教授:侯庭鏞
學位類別:博士
校院名稱:中國醫藥大學
系所名稱:中醫學系博士班
學門:醫藥衛生學門
學類:醫學學類
論文種類:學術論文
論文出版年:2014
畢業學年度:103
語文別:英文
論文頁數:93
中文關鍵詞:糖尿病傳統中醫藥苦瓜胰島素接受器結合蛋白
外文關鍵詞:Diabetes mellitusTraditional Chinese medicineMomordica charantiainsulin receptor-binding protein
相關次數:
  • 被引用被引用:0
  • 點閱點閱:643
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
糖尿病是一種常見代謝性疾病,其病理特徵為高血糖。而胰島素為人體維持血糖恆定的主要介質。傳統中醫藥用於治療糖尿病已有多年的經驗,但其機轉及有效成分仍不是很清楚。在本研究中,我們藉由臨床經驗和文獻搜尋確認胡蘆科要物或作物皆有降血糖的潛能,因此,我們萃取苦瓜種子成分(簡稱MCSE),並確認其具有降血糖的活性,經由機轉探究,發現MCSE主要是透過影響胰島素訊息傳遞路徑(insulin signaling transduction pathway)。進一步,發現一具有抵抗胰蛋白酶的酵素分解作用(胰蛋白酶抑制物; trypsin inhibitor),會與胰島素接受器結合,於本研究中我們將其命名為Momordica charantia insulin receptor (IR)-binding protein (簡稱mcIRBP)。利用電偶交鏈串聯式質譜儀的分析結果,發現mcIRBP有三個區域(17-21, 34-40, and 59-66 residues),可能與胰島素接受器上的leucine-rich repeat domain與cystein-rich region有交互作用。經由 胰島素接受器結合試驗(IR-binding assay),也顯示mcIRBP會與胰島素呈現協同作用(cooperative manner)。而且在mcIRBP與胰島素接受器結合後, mcIRBP活化胰島素接受器上的酪胺酸激酶活性為5.87+/-0.45倍,phospho-IR protein的增加量為1.31 +/-0.03倍,且影響phosphoinositide-3-kinase/Akt 訊號途徑,並使得3T3-L1細胞株的葡萄糖攝入增加,5 uM mcIRBP可達1.25+/-0.07倍。藉由腹腔注射2.5 nmol/kg mcIRBP 可以顯著降低正常小鼠的血糖至20.9+/-3.2%,糖尿病小鼠的血糖至10.8+/-3.6%。基因表達微陣列晶片的分析顯示mcIRBP影響的基因,含括小鼠的大部分胰島素訊息傳遞路徑。本研究的實驗,證實mcIRBP是新穎的胰島素接受器結合蛋白,並結合至胰島素與胰島素接受器所結合之不同結合位置,且可同時促進細胞的葡萄糖攝入與活體的醣類代謝。

Diabetes mellitus, a common metabolic disorder, is characterized by hyperglycemia. Insulin is the principle mediator of glucose homeostasis. Traditional Chinese medicine have been used in clinics for the treatment of diabetes for years. We surveyed literatures and experiences of Traditional Chinese medicine on diabetes and found that herbs belonging to family Curcubitaceae showed hypoglycemic potentials. Therefore, we analyzed hypoglycemic effects and mechanisms of Momordica charantia and its components in this study. Extract of Momordica charantia seeds (MCSE) exhibited hypoglycemic activity mainly via the insulin signaling transduction pathway. Moreover, we newly identified a trypsin inhibitor, named as MC insulin receptor (IR)-binding protein (mcIRBP), that might interact with IR. The physical and functional interactions between mcIRBP and IR were clearly analyzed in the present study. Photo-crosslinking coupled with mass spectrometry showed that three regions (17-21, 34-40, and 59-66 residues) located on mcIRBP physically interacted with leucine-rich repeat domain and cystein-rich region of IR. IR-binding assay showed that the binding behavior of mcIRBP and insulin displayed a cooperative manner. After binding to IR, mcIRBP activated the kinase activity of IR by 5.87 +/- 0.45-fold, increased the amount of phospho-IR protein by 1.31+/-0.03-fold, affected phosphoinositide-3-kinase/Akt pathways, and consequently stimulated the uptake of glucose in 3T3-L1 cells by 1.25 +/- 0.07-fold in the presence of 5 uM mcIRBP. Intraperitoneal injection of 2.5 nmol/kg mcIRBP significantly decreased the blood glucose levels by 20.9+/- 3.2% and 10.8+/-3.6% in normal and diabetic mice, respectively. Microarray analysis showed that mcIRBP affected genes involved in insulin signaling transduction pathway in mice. In conclusion, our findings suggested that mcIRBP was a novel IRBP that bound to the sites different from the insulin-binding sites on IR and stimulated both the glucose uptake in cells and the glucose clearance in mice.

