跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.223) 您好!臺灣時間:2025/10/08 02:07
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:賴美智
研究生(外文):Mei-Chih Lai
論文名稱:中草藥用植物紅景天及紅景天的萃取物Salidroside對慢性間歇缺氧心肌凋亡存活訊息途徑機轉研究
論文名稱(外文):Effect of Rhodiola Crenulata and Salidroside herb-related anti-oxidant agents on chronic intermittent hypoxia-induced cardiac apoptotic, survival signaling pathways
指導教授:黃志揚黃志揚引用關係
指導教授(外文):Chih-Yang Huang
學位類別:博士
校院名稱:中國醫藥大學
系所名稱:中醫學系博士班
學門:醫藥衛生學門
學類:醫學學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:英文
論文頁數:61
中文關鍵詞:紅景天紅景天萃取物大花紅景天慢性間歇低氧缺氧呼吸低氧心臟傷害心臟組織凋亡心肌細胞凋亡
外文關鍵詞:apoptosiscaspasecardiachypoxiaFADDFasRhodiolaRhodiola CrenulataSalidrosidesurvivalVEGF
相關次數:
  • 被引用被引用:0
  • 點閱點閱:622
  • 評分評分:
  • 下載下載:22
  • 收藏至我的研究室書目清單書目收藏:2
大花紅景天(RC)是傳統中草藥,此藥物有抗發炎的效果。探討大花紅景天(RC)及紅景天萃取物Salidroside (S)對慢性間歇低氧心肌凋亡動物model C57BL/6J小黑鼠心肌保護機制作用。故本研究評估此藥用植物大花紅景天(RC) 及紅景天萃取物Salidroside (S)對人類慢性間歇低氧心肌之保護效果,並探討其保護預防機制。目的觀察紅景天保護慢性間歇低氧心肌凋亡OSA低氧心肌凋亡。紅景天(Rhodiola)對慢性間歇低氧(CIH) 心肌凋亡作用仍未知。探討大花紅景天(RC)及紅景天萃取物對慢性間歇低氧心肌凋亡動物model C57BL/6J小黑鼠心肌保護機制作用。方法:六十四支5-6個月大C57BL/6J老鼠分四組。控制組RC model組及紅景天萃取物 (Salidroside, S) S model組老鼠第一個月給予正常氧氣(Control)(控制組, 21%氧氣, n=16支) 然後第二個月曝露在正常氧氣和胃管餵食鹽水。低氧組RC model組及紅景天萃取物 (Salidroside,S) S model老鼠慢性間歇低氧(Hypoxia)(低氧組) ,第一個月每天7%氧氣60秒,20%氧氣60秒交替,8小時,第二個月低氧結合每天胃管餵食鹽水5毫克每公斤,每組數n=16支四個星期) 低氧+90RC組和低氧+270RC組(Hypoxia+90RC and Hypoxia+270RC group) 及紅景天萃取物 (Salidroside, S) S model組低氧+10S組和低氧+30S組(Hypoxia+10S and Hypoxia+30S group)第一個月曝露慢性間歇低氧,然後第二個月每天低氧結合口部胃管餵RC (大花紅景天Rhodiola Crenulata) 90毫克每公斤和RC 270毫克每公斤(每組數n=16支) RC model組及紅景天萃取物 (Salidroside, S) S model組第一個月曝露慢性間歇低氧,然後第二個月每天低氧結合口部胃管餵S (紅景天萃取物 (Salidroside, S) S model 10毫克每公斤和S 30毫克每公斤(每組數n=16支)。離體心臟測量心臟重指標,免疫螢光染色(H&E staining), TUNEL 陽性檢測方法(TUNEL-positive assays)和西方墨點法 (Western Blotting). 結果:顯示大花紅景天(RC) RC model組及紅景天萃取物 (Salidroside, S) S model組作用保護慢性間歇低氧誘導心肌凋亡C57BL/6J小黑鼠。由實驗結果可明顯觀察到顯示大花紅景天(RC) RC model組及紅景天萃取物 (Salidroside, S) S model組保護慢性間歇低氧誘導心肌凋亡C57BL/6J小黑鼠作用。發現顯示大花紅景天 (RC) RC model組及紅景天萃取物 (Salidroside, S) S model 組保護慢性間歇低氧誘導心肌凋亡C57BL/6J小黑鼠作用。討論 : 研究結果建議與控制組比較大花紅景天(RC)及紅景天萃取物(S)改進 C57BL/6J小黑鼠誘導慢性間歇低氧心肌Fas-依賴凋亡途徑(Fas-dependent apoptotic pathways) 和 線粒體-依賴凋亡途徑(mitochondria-dependent apoptotic pathways). Compared with control, Hypoxia treatment 大花紅景天RC及紅景天萃取物(S)可保護慢性間歇低氧動物模型心肌凋亡,結果建議紅景天RC及紅景天萃取物S保護OSA睡眠呼吸暫止低氧心肌凋亡,大花紅景天RC及紅景天萃取物S可減輕睡眠呼吸慢性間歇低氧心肌障礙,降低心血管疾病致死危險性。

