跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.17) 您好!臺灣時間:2025/09/03 02:51
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳松鴻
研究生(外文):Sung-Hung Chen
論文名稱:多干擾環境下之自適應性視訊監控系統
論文名稱(外文):A Self-adapted Video Surveillance System under Multi-interference Environment
指導教授:方志鵬方志鵬引用關係
指導教授(外文):Fang, Jyh-Perng
口試委員:林國祥范育成高立人
口試委員(外文):Guo-Shiang LinYu-Cheng FanLih-Jen Kau
口試日期:2013-07-16
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:電機工程系研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:68
中文關鍵詞:多干擾環境適應性背景模型陰影偵測去雨演算法背景相減
外文關鍵詞:Multi-interference environmentAdaptive background modelShadow detectionRainfall interference removalBackground subtraction
相關次數:
  • 被引用被引用:3
  • 點閱點閱:237
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
  在視覺化監控系統中,多數的演算法係先建立參考背景影像,再藉由背景相減法來取得前景影像,亦即移動目標物偵測。然而背景相減法的準確率卻極易因外界環境變化而受到嚴重的干擾;例如光源強度的改變、樹的搖晃、陰影的變化以及雨滴造成的紋路等,這些干擾都會影響系統分析與判斷的準確率。因此,有部分研究提出以統計的方式來建立背景影像,並將像素值出現機率較高者歸類為背景。然而,以此方法所建立的適應性背景仍無法解決因光源遭遮蔽而造成的陰影現像,使陰影仍會被當作前景般被擷取出來,造成判斷錯誤。此外在下雨時,除了會使視線能見度降低外,雨滴的紋路也會讓視訊畫面變的模糊,導致系統判斷錯誤。為了改善上述問題,本論文提出多干擾環境下之自適應性背景演算法。在所提出的演算法中,主要包含了三部分。首先為去雨演算法;我們觀察雨滴在一段影像中其色彩模型的數值變化,發現雨滴會使像素的亮度值增加。根據這個特性我們提出一套能將雨滴所造成紋路移除的演算法。第二部分為背景模型,在影像的同一位置可能會出現兩種以上的背景像素值,我們採用統計的方式對每一個像素計算出數個不同的背景,以建立該像素的背景模型。第三部分則是陰影偵測,我們根據物體遮蔽光源所產生的陰影不影響其色彩值的特性,提出能夠剔除陰影之演算法,擷取出正確無陰影之前景影像。考量視覺化監控系統具有即時性的應用需求,本論文所提出之演算法具有極低之運算複雜度,且經實驗證明能有效對抗各種不同的干擾,具有良好的移動目標物判別率。

Among all the visual surveillance systems, most of the algorithms apply the so-called background subtraction approach for the detection of a foreground, i.e., for the detection of a moving target. However, the background subtraction approach is susceptible to making an incorrect judgment for a time-varying environment, such as the change of light source, the interference of waving trees, the change of shadow, and the texture caused by raindrops. To conquer this problem, some of the researches propose the use of a statistical approach for the construction of an adaptive background model, and pixel values with higher probability would be classified as a background. Nevertheless, the problem of a shadow caused by light masking still exists, and a shadow can still be deemed as the foreground, resulting in an incorrect judgment. In addition, when the system is operating in a rainy day, the effect of the raindrops not only reduce visibility but also make the video screen blurred, causing the system hard to function well. To solve these problems, we propose in this dissertation a self-adapted video surveillance algorithm for multi-interference environment. The proposed algorithms can be divided into three parts. The First part is for rainfall interference removal. We find that only the intensity component of a pixel will be affected when a raindrop exists. That is, the illumination tends to be increased but with chrominance components kept unaltered when a raindrop exists. Based on this observation, we propose in this dissertation an algorithm for rainfall interference removal. The second part is in proposing an efficient approach by using statistical methods for the construction of an adaptive background model for time-varying environments. The third part is for shadow detection. Based on the observation that a shadow doesn’t affect the chrominance components of a pixel, we propose in this dissertation an algorithm for shadow detection so that a shadow will be excluded from being regarded as the foreground. Considering the real-time processing requirement in most of the visual surveillance systems, the proposed algorithm has extremely low computational complexity. Experimental results show that the proposed algorithm works very well under various test environments with a variety of interferences, which justifies the superiority of the proposed approach.

摘 要 i
ABSTRACT ii
誌 謝 iv
目 錄 v
表目錄 vii
圖目錄 viii
第一章 簡介 1
1.1 研究動機與目的 1
1.2 文獻探討 2
1.2.1 去雨方法及分析 2
1.2.2 背景模型建立 6
1.2.3 陰影偵測 13
第二章 系統架構與去雨模型 20
2.1 系統流程圖 20
2.2 系統運作 21
2.2.1 去雨模型流程圖 21
2.2.2 背景模型流程圖 22
2.2.3 陰影偵測流程圖 23
2.3 去雨模型 23
2.3.1 去雨之淘汰機制建立 25
2.3.2 去雨成果 26
第三章 背景模型建立與前景擷取 28
3.1 模型建立 28
3.2 模型更新 29
3.3 前景擷取 31
3.3.1 中值濾波 32
3.3.2 形態學 33
3.3.3 連通元件標籤法 34
第四章 陰影偵測 37
4.1 陰影模型 37
4.2 陰影偵測成果 38
第五章 實驗結果 40
5.1 去雨模型效能驗證 40
5.2 背景模型效能驗證 42
5.2.1 影像適應性測試 42
5.2.2 光影的變化測試 42
5.2.3 樹的搖晃干擾測試 44
5.3 陰影偵測效能驗證 45
5.4 客觀比較結果 46
5.4.1 效能指標參數定義 46
5.4.2 各種環境比較 47
第六章 結論 64
參考文獻 65