Table of Contents
Chapter 1 Introduction--------------------------------------------------------1
1.1 Research Motivation ------------------------------------------------------1
1.2 Research Purpose-----------------------------------------------------------3
Chapter 2 Literature Review-------------------------------------------------4
2.1 Prevalence and economic cost of diabetes------------------------------4
2.2 Exploration of the therapeutic potential Chinese herbal medicine of
acute thirst disease in Chinese ancient literatures----------------------4
2.3 Exploration of the bioactivity component of Cucurbitaceae family-8
Chapter 3 Materials and Methods------------------------------------------11
3.1 Chemicals-------------------------------------------------------------------11
3.2 Investigation using PubMatrix------------------------------------------12
3.3 Preparation of MCSE and TI---------------------------------------------12
3.4 Animal experiment and glucose tolerance test------------------------13
3.5 Microarray analysis ------------------------------------------------------14
3.6 2-dimensional electrophoresis (2-DE)----------------------------------15
3.7 Liquid chromatography coupled with tandem MS (LC-MS/MS) analysis----------------------------------------------------------------------16
3.8 Docking calculations------------------------------------------------------17
3.9 Cloning of mcIRBP gene-------------------------------------------------17
3.10 Expression and purification of recombinant mcIRBP --------------18
3.11 Photo-crosslinking coupled with mass spectrometry----------------18
3.12 Cell culture ---------------------------------------------------------------19
3.13 Insulin receptor-binding assays-----------------------------------------19
3.14 Western blot analysis ----------------------------------------------------21
3.15 Adipocyte differentiation and glucose uptake assay-----------------21
3.16 Streptozotocin (STZ)-induced type 1 diabetic mice and glucose
tolerance assay------------------------------------------------------------22
3.17 Statistical analysis -------------------------------------------------------23
Chapter 4 Results---------------------------------------------------------------24
4.1 Hypoglycemic effect-related available articles in Asia by PubMatrix -------------------------------------------------------------------------------24
4.2 Hypoglycemic effect of Cucurbitaceae family in mice --------------26
4.3 Signal transduction pathways of MCSE on glucose metabolism in
diabetic mice ---------------------------------------------------------------28
4.4 Analysis of Protein Constituents in MCSE by 2-DE and LC-MS/MS --------------------------------------------------------------------------------32

4.5 Identification of IR-binding protein of MCSE by docking and IR
kinase activity assays-------------------------------------------------------36
4.6 Expression and purification of mcIRBP ---------------------------------39
4.7 Analysis of the physical interaction between IR and mcIRBP--------41
4.8 mcIRBP enhanced the kinase activity and autophosphorylation of IR
---------------------------------------------------------------------------------45
4.9 mcIRBP affected IR/PI3K/Akt signaling pathway --------------------47
4.10 mcIRBP stimulated the uptake of glucose in 3T3-L1 adipocytes
-------------------------------------------------------------------------------49
4.11 mcIRBP displayed the hypoglycemic effect in normal and diabetic mice -------------------------------------------------------------------------51
4.12 Signal transduction pathways of mcIRBP on glucose metabolism in
normal and diabetic mice------------------------------------------------53
Chapter 5 Discussion------------------------------------------------------------60
Chapter 6 Conclusion-----------------------------------------------------------73
References-------------------------------------------------------------------------75
Chinese abstract------------------------------------------------------------------91
Acknowledgement----------------------------------------------------------------93


List of Figures
Figure 4.1 Hypoglycemic effect-related available articles in Asia by PubMatrix---------------------------------------------------------25