Background. The goal of this study is to determine if Rhodiola Crenulata (RC) and Salidroside have protective effects on mice hearts with severe sleep apnea model. Methods. Sixty-four C57BL/6J mice 5-6 months old were distributed into 4 groups i.e. Control group (21% O2, 24 hrs per day, 8 weeks, n=16); Hypoxia group (Hypoxia: 7% O2 60 seconds, 20% O2 alternating 60 seconds, 8 hrs per day, 8 weeks, n=16); Model RC : Hypoxia+90RC and Hypoxia+270RC group (Hypoxia for 1st 4 weeks and hypoxia pretreated 90mg/kg and 270mg/kg Rhodiola Crenulata by oral gavage per day for 2nd 4 weeks, each n=16). Model S : Hypoxia+S10 and Hypoxia+S30 group (Hypoxia for 1st 4 weeks and hypoxia pretreated 10mg/kg and 30mg/kg Salidroside by oral gavage per day for 2nd 4 weeks, each n=16). Excised hearts from 4 groups of mice were analyzed for heart weight index changes using H&E staining, TUNEL-positive assays and Western Blotting protein. Results. Cardiac widely dispersed TUNEL-positive apoptotic cells in mice hearts were less in Hypoxia with Rhodiola Crenulata treatment, Hypoxia with Salidroside treatment than those in Hypoxia. Compared with Hypoxia, the protein levels of Fas ligand, Fas death receptors, Fas-Associated Death Domain (FADD), activated caspase 8, and activated caspase 3 (Fas dependent apoptotic pathways) were decreased in Hypoxia with Rhodiola Crenulata treatment, Hypoxia with Salidroside treatment. The protein levels of Bad, Bax, t-Bid, activated caspase 9, activated caspase 3 (mitochondria dependent apoptotic pathway) were less in Hypoxia with Rhodiola Crenulata treatment, Hypoxia with Salidroside treatment than those in hypoxia. The protein levels of Bcl2, Bcl-xL, p-Bad (Bcl2-realted anti-apoptotic pathway) and VEGF, p-PI3k, p-AKT (VEGF-related pro-survival pathway) were higher in Hypoxia with Rhodiola Crenulata treatment than those in hypoxia. Conclusions. Our findings suggest that Rhodiola Crenulata and Salidroside herb-related anti-oxidant agents have protective effects on chronic intermittent hypoxia-induced cardiac apoptosis via Fas-dependent and mitochondria-dependent apoptotic and VEGF-related pro-survival pathway, which might be a influential candidate for developing an optional therapy for OSA.

