|
[1] J. Jin, J. Gubbi, S. Marusic, and M. Palaniswami, “An information framework for creating a smart city through Internet of Things,” IEEE Internet Things J., vol. 1, no. 2, pp. 112–121, Apr. 2014. [2] H. Yue, L. Guo, R. Li, H. Asaeda, and Y. Fang, “DataClouds: enabling community-based data-centric services over the Internet of Things,” IEEE Internet Things J., vol. 1, no. 5, pp. 472–482, Oct. 2014. [3] K. Souri, Y. Chae, and K. A. A. Makinwa, “A CMOS temperature sensor with a voltage-calibrated inaccuracy of ±0.15°C (3σ) from -55°C to 125°C, ” IEEE J. Solid-State Circuits, vol. 48, no. 1, pp. 292–301, Jan. 2013. [4] A. Heidary, G. Wang, K. Makinwa, and G. Meijer, “A BJT-based CMOS temperature sensor with a 3.6pJ·K2-resolution FoM,” in Proc. IEEE Int. Solid-State Circuits Conf., pp. 224–226, Feb. 2014. [5] J. S. Shor and K. Luria, “Miniaturized BJT-based thermal sensor for microprocessors in 32- and 22-nm technologies,” IEEE J. Solid-State Circuits, vol. 48, no. 11, pp. 2860–2867, Nov. 2013. [6] B. Wang, M.-K. Law, A. Bermak, and H. C. Luong, “A passive RFID tag embedded temperature sensor with improved process spreads immunity for a -30°C to 60°C sensing range,” IEEE Trans. Circuits Syst. I, vol. 61, no. 2, pp. 337–346, Feb. 2014. [7] A. L. Aita, M. A. P. Pertijs, K. A. A. Makinwa, J. H. Huijsing, and G. C. M. Meijer, “Low-power CMOS smart temperature sensor with a batch-calibrated inaccuracy of ±0.25 °C (3σ) from -70 °C to 130 °C,” IEEE Sensors J., vol. 13, no. 5, pp. 1840–1848, May 2013. [8] F. Sebastiano, L. J. Breems, K. A. A. Makinwa, S. Drago, D. M. W. Leenaerts, and B. Nauta, “A 1.2V 10µW NPN-based temperature sensor in 65nm CMOS with an inaccuracy of ±0.2°C (3σ) from –70°C to 125°C,” in Proc. IEEE Int. Solid-State Circuits Conf., pp. 312–313, Feb. 2010. [9] F. Sebastiano, L. J. Breems, K. A. A. Makinwa, S. Drago, D. M. W. Leenaerts, and B. Nauta, “A 1.2-V 10-µW NPN-based temperature sensor in 65-nm CMOS with an inaccuracy of 0.2 °C (3σ) from –70 °C to 125 °C,” IEEE J. Solid-State Circuits, vol. 45, no. 12, pp. 2591–2601, Dec. 2010. [10] J. Yin, J. Yi, M. K. Law, Y. Lin, M. C. Lee, K. P. Ng, B. Gao, H. C. Luong, A. Bermak, M. Chan, W.-H. Ki, C.-Y. Tsui, and M. Yuen, “A system-on-chip EPC Gen-2 passive UHF RFID tag with embedded temperature sensor,” IEEE J. Solid-State Circuits, vol. 45, no. 11, pp. 2404–2420, Nov. 2010. [11] S. Hwang, J. Koo, K. Kim, H. Lee, and C. Kim, “A 0.008 mm2 500 μW 469 kS/s frequency-to-digital converter based CMOS temperature sensor with process variation compensation,” IEEE Trans. Circuits Syst. I, vol. 60, no. 9, pp. 2241–2248, Sep. 2013. [12] Y.-J. An, K. Ryu, D.-H. Jung, S.-H. Woo, and S.-O. Jung, “An energy efficient time-domain temperature sensor for low-power on-chip thermal management,” IEEE Sensors J., vol. 14, no. 1, pp. 104–110, Jan. 2014. [13] K. Kim, H. Lee, C. Kim, and M. Rencz, “366-kS/s 1.09-nJ 0.0013-mm2 frequency-to-digital converter based CMOS temperature sensor utilizing multiphase clock,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 21, no. 10, pp. 1950–1954, Oct. 2013. [14] D. Ha, K. Woo, S. Meninger, T. Xanthopoulos, E. Crain, and D. Ham, “Time-domain CMOS temperature sensors with dual delay-locked loops for microprocessor thermal monitoring,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 20, no. 9, pp. 1590–1601, Sep. 2012. [15] P. Chen, S.-C. Chen, Y.-S. Shen, and Y.-J. Peng, “All-digital time-domain smart temperature sensor with an inter-batch inaccuracy of -0.7°C - +0.6°C after one-point calibration,” IEEE Trans. Circuits Syst. I, vol. 58, no. 5, pp. 913–920, May. 2011. [16] C.-C. Chen and H.-W. Chen, “A low-cost CMOS smart temperature sensor using a thermal-sensing and pulse-shrinking delay line,” IEEE Sensors J., vol. 14, no. 1, pp. 278–284, Jan. 2014. [17] Y. Kim, W. Choi, J. Kim, S. Lee, S. Lee, H. Kim, K. A. A. Makinwa, Y. Chae, and T. W. Kim, “A 0.02mm2 embedded temperature sensor with ±2°C inaccuracy for self-refresh control in 25nm mobile DRAM,” in Proc. European Solid-State Circuits Conf., pp. 267–270, Sep. 2015. [18] W. Zhao, R. Pan, Y. Ha, and Z. Yang, “A 0.4V 280-nW frequency reference-less nearly all-digital hybrid domain temperature sensor,” in Proc. IEEE Asian Solid-State Circuits Conf., pp. 301–304, Nov. 2014. [19] P. Chen, C.-C. Chen, Y.-H. Pen, K.