Figure 4.2 Hypoglycemic effect of MCSE in mice by glucose tolerance
test-----------------------------------------------------------------27
Figure 4.3 Signal transduction pathways contributing to the modulatory effect of MCSE on glucose metabolism in diabetic mice---30
Figure 4.4 Analysis of constituents in MCSE-----------------------------34
Figure 4.5 Physical interaction between TI and IR. Docking structure between IR and TI-----------------------------------------------37
Figure 4.6 Cloning, expression, and purification of recombinant
mcIRBP ------------------------------------------------------40
Figure 4.7 Docking structure of IR and mcIRBP-------------------------42
Figure 4.8 Physical interaction between mcIRBP and IR---------------43
Figure 4.9 Competitive binding assay of mcIRBP-----------------------44
Figure 4.10 Effect of mcIRBP on the kinase activity and autophosohorylation of IR--------------------------------------46
Figure 4.11 Effect of mcIRBP on the insulin signaling pathway in
HepG2 cells------------------------------------------------------48
Figure 4.12 Effect of mcIRBP on the glucose uptake of 3T3-L1
adipocytes-------------------------------------------------------50
Figure 4.13 Hypoglycemic effects of mcIRBP in normal and type 1
diabetic mice by glucose tolerance assay-------------------52

List of Tables
Table 2.1 The top ten most commonly used Chinese medicinal herbs in Taiwan----------------------------------------------------------------6
Table 4.1 P - value of pathways associated with glucose
and lipid metabolism in MCSE-treated ob/ob mice------------29
Table 4.2 Expression levels of MCSE-regulated genes in adipose
tissue-------------------------------------------------------------------31
Table 4.3 MCSE proteins identified by LC-MS/MS------------------------35
Table 4.4 Intramolecular Interaction between IR and TI-------------------38
Table 4.5 The top 20 up-regulated and down-regulated genes by mcIRBP
in normal mice -------------------------------------------------------54
Table 4.6 The top 20 up-regulated and down-regulated genes by mcIRBP
in diabetic mice ------------------------------------------------------56
Table 4.7 Pathways significantly affected by mcIRBP in normal mice---59



1.Cernea S, Dobreanu M. Diabetes and beta cell function: from mechanisms to evaluation and clinical implications. Biochem Med (Zagreb). 2013;23(3):266-280.
2.Kaul K, Tarr JM, Ahmad SI, Kohner EM, Chibber R. Introduction to diabetes mellitus. Adv Exp Med Biol 2012;771:1-11.
3.Danaei G, Finucane MM, Lu Y, Singh GM, Cowan MJ, Paciorek CJ, Lin JK, Farzadfar F, Khang YH, Stevens GA, Rao M, Ali MK, Riley LM, Robinson CA, Ezzati M; Global Burden of Metabolic Risk Factors of Chronic Diseases Collaborating Group (Blood Glucose). National, regional, and global trends in fasting plasma glucose and diabetes prevalence since 1980: systematic analysis of health examination surveys and epidemiological studies with 370 country-years and 2.7 million participants. Lancet 2011;378(9785):31-40.
4.Playford RJ, Pither C, Gao R, Middleton SJ. Use of the alpha glucosidase inhibitor acarbose in patients with ''Middleton syndrome'': normal gastric anatomy but with accelerated gastric emptying causing postprandial reactive hypoglycemia and diarrhea. Can J Gastroenterol 2013;27(7):403-404.
5.Saadi T, Waterman M, Yassin H, Baruch Y. Metformin-induced mixed hepatocellular and cholestatic hepatic injury: case report and literature review. Int J Gen Med 2013;6:703-706.
6.Thule PM, Umpierrez G. Sulfonylureas: a new look at old therapy. Curr Diab Rep 2014;14(4):473.
7.Arif T, Bhosale JD, Kumar N, Mandal TK, Bendre RS, Lavekar GS, Dabur R. Natural products--antifungal agents derived from plants. J Asian Nat Prod Res. 2009;11(7):621-638.
8.The Diabetes Control and Complications Trial Research Group. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N Eng J Med 1993;329(14):977-986.
9.Cleary PA, Orchard TJ, Genuth S, Wong ND, Detrano R, Backlund JY, Zinman B, Jacobson A, Sun W, Lachin JM, Nathan DM; DCCT/EDIC Research Group. The effect of intensive glycemic treatment on coronary artery calcification in type 1 diabetic participants of the Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications (DCCT/EDIC) Study. Diabetes 2006;55(12):3556-3565.
