跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.23) 您好!臺灣時間:2025/10/26 22:35
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:蘇威榕
研究生(外文):SU, WEI-RONG
論文名稱:單壁奈米碳管修飾氧化亞銅表面改質之氧化鋅奈米柱/石墨烯複合材料於非酵素型葡萄糖感測器之研究
論文名稱(外文):SWCNT Decorate Non-enzymatic Glucose Sensor based on Cu2O Surface Modification of ZnO Nanorods/Graphene composites
指導教授:陳錫釗
指導教授(外文):CHEN, HSI-CHAO
口試委員:詹德均羅仕守
口試委員(外文):JAN, DER-JUNLO, SHIH-SHOU
口試日期:2018-07-17
學位類別:碩士
校院名稱:國立雲林科技大學
系所名稱:電子工程系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:中文
論文頁數:128
中文關鍵詞:石墨烯奈米碳管氧化鋅奈米柱氧化亞銅非酵素型葡萄糖感測器
外文關鍵詞:GrapheneCarbon nanotubeZinc oxide nanorodsCopper(I) oxideNon-enzymatic glucose sensor
相關次數:
  • 被引用被引用:0
  • 點閱點閱:146
  • 評分評分:
  • 下載下載:9
  • 收藏至我的研究室書目清單書目收藏:0
本研究所製備之Nafion包覆單壁奈米碳管修飾氧化亞銅之氧化鋅奈米柱/石墨烯複合材料於ITO玻璃上,成功應用於非酵素型葡萄糖感測器中。實驗主要將分為四個部分:第一部份為在氧化鋅奈米柱成長上採用不同厚度之晶種層,透過掃描式電子顯微鏡(Scanning Electron Microscope, SEM)觀測找出最佳參數;第二部分為利用電化學沉積氧化亞銅於氧化鋅奈米柱上,透過電化學量測找出最佳之電鍍時間;第三部分為添加Nafion所包覆之單壁奈米碳管(SWCNT)以增強對葡萄糖分子之捕捉能力;第四部份則是在氧化鋅奈米柱下先行製備一層石墨烯,並透過電化學量測來觀察石墨烯的加入是否會影響整體感測器的表現。
在0.1 M濃度之NaOH中以葡萄糖濃度50 mg/dL、100 mg/dL、150 mg/dL、200 mg/dL進行電化學循環伏安量測並將電壓在+0.8 V時之電流做紀錄,在氧化亞銅/氧化鋅奈米柱複合材料上對葡萄糖濃度與電流進行線性擬合,並測得其靈敏度(Sensitivity)為0.6207 μA mg-1 dL cm-2(約11.17 μA mM-1 cm-2)、R2值(擬合優越度)為0.9766。利用單壁奈米碳管與Nafion分散劑的作用下,增加感測器之表面積,並透過Nafion包覆之單壁奈米碳管增加對葡萄糖分子的捕捉能力,測得其靈敏度提升至16.1 μA mg-1 dL cm-2(約289.8 μA mM-1 cm-2),且R2值(擬合優越度)高達0.992。
透過計時安培法(chronoamperometry)可得到當加入石墨烯在最底下時能使感測器得到兩個線性區間,分別是0-5.556 mM、靈敏度466.1 μA mM-1 cm-2與5.556-11.111 mM、靈敏度203.1 μA mM-1 cm-2,其R2值分別為0.9917與0.9777。

The non-enzymatic glucose sensor was successfully prepared in this research which the single-wall carbon nanotubes (SWCNTs) were wrapped with Nafion to enhance the sensitivity of sensor based on the copper(I) oxide (Cu2O) surface modification of zinc oxide nanorod (ZnO NR)/Graphene composites on ITO glass. The experimental procedure of this research has four steps: First, the different sputtering time was used to deposit the ZnO seed layer, and then will be synthesis ZnO NR by hydrothermal. The morphology of ZnO NR was checked by scanning electron microscope (SEM). Secondly, the optimal cupreous time of Cu2O on the ZnO NR would be verified by electrochemistry with the different concentration of glucose. Thirdly, the SWCNTs wrapped with Nafion was dropped to Cu2O /ZnO NR to increase the catching ability of the glucose and checked by electrochemistry. Lastly, graphene would be prepared on the ITO glass and then fabricated the Cu2O surface modification of ZnO NR/Graphene composites.