Contents
Chapter 1 Introduction............................................................................1
1.1 Motivation............................................................................................1
1.2 Obstructive Sleep Apnea (OSA)..........................................................1
1.3 Chronic intermittent hypoxia (CIH)...................................................1
1.4 Rhodiola Crenulata.............................................................................2
1.5 Salidroside herb-related anti-oxidant agents.…..…............…..…….2
1.6 Apoptosis.......................................................................................3
Chapter 2 Materials and Methods .........................................................7
2.1 Animal model......................................................................................7
2.2 Rhodiola Crenulata and Salidroside herb anti-oxidant agents……8
2.2.1 Rhodiola Crenulata extraction process................................8
2.2.2 Salidroside herb anti-oxidant agents extraction process…8
2.3 Echocardiography................................................................................9
2.4 Cardiac characteristics.........................................................................9
2.5 Tissue Extraction................................................................................10
2.6 Electrophoresis and Western Blot......................................................10
2.7 H&E staining, Masson Trichrome Staining, and TUNEL…..……11
2.8 Statistical analysis............................................................................12
Chapter 3 Results...................................................................................13
3.1 Body weight and cardiac characteristics...........................................13
3.1.1 Body weight and cardiac characteristics with RC....................13
3.1.2 Body weight and cardiac characteristics with S....................14
3.2 Cardiac histopathological changes of left ventricle..........................16
3.3 TUNEL-positive apoptotic cells of left ventricle .............................17
3.4 Cardiac Fas receptor dependent apoptotic pathways……….….……18
3.4.1 Cardiac Fas receptor dependent apoptotic pathways with RC…18
3.4.2 Cardiac Fas receptor dependent apoptotic pathways with S…20
3.5 Cardiac mitochondrial-dependent apoptotic pathways……..………22
3.5.1 Cardiac mitochondrial-dependent apoptotic pathways with RC....22
3.5.2 Cardiac mitochondrial-dependent apoptotic pathways with S…27
3.6 Mediator from Fas to mitochondrial pathway…………….………27
3.7 Cardiac Fas and mitochondrial dependent apoptosis………………29
3.7.1 Cardiac Fas and mitochondrial dependent apoptosis with RC…29
3.7.2 Cardiac Fas and mitochondrial dependent apoptosis with S…31
3.8 Cardiac VEGF-related pro-survival pathway…………..…………33
Chapter4 Discussion...............................................................................36
4.1 Major findings……………………………………..………………36
4.2 Experimental Design……………………………………….………41
4.3 Hypothesized clinical application…………………….……………46
Chapter5 Conclusion………………..…………………………………48
Reference………………………………………………………………51
Abstract in Chinese……………………………………………………58
謝辭..........................................................................................................61






Figures

Fig 3.1 H&E, Masson trichrome, TUNEL assay, DAPI with RC............19
Fig 3.2 H&E, Masson trichrome, TUNEL assay, DAPI with S...............21
Fig 3.3 Fas receptor dependent apoptotic pathways with RC.................23
Fig 3.4 Fas receptor dependent apoptotic pathways with S.....................24
Fig 3.5 Mitochondrial-dependent apoptotic pathways with RC...............26
Fig 3.6 Mitochondria-dependent apoptotic pathways with S.................. 28
Fig 3.7 Mediator from Fas to mitochondrial pathway.............................30
Fig 3.8 Fas and mitochondrial dependent apoptosis with RC..................32
Fig 3.9 Fas and mitochondrial dependent apoptosis with S.....................34
Fig 3.10 VEGF-related pro-survival pathway..........................................35
Fig 4.1 Fas, mitochondria and VEGF-related pathway with RC.............39
Fig 4.2 Fas and mitochondrial-dependent apoptotic pathways with S....40
Fig 5.1 Cardiac apoptotic and pro-survival pathways..............................50








Tables

Table 3.1 Body weight and cardiac characteristics with RC...................15
Table 3.2 Body weight and cardiac characteristics with S..................17



Reference
1.Chiang, A.A., Obstructive sleep apnea and chronic intermittent hypoxia: a review. Chin J Physiol, 2006. 49(5): p. 234-43.
2.Shahar E, W.C., Redline S, Lee ET, Newman AB, Nieto FJ, O''Connor GT, Boland LL, Schwartz JE, Samet JM., Sleep-disordered breathing and cardiovascular disease: cross-sectional results of the Sleep Heart Health Study. Am J Respir Crit Care Med., 2001 Jan. 163(1): p. 19-25.
3.Moore T, R.T., Wiklund U, Franklin KA, Eriksson P., Sleep-disordered breathing in men with coronary artery disease. Chest, 1996. 109: p. 659–663.