10.UK Prospective Diabetes Study (UKPDS) Group. Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). Lancet 1998;352(9131):837-853.
11.Saltiel AR, Kahn CR. Insulin signalling and the regulation of glucose and lipid metabolism. Nature 2001;414(6865):799-806.
12.Powers AC. Diabetes mellitus. In Harrison’s principles of internal medicine; Longo DL, Fauci AS, Kasper DL, Hauser SL, Jameson JL, Loscalzo J, Eds.; The McGraw-Hill Companies, Inc.: New York, 2012; pp. 2275-2304.
13.Purnell TS, Joy S, Little E, Bridges JF, Maruthur N. Patient preferences for noninsulin diabetes medications: a systematic review. Diabetes Care 2014;37(7):2055-2062.
14.Qi LW, Liu EH, Chu C, Peng YB, Cai HX, Li P. Anti-diabetic agents from natural products--an update from 2004 to 2009. Curr Top Med Chem 2010;10(4):434-457.
15.Li WL, Zheng HC, Bukuru J, De Kimpe N. Natural medicines used in the traditional Chinese medical system for therapy of diabetes mellitus. J Ethnopharmacol 2004;92(1):1-21.
16.American Diabetes Association. Economic costs of diabetes in the U.S. in 2012. Diabetes Care 2013;36:1033-1046.
17.Rathmann W, Giani G. Global prevalence of diabetes: estimates for the year 2000 and projections for 2030. Diabetes Care. 2004;27(10):2568-9.
18.Ali S, Fonseca V. Overview of metformin: special focus on metformin extended release. Expert Opin Pharmacother 2012;13:1797-1805.
19.Gallwitz B, Rosenstock J, Rauch T, Bhattacharya S, Patel S, von Eynatten M, Dugi KA, Woerle HJ. 2-year efficacy and safety of linagliptin compared with glimepiride in patients with type 2 diabetes inadequately controlled on metformin: a randomised, double-blind, non-inferiority trial. Lancet 2012;380:475-483.
20.Yeh GY, Eisenberg DM, Kaptchuk TJ, Phillips RS. Systematic review of herbs and dietary supplements for glycemic control in diabetes. Diabetes Care 2003;26:1277-1294.
21.Sotaniemi EA, Haapakoski E, Rautio A. Ginseng therapy in non-insulin dependent diabetic patients: effects on psychophysical performance, glucose homeostasis, serum lipids, serum aminoterminalpropeptide concentration, and body weight. Diabetes Care 1995;18:1373-1375.
22.Kamble SM, Jyotishi GS, Kamlakar PL, Vaidya SM. Efficacy of Coccinia indica W.& A in diabetes mellitus. J Res Ayurveda Siddha 1996;XVII: 77-84.
23.Leatherdale BA, Panesar RK, Singh G, Atkins TW, Bailey CJ, Bignell AH. Improvement in glucose tolerance due to Momordica charantia (karela). Br Med J 1981;282:1823-1824.
24.Ghannam N, Kingston M, Al-Meshaal IA, Tariq M, Parman NS, Woodhouse N. The antidiabetic activity of aloes: preliminary clinical and experimental observations. Horm Res 1986;24:288-294.
25.Shanmugasundaram ER1, Rajeswari G, Baskaran K, Rajesh Kumar BR, Radha Shanmugasundaram K, Kizar Ahmath B. Use of Gymnema sylvestre leaf extract in the control of blood glucose in insulin-dependent diabetes mellitus. J Ethnopharmacology 1990;30:281-294.
26.Lo HY, Hsiang CY, Li TC, Li CC, Huang HC, Chen JC, Ho TY. A novel glycated hemoglobin a1c-lowering traditional chinese medicinal formula, identified by translational medicine study. PLoS One 2014;9(8):e104650.
27.Zhang H, Tan C, Wang H, Xue S, Wang M. Study on the history of traditional Chinese medicine to treat diabetes. Journal of Integrative Medicine 2010;2:41-46.
28.Ghirardello S, Hopper N, Albanese A, Maghnie M. Diabetes insipidus in craniopharyngioma: postoperative management of water and electrolyte disorders. J Pediatr Endocrinol Metab 2006;19 Suppl 1:413-421.
