跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.41) 您好!臺灣時間:2026/01/13 21:50
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:石宜巧
研究生(外文):Yi-CiaoShih
論文名稱:結合熱蝕與襯底提高牙科氧化鋯-陶瓷鍵結
論文名稱(外文):Combining thermal etching treatment and liners to improve zirconia-ceramic bonding
指導教授:莊淑芬莊淑芬引用關係
指導教授(外文):Shu-Fen Chuang
學位類別:碩士
校院名稱:國立成功大學
系所名稱:口腔醫學研究所
學門:醫藥衛生學門
學類:牙醫學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:英文
論文頁數:50
中文關鍵詞:氧化鋯陶瓷熱蝕刻鍵結強度
外文關鍵詞:Zirconiaveneering ceramicthermal etching treatmentbond strength
相關次數:
  • 被引用被引用:0
  • 點閱點閱:199
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在牙科修復的製作,近期應用氧化鋯材料作為支架以取代傳統金屬材料。氧化鋯具有優異的機械性質,但是氧化鋯與陶瓷鍵結較脆弱。為了防止氧化鋯和陶瓷之間的剝落,必須藉一些方法來改善陶瓷的鍵結強度,如在氧化鋯表面使用襯底(Liner)陶瓷和熱蝕處理。熱蝕也是發展微觀結構的重要方法。而Liner可以調整氧化鋯顏色以及增加表面濕潤性。本研究的目的是希望藉由結合熱蝕與使用襯底之表面處理方法來提高氧化鋯和陶瓷之間的鍵結強度。
第一部分實驗是探討熱蝕對氧化鋯的表面性質影響。首先製備氧化鋯(Cercon base)試片,經過拋光後,在三種不同的熱蝕溫度(1000°C、1100°C、和1200°C)下處理30分鐘。使用掃描式電子顯微鏡、原子力顯微鏡、接觸角、X-ray繞射、抗彎強度觀測其表面形貌、表面粗糙度、濕潤性、T-M相轉換和機械性質。第二部分探討不同熱蝕的氧化鋯陶瓷對兩種襯底陶瓷Cercon ceram Kiss (LK)與Creation ZI/ZI-F (LC)的影響。於試片上進行濕潤性測試、並對氧化鋯與陶瓷進行電子顯微鏡觀察。第三部分實驗是探討結合熱蝕與襯底對陶瓷鍵結的影響。在處理後的氧化鋯表面堆疊陶瓷(直徑3mm,高3.5mm)並進行燒結,使用萬能試驗機進行鍵結強度測試(負載速度每分鐘0.5毫米)。
第一部分實驗結果中,掃描電子顯微鏡顯示熱蝕後的氧化鋯表面有晶界呈現,1000°C以上熱蝕處理可增加表面濕潤性和表面粗糙度,而熱蝕處理不會影響t-m相轉換以及抗彎曲強度。第二部分結果中,使用兩種襯底陶瓷均提高表面親水性。LK襯底陶瓷有效降低表面接觸角。以EDS於氧化鋯與陶瓷界面檢測不同元素發現矽有滲入至鋯層的現象。在第三部分實驗中,以1100°C熱蝕搭配使用LK襯底陶瓷,表現出最高的鍵結強度(27.39MPa)。斷裂破壞模式主要是以混合行破壞模式為主。根據研究結果顯示,使用1100°C熱蝕配合襯底可用來改善氧化鋯和飾面陶瓷之間的鍵結強度,其原因是熱蝕處理產生晶界開放與熱蝕溝,因而增加表面能與親水性。搭配較具親水性的LK襯底陶瓷,有效改善陶瓷黏著強度。
Yttria tetragonal zirconia polycrystalline (Y-TZP) materials are currently applied in fabricating dental prosthetic frameworks to replace traditional gold alloys. However, these excellent mechanical properties lead to invulnerable surface and a weak link to veneering porcelain (VP). Surface treatment of the Y-TZP surface is required to enhance bonding with VP and thus prevent chipping. Many methods have been developed to improve bond strengths between zirconia cores and VP such as the thermal etching (TE) and use of liner porcelain and on Y-TZP surface. Thermal etching is an important method for developing the microstructures. Liner is used to mask the color of framework to increase the surface wetting property. The purpose of this study was to improve zirconia-ceramics bond strength by combining TE and liners as the surface treatments.