4.Yin X, Z.Y., Liu Q, Cai J, Cai L., Cardiac response to chronic intermittent hypoxia with a transition from adaptation to maladaptation: the role of hydrogen peroxide. Oxid Med Cell Longev., 2012. 2012: p. 569520.
5.Tamisier R, G.G., Launois SH, P?聯in JL, Nespoulet H, Thomas R, L?臀y P, Weiss JW., A new model of chronic intermittent hypoxia in humans: effect on ventilation, sleep, and blood pressure. J Appl Physiol., 2009 107(1): p. 17-24.
6.Liu X, F.L., Cao G, Huang H, Yu J, Xu Q, Zhang S, Zhou M., Noninvasive positive pressure ventilation therapy can improve cardiac structure and function in patients with coronary artery disease combined with severe obstructive sleep apnea/hypopnea syndrome. Cardiol J., 2014 May 20.
7.Bradford, A., McGuire, M. and O’Halloran, K.D. , Does episodic hypoxia affect upper airway dilator muscle function? Implications for the pathophysiology of obstructive sleep apnea. . Respir. Physiol. Neurobiol. , 2005. 147(223-234).
8.Chen L, E.E., Zhang Q, Hasday J, Balke CW, Scharf SM., Oxidative stress and left ventricular function with chronic intermittent hypoxia in rats. Am J Respir Crit Care Med 2005. 172: p. 915-20.
9.Lee SD, K.W., Lin JA, Chu YF, Wang CK, Yeh YL, Wang SG, Liu JY, Chang MH, Huang CY., Effects of long-term intermittent hypoxia on mitochondrial and Fas death receptor dependent apoptotic pathways in rat hearts. IInt J Cardiol., 2007 Apr 4. 116(3): p. 348-56.
10.Lai MC, L.J., Pai PY, Lai MH, Lin YM, Yeh YL, Cheng SM, Liu YF, Huang CY, Lee SD., Protective effect of salidroside on cardiac apoptosis in mice with chronic intermittent hypoxia. Int J Cardiol, 2014.
11.GS., K., Rhodiola rosea: a possible plant adaptogen. Altern Med Rev, 2001. 6(3): p. 293-302.
12.Lee SY, L.M., Shi LS, Chu H, Ho CW, Chang TC., Rhodiola crenulata Extract Alleviates Hypoxic Pulmonary Edema in Rats. Evid Based Complement Alternat Med, 2013. 2013: p. 718739.
13.Yang YN, L.Z., Feng ZM, Jiang JS, Zhang PC., Lignans from the root of Rhodiola crenulata. J Agric Food Chem., 2012 Feb 1. 60(4): p. 964-72.
14.Darbinyan V, K.A., Panossian A, Gabrielian E, Wikman G, Wagner H., Rhodiola rosea in stress induced fatigue--a double blind cross-over study of a standardized extract SHR-5 with a repeated low-dose regimen on the mental performance of healthy physicians during night duty. Phytomedicine, 2000. 7(5): p. 365-71.
15.Spasov AA, W.G., Mandrikov VB, Mironova IA, Neumoin VV., A double-blind, placebo-controlled pilot study of the stimulating and adaptogenic effect of Rhodiola rosea SHR-5 extract on the fatigue of students caused by stress during an examination period with a repeated low-dose regimen. Phytomedicine, 2000. 7(2): p. 85-9.
16.Han X, Z.T., Wei Y, Cao X, Ito Y., Separation of salidroside from Rhodiola crenulata by high-speed counter-current chromatography. J Chromatogr A, 2002. 971(1-2): p. 237-41.
17.Qian, E.W., D.T. Ge, and S.K. Kong, Salidroside protects human erythrocytes against hydrogen peroxide-induced apoptosis. J Nat Prod, 2012. 75(4): p. 531-7.
18.Wu T, Z.H., Jin Z, Bi S, Yang X, Yi D, Liu W., Cardioprotection of salidroside from ischemia/reperfusion injury by increasing N-acetylglucosamine linkage to cellular proteins. Eur J Pharmacol, 2009. 613(1-3): p. 93-9.
19.Wang XL, W.X., Xiong LL, Zhu Y, Chen HL, Chen JX, Wang XX, Li RL, Guo ZY, Li P, Jiang W., Salidroside improves doxorubicin-induced cardiac dysfunction by suppression of excessive oxidative stress and cardiomyocyte apoptosis. J Cardiovasc Pharmacol, 2013. 62(6): p. 512-23.