29.Adedapo A, Adewuyi T, Sofidiya M. Phytochemistry, anti-inflammatory and analgesic activities of the aqueous leaf extract of Lagenaria breviflora (Cucurbitaceae) in laboratory animals. Rev Biol Trop 2013;61(1):281-290.
30.Deng R. A review of the hypoglycemic effects of five commonly used herbal food supplements. Recent Pat Food Nutr Agric 2012;4(1):50-60.
31.Fang EF, Ng TB. Bitter gourd (Momordica charantia) is a cornucopia of health: a review of its credited antidiabetic, anti-HIV, and antitumor properties. Curr Mol Med 2011;11(5):417-436.
32.Nerurkar P, Ray RB. Bitter melon: antagonist to cancer. Pharm Res 2010;27(6):1049-53.
33.Snee LS, Nerurkar VR, Dooley DA, Efird JT, Shovic AC, Nerurkar PV. Strategies to improve palatability and increase consumption intentions for Momordica charantia (bitter melon): a vegetable commonly used for diabetes management. Nutr J 2011;10:78.
34.Mondal A. A novel extraction of trichosanthin from Trichosanthes kirilowii roots using three-phase partitioning and its in vitro anticancer activity. Pharm Biol 2014;52(6):677-680.
35.Zhao WL, Feng D, Wu J, Sui SF. Trichosanthin inhibits integration of human immunodeficiency virus type 1 through depurinating the long-terminal repeats. Mol Biol Rep 2010;37(4):2093-2098.
36.Leung L, Birtwhistle R, Kotecha J, Hannah S, Cuthbertson S. Anti-diabetic and hypoglycaemic effects of Momordica charantia (bitter melon): a mini review. Br J Nutr 2009;102:1703-1708.
37.Chaturvedi P. Antidiabetic potentials of Momordica charantia: multiple mechanisms behind the effects. J Med Food 2012;15:101-107.
38.Broadhurst CL, Polansky MM, Anderson RA. Insulin-like biological activity of culinary and medicinal plant aqueous extracts in vitro. J Agric Food Chem 2000;48:849-852.
39.Singh J, Cumming E, Manoharan G, Kalasz H, Adeghate E. Medicinal chemistry of the anti-diabetic effects of Momordica charantia: active constituents and modes of actions. Open Med Chem J 2011;5:70-77.
40.Harinantenaina L, Tanaka M, Takaoka S, Oda M, Mogami O, Uchida M, Asakawa Y. Momordica charantia constituents and antidiabetic screening of the isolated major compounds. Chem Pharm Bull 2006;54:1017-1021.
41.Tan MJ, Ye JM, Turner N, Honen-Behrens C, Ke CQ, Tang CP, Chen T, Weiss HC, Gesing ER, Rowland A, James DE, Ye Y. Antidiabetic activities of triterpenoids isolated from bitter melon associated with the activation of AMPK pathway. Chem Biol 2008;15:263-273.
42.Keller AC, Ma J, Kavalier A, He K, Brillantes AM, Kennelly EJ. Saponins from the traditional medicinal plant Momordica charantia stimulate insulin secretion in vitro. Phytomedicine 2011;19:32-37.
43.Matsuda H, Murakami T, Shimada H, Matsumura N, Yoshikawa M, Yamahara J. Inhibitory mechanisms of oleanolic acid 3-O-monodesmosides on glucose absorption in rats. Biol. Pharm Bull 1997;20:717-719.
44.Matsuda H, Li Y, Murakami T, Matsumura N, Yamahara J, Yoshikawa M. Antidiabetic principles of natural medicines. III. Structure-related inhibitory activity and action mode of oleanolic acid glycosides on hypoglycemic activity. Chem Pharm Bull 1998;46:1399-1403.
45.Horax R, Hettiarachchy N, Over K, Chen P, Gbur E. Extraction, fractionation and characterization of bitter melon seed proteins. J Agric Food Chem 2010;58:1892-1897.
46.Khanna P, Jain SC, Panagariya A, Dixit VP. Hypoglycemic activity of polypeptide-p from a plant source. J Nat Prod 1981;44:648-655.