In the electrochemistry measurement, 0.1M NaOH was used as the electrolyte, and there were four concentrations of glucose: 0, 100, 150 and 200 mg dL-1. The electrochemical characteristics of the sensors were investigated by cyclic voltammetry (CV). The results showed the modified electrodes of Cu2O/ZnO NR had a linear response to glucose concentration and the maximum concentration could reach to 200 mg/dL with the sensitivity of 0.6207 μA mg-1 dL cm-2(about 11.17 μA mM-1 cm-2). Because the SWCNTs wrapped with Nafion could enhance the capturing ability of glucose checked by the CVs curve of electrochemistry. Since, the modified electrodes of SWCNT/Cu2O/ZnO NR has the optimal linear range from 0 to 200 mg/dL and good sensitivity of 16.1 μA mg-1 dL cm-2(289.8 μA mM-1 cm-2). Anyway, the SWCNTs wrapped with Nafion could increase the sensitivity of glucose sensor.
The chronoamperometry (CA) is a precision real time response of the glucose sensor. So the graphene was fabricated on the ITO glass to adhesive on the SWCNTs/Cu2O/ZnO NR/Graphene composites as the glucose sensor, then the sensor would be tested by the CA method with the increasing the glucose concentration. The calibration curve of glucose sensor has two linear ranges: 0-5.556 and 5.556-11.111 mM and have the sensitivity of 466.1 and 203.1 μA mM-1 cm-2, respectively. The addition of graphene could increase the sensitivity at low concentration and reduce the response time (< 2 s) for the SWCNTs/Cu2O/ZnO NR glucose sensor.

摘要 i
ABSTRACT ii
誌謝 iii
目錄 iv
表目錄 vii
圖目錄 viii
第一章 緒論 1
1-1 前言 1
1-2 研究動機 5
1-3 研究方法 7
第二章 文獻回顧 8
2-1 感測器簡介 8
2-2 感測器種類 10
2-2-1 物理感測器 10
2-2-2 化學感測器 10
2-2-3 生物感測器 10
2-3 生物感測器 12
2-4 奈米碳管 18
2-4-1 奈米碳管結構 18
2-4-2 奈米碳管合成方式 18
2-5 石墨烯 22
2-5-1 石墨烯介紹 22
2-5-2 石墨烯合成方式 22
2-6 氧化鋅奈米柱 31
2-6-1 氧化鋅特性 31
2-6-2 氧化鋅合成方式[50-53] 32
2-7 氧化亞銅 37
2-8 葡萄糖生物感測器 39
第三章 實驗方法與步驟 40
3-1 實驗流程 40
3-2 實驗藥品及耗材 42
3-3 儀器設備介紹 43
3-3-1 冷場發射掃描式電子顯微鏡(Cold Field Emission Scanning Electron Microscope, FE-SEM) 43
3-3-2 X光繞射儀(X-ray diffraction, XRD) 44
3-3-3 拉曼光譜儀(Raman spectrometer) 45
3-3-4 光柵光譜儀(UV/Visible Spectrophotometer) 47
3-3-5 電化學分析儀(Electric chemistry analyzer) 49
3-4 實驗步驟及方法 51
3-4-1 基板清洗 51
3-4-2 利用化學氣相沉積法成長石墨烯 52
3-4-3 製備氧化鋅晶種層 54
3-4-4 熱退火 56
3-4-5 水熱法合成氧化鋅奈米柱 57
3-4-6 非酵素型葡萄糖感測器製作 58
3-4-7 奈米碳管溶液配置 61
第四章 結果與討論 63
4-1 熱化學氣相法成長石墨烯 63
4-2 氧化鋅晶種層與氧化鋅奈米柱之製備 65
4-1-1 光柵光譜儀分析氧化鋅晶種層與氧化鋅奈米柱 65
4-1-2 Raman 光譜分析 68
4-1-3 氧化鋅奈米柱之SEM表面形貌 70
4-1-4 X光繞射儀(X-ray diffraction, XRD) 74
4-3 氧化亞銅(Cu2O)/氧化鋅奈米柱(ZnO NR)複合材料 77
4-3-1 製備氧化亞銅於ITO玻璃 77
4-3-2 製備氧化亞銅於氧化鋅奈米柱 79
4-3-3 SEM分析氧化亞銅/氧化鋅奈米柱其表面形貌 81
4-3-4 Raman 光譜分析 84
4-3-5 X光繞射儀分析 85
4-3-6 電化學儀量測 86
4-4 奈米碳管/氧化亞銅/氧化鋅奈米柱複合材料應用於非酵素型葡萄糖感測器 91
4-4-1 Raman光譜檢測奈米碳管/Nafion固定劑溶液 91
4-4-2 電化學儀量測 92
4-5 奈米碳管/氧化亞銅/氧化鋅奈米柱/石墨烯複合材料應用於非酵素型葡萄糖感測器 97
4-6 非酵素型葡萄糖感測器之比較 103
第五章 結論 105
參考文獻 107




[1]W. H. Organization and W. H. O. M. o. S. A. Unit, Global status report on alcohol and health, 2014: World Health Organization, 2014.
