跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.213) 您好!臺灣時間:2025/11/09 08:06
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:朱行健
研究生(外文):Chu, Hsing-Chien
論文名稱:低功率電流模式雙斜率式互補金氧半溫度感測器
論文名稱(外文):A Low-Power Current-Mode Dual-Slope CMOS Temperature Sensor
指導教授:洪崇智
指導教授(外文):Hung, Chung-Chih
學位類別:博士
校院名稱:國立交通大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:英文
論文頁數:83
中文關鍵詞:溫度感測器
外文關鍵詞:Temperature sensors
相關次數:
  • 被引用被引用:0
  • 點閱點閱:232
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文貢獻了一種溫度感測的新可能,並且呈現一個可行的原型。本篇論文將介紹一個新穎的低成本低功率雙斜率式溫度感測晶片。本晶片使用了一個正比於絕對溫度(PTAT)的電流產生器,其運作在電晶體的次臨界區。另外還用了一個對溫度不敏感的互補式金氧半電晶體反向器,此反相器用以產生一個PTAT脈寬之脈波,並可以取代傳統式的電壓比較器,節省了更多功耗與面積。輸出之PTAT脈波接著以一個二進位計數器來做數位量化。本溫度感測晶片,在-40°C到85°C的工業溫度範圍內,達到-3.39/+2°C 以內的誤差,而平均溫度解析度可達0.259°C/LSB。感測器的轉換率達到3.5 kSa/s,而且只需2V電壓即可使用,功耗僅14.286 μW,能源效率可達4.082 nJ/Sa,並擁有0.274 nJ°C2 的resolution FoM。本晶片以TSMC 0.35 μm CMOS 製程實現。核心電路所占面積僅0.0345 mm2。

其中晶片採用的雙斜率架構集合結構精巧、省電、高解析度與精確度、高設計彈性、免熱電偶等等的眾多優點,以相當成熟又低成本之製程即可實現,不需價格高昂的製程。它非常適合用於快速溫度監測、電路系統之熱管理,適合整合進任何積體電路及晶片封裝。可以用於任何可攜式裝置、消費性電子、生醫電子、空調與製冷、工業生產、車用電子,亦可輕易用在任何物連網裝置中。
This dissertation contributes a new possibility for temperature sensing and presents a feasible prototype. A novel low-cost low-power dual-slope CMOS temperature sensor is presented in this dissertation. It employs a proportional-to-absolute-temperature (PTAT) current generator, which operates in the sub-threshold region, and a novel temperature-insensitive CMOS inverter, replacing a traditional voltage comparator for power saving and compactness, to create PTAT pulse width. A binary counter is then used to quantize the pulse to a digital output value. It achieves a temperature inaccuracy of -3.39 °C to +2 °C over the common industrial temperature range from -40 °C to 85 °C for five measured chip samples, and an average temperature resolution of 0.259 °C/LSB. The conversion rate of the digital output is 3.5 kSa/s. 2 V supply voltage is used and total power dissipation is 14.286 μW, leading to 4.082 nJ/Sa energy efficiency and 0.274 nJ°C2 resolution FoM. It was fabricated by TSMC 0.35 μm CMOS process and the core area occupies 0.0345 mm2.

The used dual-slope architecture has the advantages of compactness, power-saving, high resolution, good accuracy, high design flexibility, and relieving the use of the extra off-chip thermocouple. It can be implemented by common CMOS process. The sensor is suitable for rapid temperature monitoring, consumer electronics, biomedical electronics, air conditioner or refrigerator, industry, automotive electronics, and any IoT (internet of things) device.