47.Rajasekhar MD, Badri KR, Vinay Kumar K, Kassetti RB, Fatima SS, Sampath Kumar MT, Appa Rao C. Isolation and characterization of a novel antihyperglycemic protein from the fruits of Momordica cymbalaria. J. Ethnopharmacol 2010;128:58-62.
48.Becker KG, Hosack DA, Dennis G Jr, Lempicki RA, Bright TJ, Cheadle C, Engel J. PubMatrix: a tool for multiplex literature mining. BMC Bioinformatics 2003;4:61.
49.Muurling M, Mensink RP, Pijl H, Romijn JA, Havekes LM, Voshol PJ. Rosiglitazone improves muscle insulin sensitivity, irrespective of increased triglyceride content, in ob/ob mice. Metabolism 2003;52:1078-1083.
50.Cheng WY, Lien JC, Hsiang CY, Wu SL, Li CC, Lo HY, Chen JC, Chiang SY, Liang JA, Ho TY. Comprehensive evaluation of a novel nuclear factor-κB inhibitor, quinoclamine, by transcriptomic analysis. Br J Pharmacol 2009;157:746-756.
51.Hsiang CY, Chen YS, Ho TY. Nuclear factor-κB bioluminescence imaging-guided transcriptomic analysis for the assessment of hoist-biomaterial interaction in vivo. Biomaterials 2009;30:3042-3049.
52.Smyth GK. Limma: linear models for microarray data. In Bioinformatics and Computational Biology Solutions using R and Bioconductor; Gentleman R, Carey V, Dudoit S, Irizarry R, Huber W, Eds.; Springer; New York, 2005; pp 397-420.
53.Pessin JE, Saltiel AR. Signaling pathways in insulin action: molecular targets of insulin resistance. J Clin Invest 2000;106:165-169.
54.Hirosawa M, Hoshida M, Ishikawa M, Toya T. MASCOT: multiple alignment system for protein sequences based on three-way dynamic programming. Comput Appl Biosci 1993;9:161-167.
55.Schneidman-Duhovny D, Inbar Y, Nussinov R, Wolfson HJ. PatchDock and SymmDock: servers for rigid and symmetric docking. Nucleic Acids Res 2005;33:W363-W367.
56.Dolinsky TJ, Nielsen JE, McCammon JA, Baker NA. PDB2PQR: an automated pipeline for the setup, execution, and analysis of Poisson-Boltzmann electrostatics calculations. Nucleic Acids Res 2004;32:W665-W667.
57.Chen JC, Ho TY, Chang YS, Wu SL, Li CC, Hsiang CY. Identification of Escherichia coli enterotoxin inhibitors from traditional medicinal herbs by in silico, in vitro, and in vivo analyses. J Ethnopharmacol 2009;121:372-378.
58.Rahim F, Maiti P, Bitan G. Photo-induced cross-linking of unmodified proteins (PICUP) applied to amyloidogenic peptides. J Vis Exp 2009;23:1071.
59.Gauguin L, Delaine C, Alvino CL, McNeil KA, Wallace JC, Forbes BE, De Meyts P. Alanine scanning of a putative receptor binding surface of insulin-like growth factor-I. J Biol Chem 2008;283:20821-20829.
60.Chen CC, Hsiang CY, Chiang AN, Lo HY, Li CI. Peroxisome proliferator-activated receptor gamma transactivation-mediated potentation of glucose uptake by Bai-Hu-Tang. J Ethnopharmacol 2008;118:46-50.
61.Hayashi K, Kojima R, Ito M. Strain differences in the diabetogenic activity of streptozotocin in mice. Biol Pharm Bull 2006;29:1110-1119.
62.Zhao L, Ye H, Li D, Lao X, Li J, Wang Z, Xiao L, Wu Z, Huang J. Glucagon-like peptide-1(1-37) can enhance blood glucose homeostasis in mice. Reg Peptides 2012;178:1-5.
63.Shibib BA, Khan LA, Rahman R. Hypoglycaemic activity of Coccinia indica and Momordica charantia in diabetic rats: depression of the hepatic gluconeogenic enzymes glucose-6-phosphatase and fructose-1,6-bisphosphatase and elevation of both liver and red-cell shunt enzyme glucose-6-phosphate dehydrogenase. Biochem J 1993;292:267-270.