[2]R. R. Bourne, G. A. Stevens, R. A. White, J. L. Smith, S. R. Flaxman, H. Price, et al., "Causes of vision loss worldwide, 1990–2010: a systematic analysis," The lancet global health, vol. 1, pp. e339-e349, 2013.
[3]"糖尿病," 慢性疾病防治組, 2016.
[4]W. H. Organization, "Definition and diagnosis of diabetes mellitus and intermediate hyperglycemia: report of a WHO/IDF consultation," World Hearth Org, 2006.
[5]S. Vijan, "TYpe 2 diabetes," Annals of Internal Medicine, vol. 152, pp. ITC3-1-1, 2010.
[6]M. Collazo, Mayo clinic on managing diabetes: Orient Paperbacks, 2008.
[7]B. Tripathy, H. B. Chandalia, and A. K. Das, RSSDI textbook of diabetes mellitus: JP Medical Ltd, 2012.
[8]W. J. Craig and A. R. Mangels, "Position of the American Dietetic Association: vegetarian diets," Journal of the American dietetic association, vol. 109, pp. 1266-1282, 2009.
[9]黎雨青, 李奕德, and 陳順天, "潛伏性成人自體免疫糖尿病," 家庭醫學與基層醫療, vol. 24, pp. 327-330, 2009.
[10]"Across the global," International Diabetes Feberation, IDF, 2017.
[11]美國亞培 Abbott, 2015.
[12]洪偉修, "世界上最薄的材料-石墨烯," ed: 康熹化學報報, 2009.
[13]J. L. G. Fierro, Metal oxides: chemistry and applications: CRC press, 2005.
[14]黃炳照、莊睦賢, "電化學感測器," 化工技術 第七卷第二期, 1999.
[15]格魯德, "化學傳感器," 科學出版社, 2008.
[16]D. R. Thévenot, K. Toth, R. A. Durst, and G. S. Wilson, "Electrochemical biosensors: recommended definitions and classification," Biosensors and Bioelectronics, vol. 16, pp. 121-131, 2001.
[17]D. Diamond, "Chemical Analysis Vo1. 150," New York, 1998.
[18]C.-I. L. W.-P. Chu, K. A. J. Y.-C. Wong, and C.-K. C. Y. Der Lee, "Molecularly imprinted polymeric beads for decaffeination," Journal of Medical and Biological Engineering, vol. 23, pp. 53-56, 2003.
[19]謝振傑, "光纖生物感測器," 物理雙月刊, vol. 28, pp. 704-710, 2006.
[20]V. Perumal and U. Hashim, "Advances in biosensors: Principle, architecture and applications," Journal of Applied Biomedicine, vol. 12, pp. 1-15, 2014.
[21]D. R. Thevenot, K. Toth, R. A. Durst, and G. S. Wilson, "Electrochemical biosensors: recommended definitions and classification," Pure and applied chemistry, vol. 71, pp. 2333-2348, 1999.
[22]I. Biran, X. Yu, and D. R. Walt, "Optrode-based fiber optic biosensors (bio-optrode)," in Optical Biosensors (Second Edition), ed: Elsevier, 2008, pp. 3-82.