-M. Wang, and Y.-S. Wang, “A time-domain SAR smart temperature sensor with curvature compensation and a 3σ inaccuracy of −0.4°C ~ +0.6°C over a 0°C to 90°C range,” IEEE J. Solid-State Circuits, vol. 45, no. 3, pp. 600–609, Mar. 2010. [20] D. Shim, H. Jeong, H. Lee, C. Rhee, D.-K. Jeong, and S. Kim, “A process-variation-tolerant on-chip CMOS thermometer for auto temperature compensated self-refresh of low-power mobile DRAM,” IEEE J. Solid-State Circuits, vol. 48, no. 10, pp. 2550–2557, Oct. 2013. [21] M. H. Perrott, J. C. Salvia, F. S. Lee, A. Partridge, S. Mukherjee, C. Arft, J. Kim, N. Arumugam, P. Gupta, S. Tabatabaei, S. Pamarti, H. Lee, and F. Assaderaghi, “A temperature-to-digital converter for a MEMS-based programmable oscillator with < ±0.5-ppm frequency stability and < 1-ps integrated jitter,” IEEE J. Solid-State Circuits, vol. 48, no. 1, pp. 276–291, Jan. 2013. [22] C.-K. Wu, W.-S. Chan, and T.-H. Lin, “A 80kS/s 36μW resistor-based temperature sensor using BGR-free SAR ADC with a unevenly-weighted resistor string in 0.18μm CMOS,” in Proc. IEEE Int. Symp. Very Large Scale Integr (VLSI), pp. 222–223, Jun. 2011. [23] D. Ruffieux, F. Krummenacher, A. Pezous, and G. Spinola-Durante, “Silicon Resonator Based 3.2 μW Real Time Clock With ±10 ppm Frequency Accuracy,” IEEE J. Solid-State Circuits, vol. 45, no. 1, pp. 276–291, Jan. 2010. [24] S. M. Kashmiri, S. Xia, and K. A. A. Makinwa, “A temperature- to-digital converter based on an optimized electrothermal filter,” IEEE J. Solid-State Circuits, vol. 44, no. 7, pp. 2026–2035, Jul. 2009. [25] C. V. Vroonhoven, D. D’Aquino, and K. Makinwa, “A ±0.4°C (3σ) -70 to 200°C time-domain temperature sensor based on heat diffusion in Si and SiO2,” in Proc. IEEE Int. Solid-State Circuits Conf., pp. 204–206, Feb. 2012. [26] A. F. da Silva, A. F. Gonçalves, L. A. de A. Ferreia, F. M. M. Araújo, P. M. Mendes, and J. H. Correia, “A smart skin PVC foil based on FBG sensors for monitoring strain and temperature,” IEEE Trans. Ind. Electron., vol. 58, no. 7, pp. 2728–2735, Jul 2011. [27] L. Demeûs, V. Dessard, A. Viviani, S. Adriaensen, and D. Flandre, “Integrated sensor and electronic circuits in fully depleted SOI technology for high-temperature applications,” IEEE Trans. Ind. Electron., vol. 48, no. 2, pp. 272–280, Apr. 2001. [28] G. Chowdhury and A. Hassibi, “An on-chip temperature sensor with a self-discharging diode in 32-nm SOI CMOS,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 59, no. 9, pp. 568–572, Sep. 2012. [29] S. Paek, W. Shin, J. Lee, H.-E. Kim, J.-S. Park, and L.-S. Lee, “Hybrid temperature sensor network for area-efficient on-chip thermal map sensing,” IEEE J. Solid- State Circuits, vol. 50, no.2, pp. 610–618, Feb. 2015. [30] M. A. P. Pertijs, “Precision temperature sensors in CMOS technology,” Ph.D. Dissertation, Delft University of Technology, Delft, The Netherlands, 2005. [31] M. A. P. Pertijs and J. H. Huijsing, Precision Temperature Sensors in CMOS Technology, Dordrecht: Springer, 2006. [32] K.A.A. Makinwa, "Temperature Sensor Performance Survey," [Online]. Available: http://ei.ewi.tudelft.nl/docs/TSensor_survey.xls [33] P. E. Allen and D. R. Holberg, CMOS Analog Circuit Design, 2rd ed. New York: Oxford University Press, 2010. [34] Y. Tsividis and C. McAndrew, Operation and Modeling of the MOS Transistor, 3rd ed. New York: Oxford University Press, 2011. [35] I. M. Filanovsky and A. Allam, “Mutual compensation of mobility and threshold voltage temperature effects with applications in CMOS circuits,” IEEE Trans. Circuits Syst. I, vol. 48, no. 7, pp. 876–884, Jul. 2001. [36] S. M. Sze and K. K. Ng, Physics of Semiconductor Devices, 3rd ed. New York: John Wiley & Sons, 2007. [37] R. A. Blauschild, P. A. Tucci, R. S. Muller, and R. G. Meyer, “A new NMOS temperature-stable voltage reference,” IEEE J. Solid- State Circuits, vol. 13, no. 6, pp. 767–774, Dec. 1978. [38] O. Leistiko, A. S. Grove, and C. T. Sah, “Electron and hole mobilities in inversion layers on thermally oxidized silicon surfaces,” IEEE Trans. Electron Devices, vol. 12, no. 5, pp. 248–254, May. 1965. [39] L. H. Jung, T. Lehmann, G. J. Suaning, and N. H. Lovell, “A semi-static threshold-triggered delay element for low power applications,” in Proc. IEEE Int. Symp. Circuits and Systems (ISCAS), pp. 833–836, May 2011.
|