64.Miura S, Funatsu G. Isolation and amino acid sequences of two trypsin inhibitors from the seeds of bitter gourd (Momordica charantia). Biosci Biotechnol Biochem 1995;59:469-473.
65.Scartezzini P, Speroni E. Review on some plants of Indian traditional medicine with antioxidant activity. J Ethnopharmacol 2000;71:23-43.
66.Puri M, Kaur I, Kanwar RK, Gupta RC, Chauhan A, Kanwar JR. Ribosome inactivating proteins (RIPs) from Momordica charantia for anti viral therapy. Curr Mol Med 2009;9:1080-1094.
67.Schultze SM, Hemmings BA, Niessen M, Tschopp O. PI3K/AKT, MAPK and AMPK signalling: protein kinases in glucose homeostasis. Expert Rev Mol Med 2012;14:e1.
68.Lo HY, Ho TY, Lin C, Li CC, Hsiang CY. Momordica charantia and its novel polypeptide regulate glucose homeostasis in mice via binding to insulin receptor. J Agric Food Chem 2013;61:2461-2468.
69.Ojewole JA, Adewole SO, Olayiwola G. Hypoglycaemic and hypotensive effects of Momordica charantia Linn (Cucurbitaceae) whole-plant aqueous extract in rats. Cardiovasc J S Afr 2006;17(5):227-232.
70.Leung L, Birtwhistle R, Kotecha J, Hannah S, Cuthbertson S. Anti-diabetic and hypoglycaemic effects of Momordica charantia (bitter melon): a mini review. Br J Nutr 2009;102:1703-1708.
71.Basch E, Gabardi S, Ulbricht C. Bitter melon (Momordica charantia): a review of efficacy and safety. Am. J. Health Syst. Pharm 2003;60:356-359.
72.Krawinkel MB, Keding GB. Bitter gourd (Momordica charantia): a dietary approach to hyperglycemia. Nutr Rev 2006;64:331-337.
73.Hsu C, Hsieh CL, Kuo YH, Huang CJ. Isolation and identification of cucurbitane-type triterpenoids with partial agonist/antagonist potential for estrogen receptors from Momordica charantia. J Agric Food Chem 2011;59:4553-4561.
74.Wang X, Sun W, Cao J, Qu H, Bi X, Zhao Y. Structures of new triterpenoids and cytotoxicity activities of the isolated major compounds from the fruit of Momordica charantia L. J Agric Food Chem 2012;60:3927-3933.
75.Chakraborty D, Mukherjee A, Sikdar S, Paul A, Ghosh S, Khuda-Bukhsh, AR. [6]-Gingerol isolated from ginger attenuates sodium arsenite induced oxidative stress and plays a corrective role in improving insulin signaling in mice. Toxicol Lett 2012;210:34-43.
76.Yibchok-anun S, Adisakwattana S, Yao CY, Sangvanich P, Roengsumran S, Hsu WH. Slow acting protein extract from fruit pulp of Momordica charantia with insulin secretagogue and insulinomimetic activities. Biol Pharm Bull 2006;29:1126-1131.
77.Ben WC, Roffey BW, Atwal AS, Johns T, Kubow S. Water extracts from Momordica charantia increase glucose uptake and adiponectin secretion in 3T3-L1 adipose cells. J Ethnopharmacol 2007;112:77-84.
78.Cheng HL, Huang HK, Chang CI, Tsai CP, Chou CH. A cell-based screening identifies compounds from the stem of Momordica charantia that overcome insulin resistance and activate AMP-activated protein kinase. J Agric Food Chem 2008;56:6835-6843.
79.Klomann SD, Mueller AS, Pallauf J, Krawinkel MB. Antidiabetic effects of bitter gourd extracts in insulin-resistant db/db mice. Br J Nutr 2010;104:1613-1620.
80.Kumar R, Balaji S, Uma TS, Sehgal PK. Fruit extracts of Momordica charantia potentiate glucose uptake and up-regulate Glut-4, PPAR gamma and PI3K. J Ethnopharmacol 2009;126:533-537.
81.Wang BL, Zhang WJ, Zhao J, Wang FJ, Fan LQ, Wu YX, Hu ZB. Gene cloning and expression of a novel hypoglycaemic peptide from Momordica charantia. J Sci Food Agric 2011;91:2443-2448.