[23]R. L. Caygill, G. E. Blair, and P. A. Millner, "A review on viral biosensors to detect human pathogens," Analytica Chimica Acta, vol. 681, pp. 8-15, 2010.
[24]J. Tichý, J. Erhart, E. Kittinger, and J. Prívratská, Fundamentals of piezoelectric sensorics: mechanical, dielectric, and thermodynamical properties of piezoelectric materials: Springer Science & Business Media, 2010.
[25]E. T. Thostenson, Z. Ren, and T.-W. Chou, "Advances in the science and technology of carbon nanotubes and their composites: a review," Composites science and technology, vol. 61, pp. 1899-1912, 2001.
[26]成會明, 奈米碳管: 五南圖書出版股份有限公司, 2004.
[27]韋進全, 張先鋒, and 王昆林, 奈米探管巨觀體: 物理化學特性與應用: 五南圖書出版公司, 2009.
[28]C. J. Lee, J. Park, and A. Y. Jeong, "Catalyst effect on carbon nanotubes synthesized by thermal chemical vapor deposition," Chemical Physics Letters, vol. 360, pp. 250-255, 2002.
[29]S. Noda, H. Sugime, K. Hasegawa, K. Kakehi, and Y. Shiratori, "A simple combinatorial method aiding research on single-walled carbon nanotube growth on substrates," Japanese Journal of Applied Physics, vol. 49, p. 02BA02, 2010.
[30]H. Dai, A. G. Rinzler, P. Nikolaev, A. Thess, D. T. Colbert, and R. E. Smalley, "Single-wall nanotubes produced by metal-catalyzed disproportionation of carbon monoxide," Chemical Physics Letters, vol. 260, pp. 471-475, 1996.
[31]R. Krishna, E. Titus, M. Salimian, O. Okhay, S. Rajendran, A. Rajkumar, et al., "Hydrogen Storage for energy application," in Hydrogen Storage, ed: InTech, 2012.
[32]A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, et al., "Superior thermal conductivity of single-layer graphene," Nano letters, vol. 8, pp. 902-907, 2008.
[33]A. K. Geim and K. S. Novoselov, "The rise of graphene," Nature materials, vol. 6, p. 183, 2007.
[34]A. Lerf, H. He, M. Forster, and J. Klinowski, "Structure of graphite oxide revisited," The Journal of Physical Chemistry B, vol. 102, pp. 4477-4482, 1998.
[35]T. Chen, B. Zeng, J. Liu, J. Dong, X. Liu, Z. Wu, et al., "High throughput exfoliation of graphene oxide from expanded graphite with assistance of strong oxidant in modified Hummers method," in Journal of Physics: Conference Series, 2009, p. 012051.
[36]G. Eda and M. Chhowalla, "Chemically derived graphene oxide: towards large‐area thin‐film electronics and optoelectronics," Advanced materials, vol. 22, pp. 2392-2415, 2010.
[37]Z.-S. Wu, W. Ren, L. Wen, L. Gao, J. Zhao, Z. Chen, et al., "Graphene anchored with Co3O4 nanoparticles as anode of lithium ion batteries with enhanced reversible capacity and cyclic performance," ACS nano, vol. 4, pp. 3187-3194, 2010.
[38]Y. Ding, Y. Jiang, F. Xu, J. Yin, H. Ren, Q. Zhuo, et al., "Preparation of nano-structured LiFePO4/graphene composites by co-precipitation method," Electrochemistry Communications, vol. 12, pp. 10-13, 2010.
[39]C. Berger, Z. Song, X. Li, X. Wu, N. Brown, C. Naud, et al., "Electronic confinement and coherence in patterned epitaxial graphene," Science, vol. 312, pp. 1191-1196, 2006.
[40]J. Kim, C. Bayram, H. Park, C.-W. Cheng, C. Dimitrakopoulos, J. A. Ott, et al., "Principle of direct van der Waals epitaxy of single-crystalline films on epitaxial graphene," Nature communications, vol. 5, p. 4836, 2014.