20.Xing S, Y.X., Li W, Bian F, Wu D, Chi J, Xu G, Zhang Y, Jin S., Salidroside stimulates mitochondrial biogenesis and protects against H₂O₂-induced endothelial dysfunction. Oxid Med Cell Longev., 2014. 2014: p. 904834.
21.Li X, E.O., Li L, Ye Q, Wilson A, Du W,, Binding to WGR domain by salidroside activates PARP1 and protects hematopoietic stem cells from oxidative stress. Antioxid Redox Signal, 2014. 20(12): p. 1853-65.
22.Zheng KY, Z.Z., Guo AJ, Bi CW, Zhu KY, Xu SL, Zhan JY, Lau DT, Dong TT, Choi RC, Tsim KW., Salidroside stimulates the accumulation of HIF-1alpha protein resulted in the induction of EPO expression: a signaling via blocking the degradation pathway in kidney and liver cells. Eur J Pharmacol, 2012. 679(1-3): p. 34-9.
23.Haunstetter, A. and S. Izumo, Apoptosis: basic mechanisms and implications for cardiovascular disease. Circ Res, 1998. 82(11): p. 1111-29.
24.Lee SD, C.C., Huang EJ, Lu MC, Liu JY, Liu CJ, Hsu HH, Lin JA, Kuo WW, Huang CY., Roles of insulin-like growth factor II in cardiomyoblast apoptosis and in hypertensive rat heart with abdominal aorta ligation. Am J Physiol Endocrinol Metab., 2006. 291(2): p. E306-14.
25.Narula J, P.P., Arbustini E, Haider N, Narula N, Kolodgie FD, Dal Bello B, Semigran MJ, Bielsa-Masdeu A, Dec GW, Israels S, Ballester M, Virmani R, Saxena S, Kharbanda S., Apoptosis in heart failure: release of cytochrome c from mitochondria and activation of caspase-3 in human cardiomyopathy. Proc Natl Acad Sci, 1999. 96(14): p. 8144-9.
26.Lu MC, T.B., Kuo WW, Wu FL, Chen YS, Tsai CH, Huang CY, Lee SD., More activated cardiac mitochondrial-dependent apoptotic pathway in obese Zucker rats. Obesity (Silver Spring), 2007. 15(11): p. 2634-42.
27.Lee SD, T.B., Kuo WW, Lin YM, Yang AL, Chen SH, Tsai FJ, Wu FL, Lu MC, Huang CY., Cardiac fas receptor-dependent apoptotic pathway in obese Zucker rats. Obesity (Silver Spring), 2007. 15(10): p. 2407-15.
28.Lee SD, S.W., Cheng IS, Kuo CH, Chan YS, Lin YM, Tasi CY, Tsai CH, Ho TJ, Huang CY., Effects of exercise training on cardiac apoptosis in obese rats. Nutr Metab Cardiovasc Dis, 2013. 23(6): p. 566-73.
29.Huang CY, Y.A., Lin YM, Wu FN, Lin JA, Chan YS, Tsai FJ, Tsai CH, Kuo CH, Lee SD., Anti-apoptotic and pro-survival effects of exercise training on hypertensive hearts. J Appl Physiol (1985), 2012. 112(5): p. 883-91.
30.Kuo WW, L.C., Chen LM, Wu CH, Chu CH, Liu JY, Lu MC, Lin JA, Lee SD, Huang CY., Cardiomyoblast apoptosis induced by insulin-like growth factor (IGF)-I resistance is IGF-II dependent and synergistically enhanced by angiotensin II. Apoptosis, 2006. 11(7): p. 1075-89.
31.Kuo WW, C.L., Liu CT, Wu SP, Kuo CH, Tsai FJ, Tsai CH, Lu MC, Huang CY, Lee SD., Effects of insulin replacement on cardiac apoptotic and survival pathways in streptozotocin-induced diabetic rats. Cell Biochem Funct, 2009. 27(7): p. 479-87.