The first part was to investigate the effects of thermal etching on dental zirconia. Zirconia (Cercon) disks were prepared and divided into four groups: as polished and thermal etching at three temperatures 1000 °C, 1100 °C, and 1200 °C for 30 minutes. The surfaces morphology of treated zirconia frameworks was carried out under scanning electron microscopy. The surface roughness, wettability, phase transformation, and mechanical properties of thermal etching-treated zirconia were measured by atomic force microscope (AFM), water contact angle test, XRD, biaxial flexure strength test. The second part was to examine the effect of liners on dental zirconia. Two liners porcelains: Cercon ceram Kiss (LK) and Creation ZI / ZI-F (LC) were examined. The wettability of these specimens was evaluated. SEM with EDS was used to analyze the interfaces of the zirconia-ceramics. The third part was to examine combined TE treatment and liner on the bonding of zirconia-ceramic. A cylinder of veneering ceramic (3mm in diameter and 3.5 mm in height) was fabricated and fired on the zirconia specimens. The shear bond strength (SBS) testing was performed in a universal testing machine with a 1 kN load cell and a crosshead speed of 0.5 mm/min.
The first part experiment results showed that TE treatment exposed grain on zirconia surface. All the TE treatments increased the surface roughness and wettability. These TE treatments did not alter t-m phase transformation and did not affect biaxial flexural strength. The second part results of the study showed that the surface wettability was increased after liners treatment, especially in LK group. EDS analysis showed that the penetration of Zr and Si elements through the interfaces from both the zirconia and veneering layers was detected. In the third part experiment, the 1100°C TE VK+LK group showed the highest SBS (27.39 MPa) among the other groups. All groups showed primarily mixture of adhesive and cohesive failure mode. According to these findings, TE treatment groups at 1100°C combined with liner may be a feasible method for improving bond strength between zirconia cores and veneering ceramics. The results indicated that TE caused thermal grooving and increased the surface energy, and the hydrophilic is the best as the LK, its strength effectively improved.
Content
中文摘要 I
ABSTRACT III
誌謝 V
LIST OF TABLES X
LIST OF FIGURES XI
CHAPTER 1 INTRODUCTION 1
1.1. Tetragonal zirconia polycrystalline (TZP) 2
1.2. Fabrication of zirconia-base all ceramic prostheses 4
1.3. Bonding between zirconia and porcelain 5
1.4. Methods to improve veneering-porcelain bonding on zirconia surface 6
1.4.1. Heat treatment 7
1.4.2. Use of liner porcelain 8
1.5. Motivation and objectives 9
CHAPTER 2 MATERIALS AND METHODS 10
2.1. Effects of thermal etching on dental zirconia 12
2.1.1. Surface morphology 13
2.1.2. Atomic force microscope (AFM) evaluation 13
2.1.3. Surface wettability 14
2.1.4. X-ray diffraction analyses 15
2.1.5. Biaxial flexure strength test 15
2.2. Effects of liners on zirconia 16
2.2.1. Surface morphology examination 19
2.2.2. Wettability of zirconia with liner 19
2.2.3. Zirconia-liner ceramic interface observation 20
2.3. Combining thermal etching treatment and liners on ceramic-zirconia bonding 20
2.3.1. Shear bond strength test 22
2.3.2. Fracture surface analysis 23
2.4. Statistical analysis 23
CHAPTER 3 RESULTS 24
3.1. Influences of heat treatments to surface morphology 24
3.1.1. AFM 26
3.1.2. Wettability behavior of surface treatment 28
3.1.3. XRD 29
3.1.4. Biaxial flexural strength 30
3.2. Effects of liners on dental zirconia 31
3.2.1. Surface morphology 31
3.2.2. Wettability 32
3.2.3. Cross sectional morphology 33
3.2.4. Shear bond strength (SBS) 38
3.2.5. Evaluation of fracture mode 39
CHAPTER 4 DISCUSSION 42
CHAPTER 5 CONCLUSION 47
REFERENCES 48
Zarone F, Russo S, Sorrentino R. From porcelain-fused-to-metal to zirconia: clinical and experimental considerations. Dental Materials. 2011;27:83-96.