[41]Q. Yu, J. Lian, S. Siriponglert, H. Li, Y. P. Chen, and S.-S. Pei, "Graphene segregated on Ni surfaces and transferred to insulators," Applied Physics Letters, vol. 93, p. 113103, 2008.
[42]X. Li, W. Cai, L. Colombo, and R. S. Ruoff, "Evolution of graphene growth on Ni and Cu by carbon isotope labeling," Nano letters, vol. 9, pp. 4268-4272, 2009.
[43]C. Mattevi, H. Kim, and M. Chhowalla, "A review of chemical vapour deposition of graphene on copper," Journal of Materials Chemistry, vol. 21, pp. 3324-3334, 2011.
[44]王寅丞, "以CVD製備奈米碳管在多孔性鎳網之氣體擴散電極," 國立雲林科技大學微電子與光電工程研究所碩士論文, 2014.
[45]S. Pearton, D. Norton, K. Ip, Y. Heo, and T. Steiner, "Recent progress in processing and properties of ZnO," Progress in materials science, vol. 50, pp. 293-340, 2005.
[46]Z. L. Wang, "Zinc oxide nanostructures: growth, properties and applications," Journal of physics: condensed matter, vol. 16, p. R829, 2004.
[47]Z. Tang, G. K. Wong, P. Yu, M. Kawasaki, A. Ohtomo, H. Koinuma, et al., "Room-temperature ultraviolet laser emission from self-assembled ZnO microcrystallite thin films," Applied Physics Letters, vol. 72, pp. 3270-3272, 1998.
[48]Y. Lin, W. Wei, Y. Wang, J. Zhou, D. Sun, X. Zhang, et al., "Highly stabilized and rapid sensing acetone sensor based on Au nanoparticle-decorated flower-like ZnO microstructures," Journal of Alloys and Compounds, vol. 650, pp. 37-44, 2015.
[49]R. Escudero and R. Escamilla, "Ferromagnetic behavior of high-purity ZnO nanoparticles," Solid State Communications, vol. 151, pp. 97-101, 2011.
[50]Y. Wu and P. Yang, "Direct observation of vapor− liquid− solid nanowire growth," Journal of the American Chemical Society, vol. 123, pp. 3165-3166, 2001.
[51]B. Yao, Y. Chan, and N. Wang, "Formation of ZnO nanostructures by a simple way of thermal evaporation," Applied Physics Letters, vol. 81, pp. 757-759, 2002.
[52]S. Y. Li, C. Y. Lee, and T. Y. Tseng, "Copper-catalyzed ZnO nanowires on silicon (1 0 0) grown by vapor–liquid–solid process," Journal of Crystal Growth, vol. 247, pp. 357-362, 2003.
[53]X. Wang, C. J. Summers, and Z. L. Wang, "Large-scale hexagonal-patterned growth of aligned ZnO nanorods for nano-optoelectronics and nanosensor arrays," Nano letters, vol. 4, pp. 423-426, 2004.
[54]L. Vayssieres, K. Keis, S.-E. Lindquist, and A. Hagfeldt, "Purpose-built anisotropic metal oxide material: 3D highly oriented microrod array of ZnO," The Journal of Physical Chemistry B, vol. 105, pp. 3350-3352, 2001.
[55]Y.-C. Wang, C. Leu, and M.-H. Hon, "Preparation of nanosized ZnO arrays by electrophoretic deposition," Electrochemical and solid-state letters, vol. 5, pp. C53-C55, 2002.
[56]M. Zheng, L. Zhang, G. Li, and W. Shen, "Fabrication and optical properties of large-scale uniform zinc oxide nanowire arrays by one-step electrochemical deposition technique," Chemical Physics Letters, vol. 363, pp. 123-128, 2002.
[57]H. J. Fan, W. Lee, R. Scholz, A. Dadgar, A. Krost, K. Nielsch, et al., "Arrays of vertically aligned and hexagonally arranged ZnO nanowires: a new template-directed approach," Nanotechnology, vol. 16, p. 913, 2005.
[58]G. Wu, T. Xie, X. Yuan, Y. Li, L. Yang, Y. Xiao, et al., "Controlled synthesis of ZnO nanowires or nanotubes via sol–gel template process," Solid State Communications, vol. 134, pp. 485-489, 2005.