Abstract in Chinese ..... i
Abstract ..... iii
Acknowledgment ..... v
Contents ..... vii
List of Tables ..... ix
List of Figures ..... xi
Chapter 1 Introduction ..... p.1
1.1. Market and Application ..... p.1
1.2. Introduction ..... p.3
1.3. This Work ..... p.4
Chapter 2 Temperature Sensors ..... p.5
2.1. Thermal Couple ..... p.5
2.2. BJT Temperature Sensor ..... p.7
2.3. MOS Temperature Sensor ..... p.8
2.4. Thermistor and Resistance Temperature Detector ..... p.22
2.5. Thermal Diffusion ..... p.23
2.6. Other Techniques and Reference Information ..... p.24
Chapter 3 A Current-Mode Dual-Slope CMOS Temperature Sensor ..... p.25
3.1. Principle and Equations ..... p.25
3.2. Circuit Design ..... p.31
3.2.1. PTAT Current and Reference Current ..... p.31
3.2.2. Inverter-Based Comparator ..... p.35
3.2.3. Counter and Register ..... p.49
3.3. Design Consideration and Trade-Off ..... p.51
Chapter 4 Measurement Consideration and Results ..... p.55
4.1. Measurement Setup ..... p.55
4.2. Measurement Process ..... p.57
4.3. Measurement Results ..... p.62
Chapter 5 Conclusion and Future Work ..... p.73
5.1. Conclusion ..... p.73
5.2. Future Work ..... p.74
Appendix ..... p.75
A.1 Infrared ..... p.75
A.2 Optical Fiber ..... p.77
Reference ..... p.79
Vita ..... p.83
[1] J. Jin, J. Gubbi, S. Marusic, and M. Palaniswami, “An information framework for creating a smart city through Internet of Things,” IEEE Internet Things J., vol. 1, no. 2, pp. 112–121, Apr. 2014.
[2] H. Yue, L. Guo, R. Li, H. Asaeda, and Y. Fang, “DataClouds: enabling community-based data-centric services over the Internet of Things,” IEEE Internet Things J., vol. 1, no. 5, pp. 472–482, Oct. 2014.
[3] K. Souri, Y. Chae, and K. A. A. Makinwa, “A CMOS temperature sensor with a voltage-calibrated inaccuracy of ±0.15°C (3σ) from -55°C to 125°C, ” IEEE J. Solid-State Circuits, vol. 48, no. 1, pp. 292–301, Jan. 2013.
[4] A. Heidary, G. Wang, K. Makinwa, and G. Meijer, “A BJT-based CMOS temperature sensor with a 3.6pJ·K2-resolution FoM,” in Proc. IEEE Int. Solid-State Circuits Conf., pp. 224–226, Feb. 2014.
[5] J. S. Shor and K. Luria, “Miniaturized BJT-based thermal sensor for microprocessors in 32- and 22-nm technologies,” IEEE J. Solid-State Circuits, vol. 48, no. 11, pp. 2860–2867, Nov. 2013.
[6] B. Wang, M.-K. Law, A. Bermak, and H. C. Luong, “A passive RFID tag embedded temperature sensor with improved process spreads immunity for a -30°C to 60°C sensing range,” IEEE Trans. Circuits Syst. I, vol. 61, no. 2, pp. 337–346, Feb. 2014.
[7] A. L. Aita, M. A. P. Pertijs, K. A. A. Makinwa, J. H. Huijsing, and G. C. M. Meijer, “Low-power CMOS smart temperature sensor with a batch-calibrated inaccuracy of ±0.25 °C (3σ) from -70 °C to 130 °C,” IEEE Sensors J., vol. 13, no. 5, pp. 1840–1848, May 2013.
[8] F. Sebastiano, L. J. Breems, K. A. A. Makinwa, S. Drago, D. M. W. Leenaerts, and B. Nauta, “A 1.2V 10µW NPN-based temperature sensor in 65nm CMOS with an inaccuracy of ±0.2°C (3σ) from –70°C to 125°C,” in Proc. IEEE Int. Solid-State Circuits Conf., pp. 312–313, Feb. 2010.
[9] F. Sebastiano, L. J. Breems, K. A. A. Makinwa, S. Drago, D. M. W. Leenaerts, and B. Nauta, “A 1.2-V 10-µW NPN-based temperature sensor in 65-nm CMOS with an inaccuracy of 0.2 °C (3σ) from –70 °C to 125 °C,” IEEE J. Solid-State Circuits, vol. 45, no. 12, pp. 2591–2601, Dec. 2010.
[10] J. Yin, J. Yi, M. K. Law, Y. Lin, M. C. Lee, K. P. Ng, B. Gao, H. C. Luong, A. Bermak, M. Chan, W.-H. Ki, C.-Y. Tsui, and M. Yuen, “A system-on-chip EPC Gen-2 passive UHF RFID tag with embedded temperature sensor,” IEEE J. Solid-State Circuits, vol. 45, no. 11, pp. 2404–2420, Nov. 2010.