ARVIDSON K, WRÓBLEWSKI R. Migration of metallic ions from screwposts into dentin and surrounding tissues. European Journal of Oral Sciences. 1978;86:200-5.
Venclikova Z, Benada O, Bartova J, Joska L, Mrklas L. Metallic pigmentation of human teeth and gingiva: morphological and immunological aspects. Dental Materials Journal. 2007;26:96-104.
Raigrodski AJ, Chiche GJ, Potiket N, Hochstedler J, Mohamed SE, Billiot S, et al. The efficacy of posterior three-unit zirconium-oxide–based ceramic fixed partial dental prostheses: A prospective clinical pilot study. Journal of Prosthetic Dentistry. 2006;96:237-44.
Miyazaki T, Hotta Y. CAD/CAM systems available for the fabrication of crown and bridge restorations. Australian Dental Journal. 2011;56:97-106.
VON STEYERN P, Ebbesson S, Holmgren J, Haag P, Nilner K. Fracture strength of two oxide ceramic crown systems after cyclic pre‐loading and thermocycling. Journal of Oral Rehabilitation. 2006;33:682-9.
Jin X-J. Martensitic transformation in zirconia containing ceramics and its applications. Current Opinion in Solid State and Materials Science. 2005;9:313-8.
Christel P, Meunier A, Heller M, Torre J, Peille C. Mechanical properties and short‐term in vivo evaluation of yttrium‐oxide‐partially‐stabilized zirconia. Journal of Biomedical Materials Research. 1989;23:45-61.
Raigrodski AJ. Contemporary materials and technologies for all-ceramic fixed partial dentures: a review of the literature. The Journal of prosthetic dentistry. 2004;92:557-62.
Filser F, Kocher P, Weibel F, Lüthy H, Schärer P, Gauckler L. Reliability and strength of all-ceramic dental restorations fabricated by direct ceramic machining (DCM). International Journal of Computerized Dentistry. 2001;4:89-106.
Suttor D, Bunke K, Hoescheler S, Hauptmann H, Hertlein G. LAVA--the system for all-ceramic ZrO2 crown and bridge frameworks. International Journal of Computerized Dentistry. 2001;4:195-206.
Chen C. Zirconia-reinforced dental restorations: University of Amsterdam. Prom./coprom.: prof. dr. AJ Feilzer & dr. CJ Kleverlaan; 2013.
Rismanchian M, Shafiei S, Askari N, Khodaeian N. Comparison of shear bond strength of two veneering ceramics to zirconia. Dental Research Journal. 2012;9:628.
Sailer I, Feher A, Filser F, Luthy H, Gauckler LJ, Scharer P, et al. Prospective clinical study of zirconia posterior fixed partial dentures: 3-year follow-up. Quintessence international (Berlin, Germany : 1985). 2006;37:685-93.
Sailer I, Fehér A, Filser F, Gauckler LJ, Luthy H, Hammerle CHF. Five-year clinical results of zirconia frameworks for posterior fixed partial dentures. International Journal of Prosthodontics. 2007;20:383.
Isgrò G, Pallav P, van der Zel JM, Feilzer AJ. The influence of the veneering porcelain and different surface treatments on the biaxial flexural strength of a heat-pressed ceramic. Journal of Prosthetic Dentistry. 2003;90:465-73.
Liu D, Matinlinna JP, Tsoi JK-H, Pow EH, Miyazaki T, Shibata Y, et al. A new modified laser pretreatment for porcelain zirconia bonding. Dental Materials. 2013;29:559-65.