[59]C. J. Brinker and G. W. Scherer, Sol-gel science: the physics and chemistry of sol-gel processing: Academic press, 2013.
[60]W.-J. Li, E.-W. Shi, W.-Z. Zhong, and Z.-W. Yin, "Growth mechanism and growth habit of oxide crystals," Journal of crystal growth, vol. 203, pp. 186-196, 1999.
[61]A. Sugunan, H. C. Warad, M. Boman, and J. Dutta, "Zinc oxide nanowires in chemical bath on seeded substrates: role of hexamine," Journal of Sol-Gel Science and Technology, vol. 39, pp. 49-56, 2006.
[62]呂宗昕, "圖解奈米科技與光觸媒," 台北市: 商周, 2003.
[63]A. Rokade, S. Rondiya, A. Jadhavar, S. Pandharkar, S. Karpe, K. Diwate, et al., "Electrochemical synthesis of p-Cu2O/n-ZnO nanorods hetero-junction for photovoltaic application," in AIP Conference Proceedings, 2016, p. 020009.
[64]T. Lan, A. Fallatah, E. Suiter, and S. Padalkar, "Size Controlled Copper (I) Oxide Nanoparticles Influence Sensitivity of Glucose Biosensor," Sensors, vol. 17, p. 1944, 2017.
[65]C. Karuppiah, S. Palanisamy, S.-M. Chen, V. Veeramani, and P. Periakaruppan, "Direct electrochemistry of glucose oxidase and sensing glucose using a screen-printed carbon electrode modified with graphite nanosheets and zinc oxide nanoparticles," Microchimica Acta, vol. 181, pp. 1843-1850, 2014.
[66]J. Y. Kim, S.-Y. Jo, G.-J. Sun, A. Katoch, S.-W. Choi, and S. S. Kim, "Tailoring the surface area of ZnO nanorods for improved performance in glucose sensors," Sensors and Actuators B: Chemical, vol. 192, pp. 216-220, 2014.
[67]Z. Kang, X. Yan, Y. Wang, Z. Bai, Y. Liu, Z. Zhang, et al., "Electronic structure engineering of Cu 2 O film/ZnO nanorods array all-oxide pn heterostructure for enhanced photoelectrochemical property and self-powered biosensing application," Scientific reports, vol. 5, p. 7882, 2015.
[68]K. Tian, S. Alex, G. Siegel, and A. Tiwari, "Enzymatic glucose sensor based on Au nanoparticle and plant-like ZnO film modified electrode," Materials Science and Engineering: C, vol. 46, pp. 548-552, 2015.
[69]S. P. Usha, A. M. Shrivastav, and B. D. Gupta, "FO-SPR based dextrose sensor using Ag/ZnO nanorods/GOx for insulinoma detection," Biosensors and Bioelectronics, vol. 85, pp. 986-995, 2016.
[70]A. Patterson, "The Scherrer formula for X-ray particle size determination," Physical review, vol. 56, p. 978, 1939.
[71]V. Ciupină, S. Zamfirescu, and G. Prodan, "Evaluation of mean diameter values using Scherrer equation applied to electron diffraction images," in Nanotechnology–Toxicological Issues and Environmental Safety and Environmental Safety, ed: Springer, 2007, pp. 231-237.
[72]N. Colthup, Introduction to infrared and Raman spectroscopy: Elsevier, 2012.
[73]S. Petrovic, "Cyclic voltammetry of hexachloroiridate (IV): An alternative to the electrochemical study of the ferricyanide ion," The Chemical Educator, vol. 5, pp. 231-235, 2000.
[74]K. Lee, J.-W. Lee, S.-I. Kim, and B.-k. Ju, "Single-walled carbon nanotube/Nafion composites as methanol sensors," Carbon, vol. 49, pp. 787-792, 2011.
[75]M. Pimenta, G. Dresselhaus, M. S. Dresselhaus, L. Cancado, A. Jorio, and R. Saito, "Studying disorder in graphite-based systems by Raman spectroscopy," Physical chemistry chemical physics, vol. 9, pp. 1276-1290, 2007.
[76]Y. Zhao, W. Li, L. Pan, D. Zhai, Y. Wang, L. Li, et al., "ZnO-nanorods/graphene heterostructure: a direct electron transfer glucose biosensor," Scientific reports, vol. 6, p. 32327, 2016.
