|
1.Nguyen, M.P., Y. Sutou, and J. Koike, Diffusion barrier property of MnSixOy layer formed by chemical vapor deposition for Cu advanced interconnect application. Thin Solid Films, 2015. 580: p. 56-60. 2.Kumar, A., M. Kumar, and D. Kumar, Effect of composition on electroless deposited Ni–Co–P alloy thin films as a diffusion barrier for copper metallization. Applied Surface Science, 2012. 258(20): p. 7962-7967. 3.Wong, H., N.M. Shukor, and N. Amin, Prospective development in diffusion barrier layers for copper metallization in LSI. Microelectronics journal, 2007. 38(6-7): p. 777-782. 4.McBrayer, J.D., R. Swanson, and T. Sigmon, Diffusion of metals in silicon dioxide. Journal of the Electrochemical Society, 1986. 133(6): p. 1242-1246. 5.Nicolet, M.-A., Diffusion barriers in thin films. Thin Solid Films, 1978. 52(3): p. 415-443. 6.Nicolet, M.A. and M. Bartur, Diffusion barriers in layered contact structures. Journal of Vacuum Science and Technology, 1981. 19(3): p. 786-793. 7.Nakamura, K., et al., Ti and V layers retard interaction between Al films and polycrystalline Si. Applied Physics Letters, 1976. 28(5): p. 277-280. 8.Ono, H., T. Nakano, and T. Ohta, Diffusion barrier effects of transition metals for Cu/M/Si multilayers (M= Cr, Ti, Nb, MO, Ta, W). Applied Physics Letters, 1994. 64(12): p. 1511-1513. 9.Oku, T., et al., Diffusion barrier property of TaN between Si and Cu. Applied Surface Science, 1996. 99(4): p. 265-272. 10.Arunagiri, T., et al., 5 nm ruthenium thin film as a directly plateable copper diffusion barrier. Applied Physics Letters, 2005. 86(8): p. 083104. 11.Chan, R., et al., Diffusion studies of copper on ruthenium thin film a plateable copper diffusion barrier. Electrochemical and Solid-State Letters, 2004. 7(8): p. G154-G157. 12.Frederick, M., R. Goswami, and G. Ramanath, Sequence of Mg segregation, grain growth, and interfacial MgO formation in Cu–Mg alloy films on SiO 2 during vacuum annealing. Journal of applied physics, 2003. 93(10): p. 5966-5972. 13.Su, Y.-H., et al., Investigation of barrier property of copper manganese alloy on ruthenium. IEEE Transactions on Device and Materials Reliability, 2015. 15(1): p. 47-53. 14.Osaka, T., et al., Electroless nickel ternary alloy deposition on SiO2 for application to diffusion barrier layer in copper interconnect technology. Journal of The Electrochemical Society, 2002. 149(11): p. C573-C578. 15.Zandrahimi, M. Effect of Current Density on Microstructure of Mn-Cu Thin Films via Electroplating Coating Technique. in Advanced Materials Research. 2014. Trans Tech Publ. 16.Chiang, W.-S., et al., Formation of Cu/MnOx composite film by concurrent electroplating and electrophoresis in an organic solvent. Thin Solid Films, 2018. 17.Joi, A., R. Akolkar, and U. Landau, Pulse Electrodeposition of Copper-Manganese Alloy for Application in Interconnect Metallization. Journal of The Electrochemical Society, 2013. 160(12): p. D3145-D3148. 18.Xie, X., et al., Electrodeposition behavior and characterization of copper–zinc alloy in deep eutectic solvent. Journal of Applied Electrochemistry, 2017. 47(6): p. 679-689. 19.Koike, J., et al. Cu alloy metallization for self-forming barrier process. in Interconnect Technology Conference, 2006 International. 2006. IEEE. 20.Kuper, A., et al., Diffusion in ordered and disordered copper-zinc. Physical Review, 1956. 104(6): p. 1536. 21.Peterson, N. and S. Rothman, Diffusion and Correlation Effects in Copper-Zinc Alloys. Physical Review B, 1970. 2(6): p. 1540. 22.Overbury, S., P. Bertrand, and G. Somorjai, Surface composition of binary systems. Prediction of surface phase diagrams of solid solutions. Chemical reviews, 1975. 75(5): p. 547-560. 23.Barron, J.C., The electrochemistry of Zn in deep eutectic solvents. 2010, University of Leicester. 24.Azakami, T. and A. Yazawa, Activity measurements of liquid copper binary alloys. Canadian metallurgical quarterly, 1976. 15(2): p. 111-122. 25.Wilkes, J.S., et al., Dialkylimidazolium chloroaluminate melts: a new class of room-temperature ionic liquids for electrochemistry, spectroscopy and synthesis. Inorganic Chemistry, 1982. 21(3): p. 1263-1264. 26.Wilkes, J.S. and M.J. Zaworotko, Air and water stable 1-ethyl-3-methylimidazolium based ionic liquids. Journal of the Chemical Society, Chemical Communications, 1992(13): p. 965-967. 27.Zhang, Q., et al., Deep eutectic solvents: syntheses, properties and applications. Chemical Society Reviews, 2012. 41(21): p. 7108-7146. 28.Smith, E.L., A.P. Abbott, and K.S. Ryder, Deep eutectic solvents (DESs) and their applications. Chemical reviews, 2014. 114(21): p. 11060-11082. 29.Gill, I. and E. Vulfson, Enzymic catalysis in heterogeneous eutectic mixtures of substrates. Trends in biotechnology, 1994. 12(4): p. 118-122. 30.Abbott, A.P., et al., Novel solvent properties of choline chloride/urea mixtures. Chemical Communications, 2003(1): p. 70-71. 31.Hurley, F.H. and T.P. Wier, Electrodeposition of metals from fused quaternary ammonium salts. Journal of the Electrochemical Society, 1951. 98(5): p. 203-206. 32.Abbott, A.P., et al., Ionic liquid analogues formed from hydrated metal salts. Chemistry-A European Journal, 2004. 10(15): p. 3769-3774. 33.Chiang, W.-S., et al., Pulse electrodeposition of copper-manganese alloy in deep eutectic solvent. Journal of Alloys and Compounds, 2018. 742: p. 38-44. 34.Paiva, A., et al., Natural deep eutectic solvents–solvents for the 21st century. ACS Sustainable Chemistry & Engineering, 2014. 2(5): p. 1063-1071. 35.Ribeiro, D., C. Souza, and J. Abrantes, Use of Electrochemical Impedance Spectroscopy (EIS) to monitoring the corrosion of reinforced concrete. Revista IBRACON de Estruturas e Materiais, 2015. 8(4): p. 529-546. 36.Diard, J., B. Le Gorrec, and C. Montella, Handbook of electrochemical impedance spectroscopy. Diffusion Impedances. www. bio-logic. info/potentiostat/notes. html, 2012. 37.Nishida, T., Y. Tashiro, and M. Yamamoto, Physical and electrochemical properties of 1-alkyl-3-methylimidazolium tetrafluoroborate for electrolyte. Journal of Fluorine Chemistry, 2003. 120(2): p. 135-141. 38.Costa, R., et al., Electrochemical double layer at the interfaces of Hg/choline chloride based solvents. Electrochimica Acta, 2010. 55(28): p. 8916-8920. 39.Chen, S.-T. and G.-S. Chen, Electroless plating of low-resistivity Cu–Mn alloy thin films with self-forming capacity and enhanced thermal stability. Journal of Alloys and Compounds, 2015. 648: p. 474-480.
|