82.Liu SX, Fu ZP, Mu RM, Hu ZB, Wang FJ, Wang XR. Expression and characterization of Momordica chanrantia antihyperglycaemic peptide in Escherichia coli. Mol Biol Rep 2010;37:1781-1786.
83.Wang FJ, Song HL, Wang XM, Zhang WJ, Wang BL, Zhao J, Hu ZB. Tandem multimer expression and preparation of hypoglycemic peptide MC6 from Momordica charantia in Escherichia coli. Appl Biochem Biotechnol 2012;166:612-619.
84.Menting JG, Whittaker J, Margetts MB, Whittaker LJ, Kong GK, Smith BJ, Watson CJ, Zakova L, Kletvikova E, Jiraček J, Chan SJ, Steiner DF, Dodson GG, Brzozowski AM, Weiss MA, Ward CW, Lawrence MC. How insulin engages its primary binding site on the insulin receptor. Nature 2013;493:241-245.
85.De Meyts P. Insulin and its receptor: structure, function and evolution. Bioessays 2004;26:1351-1362.
86.Ward CW, Lawrence MC. Similar but different: ligand-induced activation of the insulin and epidermal growth factor receptor families. Curr Opin Struct Biol 2012;22:360-366.
87.Shang W, Yang Y, Zhou L, Jiang B, Jin H, Chen M. Ginsenoside Rb1 stimates glucose uptake through insulin-like signaling pathway in 3T3-L1 adipocytes. J Endocrinol 2008;198:561-569.
88.Choi SS, Cha BY, Iida K, Sato M, Lee YS, Teruya T, Yonezawa T, Nagai K, Woo JT. Honokiol enhances adipocyte differentiation by potentiating insulin signaling in 3T3-L1 preadipocytes. J Nat Med 2011;65:424-430.
89.Wang CH, Lin WD, Bau DT, Chou IC, Tsai CH, Tsai FJ. Appearance of acanthosis nigricans may precede obesity: An involvement of the insulin/IGF receptor signaling pathway. BioMedicine 2013;3:82-87.
90.Gandhi GR, Stalin A, Balakrishna K, Ignacimuthu S, Paulraj MG, Vishal R. Insulin sensitization via partial agonism of PPARγ and glucose uptake through translocation and activation of GLUT4 in PI3K/p-Akt signaling pathway by embelin in type 2 diabetic rats. Biochim Biophys Acta 2013;1830:2243-2255.
91.Zhu S, Sun F, Li W, Cao Y, Wang C, Wang Y, Liang D, Zhang R, Zhang S, Wang H, Cao F. Apelin stimulates glucose uptake through the PI3K/Akt pathway and improves insulin resistance in 3T3-L1 adipocytes. Mol Cell Biochem 2011;353:305-313.
92.Granata R, Gallo D, Luque RM, Baragli A Scarlatti F, Grande C, Gesmundo I, Cordoba-Chacon J, Bergandi L, Settanni F, Togliatto G, Volante M, Garetto S, Annunziata M, Chanclon B, Gargantini E, Rocchietto S, Matera L, Datta G, Morino M, Brizzi MF, Ong H, Camussi G, Castano JP, Papotti M, Ghigo E. Obestatin regulates adipocyte function and protects against diet-induced insulin resistance and inflammation. FASEB J 2012;26:3393-3411.
93.Lee A, Hakuno F, Northcott P, Pessin JE, Rozakis Adcock M. Nexilin, a cardiomyopathy-associated F-actin binding protein, binds and regulates IRS1 signaling in skeletal muscle cells. PLoS One 2013;8:e55634.
94.Ravichandran LV, Chen H, Li Y, Quon MJ. Phosphorylation of PTPB1 at Ser(50) by Akt impairs its ability to dephosphorylate the insulin receptor. Molecular Endocrinology 2001;15:1768-1780.
95.Rome S, Clement K, Rabasa-Lhoret R, Loizon E, Poitou C, Barsh GS, Riou JP, Laville M, Vidal H. Microarray profiling of human skeletal muscle reveals that insulin regulates approximately 800 genes during a hyperinsulinemic clamp. J Biol Chem 2003;278:18063-18068.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top