Komine F, Fushiki R, Koizuka M, Taguchi K, Kamio S, Matsumura H. Effect of surface treatment on bond strength between an indirect composite material and a zirconia framework. Journal of Oral Science. 2012;54:39-46.
Tada K, Sato T, Yoshinari M. Influence of surface treatment on bond strength of veneering ceramics fused to zirconia. Dental Materials Journal. 2012;31:287-96.
Fischer J, Grohmann P, Stawarczyk B. Effect of zirconia surface treatments on the shear strength of zirconia/veneering ceramic composites. Dent Mater J. 2008;27:448-54.
Aboushelib MN, Kleverlaan CJ, Feilzer AJ. Microtensile bond strength of different components of core veneered all-ceramic restorations: Part II: Zirconia veneering ceramics. Dental Materials. 2006;22:857-63.
Kim HJ, Lim HP, Park YJ, Vang MS. Effect of zirconia surface treatments on the shear bond strength of veneering ceramic. J Prosthet Dent. 2011;105:315-22.
Aboushelib MN, De Jager N, Kleverlaan CJ, Feilzer AJ. Microtensile bond strength of different components of core veneered all-ceramic restorations. Dental Materials. 2005;21:984-91.
Wang G, Zhang S, Bian C, Kong H. Effect of zirconia surface treatment on zirconia/veneer interfacial toughness evaluated by fracture mechanics method. Journal of Dentistry. 2014;42:808-15.
Zarone F, Sorrentino R, Vaccaro F, Traini T, Russo S, Ferrari M. Acid etching surface treatment of feldspathic, alumina and zirconia ceramics: a micromorphological SEM analysis. Int Dent South Afr. 2006;8:50-6.
Sato H, Yamada K, Pezzotti G, Nawa M, Ban S. Mechanical properties of dental zirconia ceramics changed with sandblasting and heat treatment. Dental Materials Journal. 2008;27:408-14.
Rabkin E, Klinger L. The fascination of the grain boundary grooves. Revue de Métallurgie. 2001;98:1059-64.
Täffner U, Carle V, Schäfer U, Hoffmann M. Preparation and microstructural analysis of high-performance ceramics. Metallography and Microstructures: ASM International; 2004. p. 1057-66.
Mullins WW. Theory of thermal grooving. Journal of Applied Physics. 1957;28:333-9.
Garvie RC, Nicholson PS. Phase analysis in zirconia systems. Journal of the American Ceramic Society. 1972;55:303-5.
Wenzel RN. Resistance of solid surfaces to wetting by water. Industrial & Engineering Chemistry. 1936;28:988-94.
Munoz-Tabares J, Jiménez-Piqué E, Reyes-Gasga J, Anglada M. Microstructural changes in ground 3Y-TZP and their effect on mechanical properties. Acta Materialia. 2011;59:6670-83.
Appel CC, Bonanos N. Structural and electrical characterisation of silica-containing yttria-stabilised zirconia. Journal of the European Ceramic Society. 1999;19:847-51.
Fischer J, Stawarzcyk B, Trottmann A, Hämmerle CH. Impact of thermal misfit on shear strength of veneering ceramic/zirconia composites. Dental Materials. 2009;25:419-23.
Guess PC, Kuliš A, Witkowski S, Wolkewitz M, Zhang Y, Strub JR. Shear bond strengths between different zirconia cores and veneering ceramics and their susceptibility to thermocycling. Dental Materials. 2008;24:1556-67.
Özkurt Z, Kazazoglu E, Ünal A. In vitro evaluation of shear bond strength of veneering ceramics to zirconia. Dental Materials Journal. 2010;29:138-46.
Swain M. Unstable cracking (chipping) of veneering porcelain on all-ceramic dental crowns and fixed partial dentures. Acta Biomaterialia. 2009;5:1668-77.
Göstemeyer G, Jendras M, Dittmer MP, Bach F-W, Stiesch M, Kohorst P. Influence of cooling rate on zirconia/veneer interfacial adhesion. Acta Biomaterialia. 2010;6:4532-8.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