[11] S. Hwang, J. Koo, K. Kim, H. Lee, and C. Kim, “A 0.008 mm2 500 μW 469 kS/s frequency-to-digital converter based CMOS temperature sensor with process variation compensation,” IEEE Trans. Circuits Syst. I, vol. 60, no. 9, pp. 2241–2248, Sep. 2013.
[12] Y.-J. An, K. Ryu, D.-H. Jung, S.-H. Woo, and S.-O. Jung, “An energy efficient time-domain temperature sensor for low-power on-chip thermal management,” IEEE Sensors J., vol. 14, no. 1, pp. 104–110, Jan. 2014.
[13] K. Kim, H. Lee, C. Kim, and M. Rencz, “366-kS/s 1.09-nJ 0.0013-mm2 frequency-to-digital converter based CMOS temperature sensor utilizing multiphase clock,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 21, no. 10, pp. 1950–1954, Oct. 2013.
[14] D. Ha, K. Woo, S. Meninger, T. Xanthopoulos, E. Crain, and D. Ham, “Time-domain CMOS temperature sensors with dual delay-locked loops for microprocessor thermal monitoring,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 20, no. 9, pp. 1590–1601, Sep. 2012.
[15] P. Chen, S.-C. Chen, Y.-S. Shen, and Y.-J. Peng, “All-digital time-domain smart temperature sensor with an inter-batch inaccuracy of -0.7°C - +0.6°C after one-point calibration,” IEEE Trans. Circuits Syst. I, vol. 58, no. 5, pp. 913–920, May. 2011.
[16] C.-C. Chen and H.-W. Chen, “A low-cost CMOS smart temperature sensor using a thermal-sensing and pulse-shrinking delay line,” IEEE Sensors J., vol. 14, no. 1, pp. 278–284, Jan. 2014.
[17] Y. Kim, W. Choi, J. Kim, S. Lee, S. Lee, H. Kim, K. A. A. Makinwa, Y. Chae, and T. W. Kim, “A 0.02mm2 embedded temperature sensor with ±2°C inaccuracy for self-refresh control in 25nm mobile DRAM,” in Proc. European Solid-State Circuits Conf., pp. 267–270, Sep. 2015.
[18] W. Zhao, R. Pan, Y. Ha, and Z. Yang, “A 0.4V 280-nW frequency reference-less nearly all-digital hybrid domain temperature sensor,” in Proc. IEEE Asian Solid-State Circuits Conf., pp. 301–304, Nov. 2014.
[19] P. Chen, C.-C. Chen, Y.-H. Pen, K.-M. Wang, and Y.-S. Wang, “A time-domain SAR smart temperature sensor with curvature compensation and a 3σ inaccuracy of −0.4°C ~ +0.6°C over a 0°C to 90°C range,” IEEE J. Solid-State Circuits, vol. 45, no. 3, pp. 600–609, Mar. 2010.
[20] D. Shim, H. Jeong, H. Lee, C. Rhee, D.-K. Jeong, and S. Kim, “A process-variation-tolerant on-chip CMOS thermometer for auto temperature compensated self-refresh of low-power mobile DRAM,” IEEE J. Solid-State Circuits, vol. 48, no. 10, pp. 2550–2557, Oct. 2013.
[21] M. H. Perrott, J. C. Salvia, F. S. Lee, A. Partridge, S. Mukherjee, C. Arft, J. Kim, N. Arumugam, P. Gupta, S. Tabatabaei, S. Pamarti, H. Lee, and F. Assaderaghi, “A temperature-to-digital converter for a MEMS-based programmable oscillator with < ±0.5-ppm frequency stability and < 1-ps integrated jitter,” IEEE J. Solid-State Circuits, vol. 48, no. 1, pp. 276–291, Jan. 2013.
[22] C.-K. Wu, W.-S. Chan, and T.-H. Lin, “A 80kS/s 36μW resistor-based temperature sensor using BGR-free SAR ADC with a unevenly-weighted resistor string in 0.18μm CMOS,” in Proc. IEEE Int. Symp. Very Large Scale Integr (VLSI), pp. 222–223, Jun. 2011.