[1]K. Garg and S. K. Nayar, “Detection and removal of rain from videos,” in Proc. IEEE Conference Comput. Vis. Pattern Recognit., vol. 1, June 2004, pp. 528–535.
[2]K. Garg and S. K. Nayar, “When does a camera see rain?” in Proc. IEEE Int. Conference Comput. Vis., vol. 2, Oct. 2005, pp. 1067-1074
[3]X. Zhang, H. Li, Y. Qi, W. K. Leow, and T. K. Ng, “Rain removal in video by combining temporal and chromatic properties,” in Proc. IEEE Int. Conference Multimedia Expo, Toronto, Ont. Canada, July 2006, pp. 461–464.
[4]N. Friedman, and S. Russell, “Image segmentation in video sequences: a probabilistic approach,” in Proc. Thirteenth Conference on Uncertainty in Artficial Intelligence, 1997, pp. 175-181.
[5]C.R Wren, A Azarbayejani, T. Darrell and A.P. Pentland, “Pfinder: real-time tracking of the human body,” IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 19, July 1997, pp. 780-785.
[6]C. Stauffer, W. Grimson, “Adaptive background mixture models for real-time tracking,” in Proc. IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 2, 1999, pp. 246-252.
[7]S. Jabri, Z. Duric, H. Wexhsler and A. Rosenfeld, “Detection and location of people in video images using adaptive fusion of color and edge information,” in Proc. International Conference on Pattern Recognition, vol. 4, 2000, pp. 627-630.
[8]Y. Hsu, H. H. Nagel and G. Rekers, “New likelihood test methods for change detection in image sequences,” Computer Vision Image Process, vol. 26, 1984, pp. 73-106.
[9]S. Nadimi and B. Bhanu, “Physical models for moving shadow and object detection in video,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 26, Aug. 2004, pp. 1079-1087.
[10]S.A. Shafer, “Using color to sepatate reflection components,” Color Research and Application, vol. 10, 1985, pp. 210-218.
[11]J.W. Hsieh, W.F. Hu, C.J. Chang, and Y.S. Chen, “Shadow elimination for effective moving object detection by Gaussian shadow modeling,” Int. J. Image and Vision Computing, vol. 21, 2003, pp. 505-516.
[12]Y. Sonoda and T. Ogata, “Separation of moving objects and their shadows, and application to tracking of loci in the monitoring images,” in Proc. Int. Conference Signal Processing, 1998, pp. 1261-1264.
[13]K. Onoguchi, “Shadow Elimination Method for Moving Object Detection,” in Proc. Int. Conference Pattern Recognition, vol. 1, 1998, pp. 583-587.
[14]J.M. Scanlan, D.M. Chabries, and R.W. Christiansen, “A Shadow Detection and Removal Algorithm for 2-D Images,” in Proc. Int. Conference Acoustics, Speech, and Signal Processing, vol. 4, 1990, pp. 2057-2060.
[15]S. Das and B. Bhanu, “A system for nodel-based object recognition in perspective aerial images,” Pattern Recognition, vol. 3, no. 34, 1998, pp. 465-491.
[16]J. Stauder, R. Mech, and J. Ostermann, “Detection of moving cast shadows for object segmentation,” IEEE Transactions on Multimedia, vol. 1, no. 1, 1999, pp. 65-76.
[17]R. Gershon, A.D. Jepson, and J.K. Tsotsos, “Ambient illumination and the determination of material changes,” J. OSA, vol. 3, no. 10, Oct. 1986, pp. 1700-1707.
[18]I. Mikic, P.C. Cosman, G.T Kogut, and M.M. Trivedi, “Moving shadow and object detection in traffic scenes,” in Proc. Int. Conference Pattern Recognition, vol. 1, no. 1, 2000, pp. 321-324.
[19]R. Cucchiara, C. Grana, M. Piccardi, A. Prati, and S. Sirotti, “Improving shadow suppression in moving object detection with HSV color information,” in Proc. IEEE Intelligent Transportation Systems Conference, Aug. 2001, pp. 334- 339.
[20]T. Horprasert, D. Harwood, and LS Davis, “A statistical approach for real-time robust background subtraction and shadow detection,” in Proc. IEEE Int. Conference Computer Vision, Frame Rate Workshop, 1999, pp. 1-19.
[21]E. Salvador, A. Cavallaro, and T. Ebrahimi, “Cast shadow segmentation using invariant color features,” Computer Vision and Image Understanding, 2004, pp. 238–259.
[22]N. Martel-Brisson and A. Zaccarin, “Learning and removing cast shadows through a multidistribution approach,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 29, no. 7, July 2007, pp. 1133-1146.
[23]R. Cucchiara, M. Piccardi, and A. Prati, “Detecting moving objects, ghosts, and shadows in video streams,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol 25, Oct. 2003, pp. 1337–1342.
[24]Lucia Maddalena and Alfredo Petrosino, “A Self-Organizing Approach to Background Subtraction for Visual Surveillance Applications,” IEEE Transactions on Image Processing, vol. 17, no. 7, July 2008, pp. 1168-1177.
[25]Kentaro Toyama, John Krumm, Barry Brumitt, and Brian Meyers, "Wallflower: Principles and Practice of Background Maintenance," in Proc. Seventh Int. Conference on Computer Vision, September 1999, pp. 255-261.
[26]D. Culibrk, O. Marques, D. Socek, H. Kalva, and B. Furht, “Neuralnetwork approach to background modeling for video object segmentation,” IEEE Trans. Neural Netw., vol. 18, no. 6, pp. 1614–1627, Dec.2007.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