32.Cheng SM, H.T., Yang AL, Chen I J, Kao C L, Wu FN, Lin JA, Kuo CH, Ou HC, Huang C Y, Lee SD., Exercise training enhances cardiac IGFI-R/PI3K/Akt and Bcl-2 family associated pro-survival pathways in streptozotocin-induced diabetic rats. Int J Cardiol, 2013. 167(2): p. 478-85.
33.Lee SD, K.W., Ho YJ, Lin AC, Tsai CH, Wang HF, Kuo CH, Yang AL, Huang CY, Hwang JM., Cardiac Fas-dependent and mitochondria-dependent apoptosis in ovariectomized rats. Maturitas, 2008. 61(3): p. 268-77.
34.Lee SD, K.W., Lin JA, Chu YF, Wang CK, Yeh YL, Wang SG, Liu JY, Chang MH, Huang CY., Effects of long-term intermittent hypoxia on mitochondrial and Fas death receptor dependent apoptotic pathways in rat hearts. Int J Cardiol, 2007. 116(3): p. 348-56.
35.Lee SD, K.W., Wu CH, Lin YM, Lin JA, Lu MC, Yang AL, Liu JY, Wang SG, Liu CJ, Chen LM, Huang CY., Effects of short- and long-term hypobaric hypoxia on Bcl2 family in rat heart. Int J Cardiol, 2006. 108(3): p. 376-84.
36.Lin YM, H.S., Wang HF, Chen LM, Tsai FJ, Hsu HH, Kuo CH, Wang PS, Huang CY, Lee SD., Short-term versus long-term intermittent hypobaric hypoxia on cardiac fibrosis and Fas death receptor dependent apoptotic pathway in rat hearts. Chin J Physiol, 2008. 51(5): p. 308-16.
37.Kuo WW, W.C., Lee SD, Lin JA, Chu CY, Hwang JM, Ueng KC, Chang MH, Yeh YL, Wang CJ, Liu JY, Huang CY., Second-hand smoke-induced cardiac fibrosis is related to the Fas death receptor apoptotic pathway without mitochondria-dependent pathway involvement in rats. Environ Health Perspect., 2005. 113(10): p. 1349-53.
38.Lee SD, T.B., Kuo WW, Lin YM, Yang AL, Chen SH, Tsai FJ, Wu FL, Lu MC, Huang CY., Cardiac fas receptor-dependent apoptotic pathway in obese Zucker rats. Obesity (Silver Spring). 2007. 15(10): p. 2407-15.
39.Lu MC, T.B., Kuo WW, Wu FL, Chen YS, Tsai CH, Huang CY, Lee SD., More activated cardiac mitochondrial dependent apoptotic pathway in obese Zucker rat. Obesity (Silver Spring). 2007. in press.
40.Bishopric, N.H.A., P. Slepak, T. Webster, K. A., Molecular mechanisms of apoptosis in the cardiac myocyte. Curr Opin Pharmacol, 2001. 1(2): p. 141-50.
41.Barnhart, B.C., E.C. Alappat, and M.E. Peter, The CD95 type I/type II model. Semin Immunol, 2003. 15(3): p. 185-93.
42.Gross, A., J.M. McDonnell, and S.J. Korsmeyer, BCL-2 family members and the mitochondria in apoptosis. Genes Dev, 1999. 13(15): p. 1899-911.
43.Reddy, M.B. and L. Clark, Iron, oxidative stress, and disease risk. Nutr Rev, 2004. 62(3): p. 120-4.
44.Oudit GY, T.M., Khaper N, Husain T, Wilson GJ, Liu P, Sole MJ, Backx PH., Taurine supplementation reduces oxidative stress and improves cardiovascular function in an iron-overload murine model. Circulation, 2004. 109(15): p. 1877-85.
45.Tsujimoto, Y., Role of Bcl-2 family proteins in apoptosis: apoptosomes or mitochondria? Genes Cells, 1998. 3(11): p. 697-707.
46.Adams JM, C.S., The Bcl-2 protein family: arbiters of cell survival. Science, 1998. 281(5381): p. 1322-6.
47.Kubasiak LA, H.O., Bishopric NH, Webster KA., Hypoxia and acidosis activate cardiac myocyte death through the Bcl-2 family protein BNIP3. Proc Natl Acad Sci U S A., 2002. 99(20): p. 12825-30.