[23] D. Ruffieux, F. Krummenacher, A. Pezous, and G. Spinola-Durante, “Silicon Resonator Based 3.2 μW Real Time Clock With ±10 ppm Frequency Accuracy,” IEEE J. Solid-State Circuits, vol. 45, no. 1, pp. 276–291, Jan. 2010.
[24] S. M. Kashmiri, S. Xia, and K. A. A. Makinwa, “A temperature- to-digital converter based on an optimized electrothermal filter,” IEEE J. Solid-State Circuits, vol. 44, no. 7, pp. 2026–2035, Jul. 2009.
[25] C. V. Vroonhoven, D. D’Aquino, and K. Makinwa, “A ±0.4°C (3σ) -70 to 200°C time-domain temperature sensor based on heat diffusion in Si and SiO2,” in Proc. IEEE Int. Solid-State Circuits Conf., pp. 204–206, Feb. 2012.
[26] A. F. da Silva, A. F. Gonçalves, L. A. de A. Ferreia, F. M. M. Araújo, P. M. Mendes, and J. H. Correia, “A smart skin PVC foil based on FBG sensors for monitoring strain and temperature,” IEEE Trans. Ind. Electron., vol. 58, no. 7, pp. 2728–2735, Jul 2011.
[27] L. Demeûs, V. Dessard, A. Viviani, S. Adriaensen, and D. Flandre, “Integrated sensor and electronic circuits in fully depleted SOI technology for high-temperature applications,” IEEE Trans. Ind. Electron., vol. 48, no. 2, pp. 272–280, Apr. 2001.
[28] G. Chowdhury and A. Hassibi, “An on-chip temperature sensor with a self-discharging diode in 32-nm SOI CMOS,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 59, no. 9, pp. 568–572, Sep. 2012.
[29] S. Paek, W. Shin, J. Lee, H.-E. Kim, J.-S. Park, and L.-S. Lee, “Hybrid temperature sensor network for area-efficient on-chip thermal map sensing,” IEEE J. Solid- State Circuits, vol. 50, no.2, pp. 610–618, Feb. 2015.
[30] M. A. P. Pertijs, “Precision temperature sensors in CMOS technology,” Ph.D. Dissertation, Delft University of Technology, Delft, The Netherlands, 2005.
[31] M. A. P. Pertijs and J. H. Huijsing, Precision Temperature Sensors in CMOS Technology, Dordrecht: Springer, 2006.
[32] K.A.A. Makinwa, "Temperature Sensor Performance Survey," [Online]. Available: http://ei.ewi.tudelft.nl/docs/TSensor_survey.xls
[33] P. E. Allen and D. R. Holberg, CMOS Analog Circuit Design, 2rd ed. New York: Oxford University Press, 2010.
[34] Y. Tsividis and C. McAndrew, Operation and Modeling of the MOS Transistor, 3rd ed. New York: Oxford University Press, 2011.
[35] I. M. Filanovsky and A. Allam, “Mutual compensation of mobility and threshold voltage temperature effects with applications in CMOS circuits,” IEEE Trans. Circuits Syst. I, vol. 48, no. 7, pp. 876–884, Jul. 2001.
[36] S. M. Sze and K. K. Ng, Physics of Semiconductor Devices, 3rd ed. New York: John Wiley & Sons, 2007.
[37] R. A. Blauschild, P. A. Tucci, R. S. Muller, and R. G. Meyer, “A new NMOS temperature-stable voltage reference,” IEEE J. Solid- State Circuits, vol. 13, no. 6, pp. 767–774, Dec. 1978.
[38] O. Leistiko, A. S. Grove, and C. T. Sah, “Electron and hole mobilities in inversion layers on thermally oxidized silicon surfaces,” IEEE Trans. Electron Devices, vol. 12, no. 5, pp. 248–254, May. 1965.
[39] L. H. Jung, T. Lehmann, G. J. Suaning, and N. H. Lovell, “A semi-static threshold-triggered delay element for low power applications,” in Proc. IEEE Int. Symp. Circuits and Systems (ISCAS), pp. 833–836, May 2011.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top