[77]N. G. Elfadill, M. Hashim, K. M. Chahrour, M. Qaeed, and M. Bououdina, "The influence of Cu2O crystal structure on the Cu2O/ZnO heterojunction photovoltaic performance," Superlattices and Microstructures, vol. 85, pp. 908-917, 2015.
[78]D. K. Sarkar and R. W. Paynter, "One-Step deposition process to obtain nanostructured superhydrophobic thin films by galvanic exchange reactions," Journal of Adhesion Science and Technology, vol. 24, pp. 1181-1189, 2010.
[79]S. Felix, P. Kollu, B. P. Raghupathy, S. K. Jeong, and A. N. Grace, "Electrocatalytic activity of Cu 2 O nanocubes based electrode for glucose oxidation," Journal of Chemical Sciences, vol. 126, pp. 25-32, 2014.
[80]C. Lee, S. H. Lee, M. Cho, and Y. Lee, "Nonenzymatic amperometric glucose sensor based on a composite prepared from CuO, reduced graphene oxide, and carbon nanotube," Microchimica Acta, vol. 183, pp. 3285-3292, 2016.
[81]Q. Qian, Q. Hu, L. Li, P. Shi, J. Zhou, J. Kong, et al., "Sensitive fiber microelectrode made of nickel hydroxide nanosheets embedded in highly-aligned carbon nanotube scaffold for nonenzymatic glucose determination," Sensors and Actuators B: Chemical, vol. 257, pp. 23-28, 2018.
[82]H.-F. Cui, J.-S. Ye, W.-D. Zhang, C.-M. Li, J. H. Luong, and F.-S. Sheu, "Selective and sensitive electrochemical detection of glucose in neutral solution using platinum–lead alloy nanoparticle/carbon nanotube nanocomposites," Analytica chimica acta, vol. 594, pp. 175-183, 2007.
[83]M. Liu, R. Liu, and W. Chen, "Graphene wrapped Cu2O nanocubes: non-enzymatic electrochemical sensors for the detection of glucose and hydrogen peroxide with enhanced stability," Biosensors and Bioelectronics, vol. 45, pp. 206-212, 2013.
[84]A. Esmaeeli, A. Ghaffarinejad, A. Zahedi, and O. Vahidi, "Copper oxide-polyaniline nanofiber modified fluorine doped tin oxide (FTO) electrode as non-enzymatic glucose sensor," Sensors and Actuators B: Chemical, vol. 266, pp. 294-301, 2018/08/01/ 2018.
[85]X. Liu, L. Long, W. Yang, L. Chen, and J. Jia, "Facilely electrodeposited coral-like copper micro-/nano-structure arrays with excellent performance in glucose sensing," Sensors and Actuators B: Chemical, vol. 266, pp. 853-860, 2018/08/01/ 2018.
[86]S. Palanisamy, S. Cheemalapati, and S.-M. Chen, "Enzymatic glucose biosensor based on multiwalled carbon nanotubes-zinc oxide composite," Int J Electrochem Sci, vol. 7, p. 8394, 2012.
[87]B.-Y. Wu, S.-H. Hou, F. Yin, Z.-X. Zhao, Y.-Y. Wang, X.-S. Wang, et al., "Amperometric glucose biosensor based on multilayer films via layer-by-layer self-assembly of multi-wall carbon nanotubes, gold nanoparticles and glucose oxidase on the Pt electrode," Biosensors and Bioelectronics, vol. 22, pp. 2854-2860, 2007.
[88]M. Y. Elahi, A. Khodadadi, and Y. Mortazavi, "A glucose biosensor based on glucose oxidase immobilized on ZnO/Cu2O graphene oxide nanocomposite electrode," Journal of The Electrochemical Society, vol. 161, pp. B81-B87, 2014.
[89]S. Palanisamy, A. E. Vilian, and S.-M. Chen, "Direct electrochemistry of glucose oxidase at reduced graphene oxide/zinc oxide composite modified electrode for glucose sensor," Int. J. Electrochem. Sci, vol. 7, pp. 2153-2163, 2012.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