48.Sun L, I.C., Zhou Y, Petkau JC, O K, Liu Y, Siow YL., Salidroside and tyrosol from Rhodiola protect H9c2 cells from ischemia/reperfusion-induced apoptosis. Life Sci, 2012. 91(5-6): p. 151-8.
49.Abid MR, G.S., Minami T, Spokes KC, Ueki K, Skurk C, Walsh K, Aird WC., Vascular endothelial growth factor activates PI3K/Akt/forkhead signaling in endothelial cells. Arterioscler Thromb Vasc Biol, 2004. 24(2): p. 294-300.
50.Chen T, Z.G., Zhu Q, Liu X, Ha T, Kelley JL, Kao RL, Williams DL, Li C., Overexpression of vascular endothelial growth factor 165 (VEGF165) protects cardiomyocytes against doxorubicin-induced apoptosis. J Chemother., 2010. 22(6): p. 402-6.
51.Sussman MA, V.M., Fischer K, Bailey B, Cottage CT, Din S, Gude N, Avitabile D, Alvarez R, Sundararaman B, Quijada P, Mason M, Konstandin MH, Malhowski A, Cheng Z, Khan M, McGregor M., Myocardial AKT: the omnipresent nexus. Physiol Rev, 2011. 91(3): p. 1023-70.
52.Chiu T, C.L., Su D, Lo H, Chen C, Wang S, Chen W, 57 Rhodiola Crenulata Extract Prophylaxis for Acute Mountain Sickness: A Randomized, Double Blind, Placebo Controlled, Crossover Trial Ann Emerg Med, 2012 60(4 Suppl): p. S22.
53.Wang J, R.X., Li W, Yang Y, Yamahara J, Li Y., Rhodiola crenulata root ameliorates derangements of glucose and lipid metabolism in a rat model of the metabolic syndrome and type 2 diabetes. J Ethnopharmacol, 2012. 142(3): p. 782-8.
54.Chen SF, T.H., Hung TH, Chen CC, Lee CY, Wu CH, Wang PY, Liao NC., Salidroside improves behavioral and histological outcomes and reduces apoptosis via PI3K/Akt signaling after experimental traumatic brain injury. PLoS One, 2012. 7(9): p. e45763.
55.Cheng YZ, C.L., Lee WJ, Chen MF, Jung Lin H, Cheng JT., Increase of myocardial performance by Rhodiola-ethanol extract in diabetic rats. J Ethnopharmacol, 2012. 144(2): p. 234-9.
56.Zhang L, D.W., Sun H, Zhou Q, Huang J, Li X, Xie Y, Chen J., Salidroside protects PC12 cells from MPP(+)-induced apoptosis via activation of the PI3K/Akt pathway. Food Chem Toxicol, 2012. 50(8): p. 2591-7.
57.Tan CB, G.M., Xu WR, Yang XY, Zhu XM, Du GH., Protective effects of salidroside on endothelial cell apoptosis induced by cobalt chloride. Biol Pharm Bull, 2009. 32(8): p. 1359-63.
58.Zhang J, L.A., Hou R, Zhang J, Jia X, Jiang W, Chen J., Salidroside protects cardiomyocyte against hypoxia-induced death: a HIF-1alpha-activated and VEGF-mediated pathway. Eur J Pharmacol, 2009. 607(1-3): p. 6-14.
59.Zhu Y, S.Y., Wu D, Ji YJ, Wang X, Chen HL, Wu SS, Huang DJ, Jiang W., Salidroside protects against hydrogen peroxide-induced injury in cardiac H9c2 cells via PI3K-Akt dependent pathway. DNA Cell Biol, 2011. 30(10): p. 809-19.
60.Gao XF, S.H., Sun T, Ao H., Effects of Radix et Rhizoma Rhodiolae Kirilowii on expressions of von Willebrand factor, hypoxia-inducible factor 1 and vascular endothelial growth factor in myocardium of rats with acute myocardial infarction. Zhong Xi Yi Jie He Xue Bao, 2009. 7(5): p. 434-40.




QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