[1]W. H. Organization and W. H. O. M. o. S. A. Unit, Global status report on alcohol and health, 2014: World Health Organization, 2014.
[2]R. R. Bourne, G. A. Stevens, R. A. White, J. L. Smith, S. R. Flaxman, H. Price, et al., "Causes of vision loss worldwide, 1990–2010: a systematic analysis," The lancet global health, vol. 1, pp. e339-e349, 2013.
[3]"糖尿病," 慢性疾病防治組, 2016.
[4]W. H. Organization, "Definition and diagnosis of diabetes mellitus and intermediate hyperglycemia: report of a WHO/IDF consultation," World Hearth Org, 2006.
[5]S. Vijan, "TYpe 2 diabetes," Annals of Internal Medicine, vol. 152, pp. ITC3-1-1, 2010.
[6]M. Collazo, Mayo clinic on managing diabetes: Orient Paperbacks, 2008.
[7]B. Tripathy, H. B. Chandalia, and A. K. Das, RSSDI textbook of diabetes mellitus: JP Medical Ltd, 2012.
[8]W. J. Craig and A. R. Mangels, "Position of the American Dietetic Association: vegetarian diets," Journal of the American dietetic association, vol. 109, pp. 1266-1282, 2009.
[9]黎雨青, 李奕德, and 陳順天, "潛伏性成人自體免疫糖尿病," 家庭醫學與基層醫療, vol. 24, pp. 327-330, 2009.
[10]"Across the global," International Diabetes Feberation, IDF, 2017.
[11]美國亞培 Abbott, 2015.
[12]洪偉修, "世界上最薄的材料-石墨烯," ed: 康熹化學報報, 2009.
[13]J. L. G. Fierro, Metal oxides: chemistry and applications: CRC press, 2005.
[14]黃炳照、莊睦賢, "電化學感測器," 化工技術 第七卷第二期, 1999.
[15]格魯德, "化學傳感器," 科學出版社, 2008.
[16]D. R. Thévenot, K. Toth, R. A. Durst, and G. S. Wilson, "Electrochemical biosensors: recommended definitions and classification," Biosensors and Bioelectronics, vol. 16, pp. 121-131, 2001.
[17]D. Diamond, "Chemical Analysis Vo1. 150," New York, 1998.
[18]C.-I. L. W.-P. Chu, K. A. J. Y.-C. Wong, and C.-K. C. Y. Der Lee, "Molecularly imprinted polymeric beads for decaffeination," Journal of Medical and Biological Engineering, vol. 23, pp. 53-56, 2003.
[19]謝振傑, "光纖生物感測器," 物理雙月刊, vol. 28, pp. 704-710, 2006.
[20]V. Perumal and U. Hashim, "Advances in biosensors: Principle, architecture and applications," Journal of Applied Biomedicine, vol. 12, pp. 1-15, 2014.
[21]D. R. Thevenot, K. Toth, R. A. Durst, and G. S. Wilson, "Electrochemical biosensors: recommended definitions and classification," Pure and applied chemistry, vol. 71, pp. 2333-2348, 1999.
[22]I. Biran, X. Yu, and D. R. Walt, "Optrode-based fiber optic biosensors (bio-optrode)," in Optical Biosensors (Second Edition), ed: Elsevier, 2008, pp. 3-82.
[23]R. L. Caygill, G. E. Blair, and P. A. Millner, "A review on viral biosensors to detect human pathogens," Analytica Chimica Acta, vol. 681, pp. 8-15, 2010.
[24]J. Tichý, J. Erhart, E. Kittinger, and J. Prívratská, Fundamentals of piezoelectric sensorics: mechanical, dielectric, and thermodynamical properties of piezoelectric materials: Springer Science & Business Media, 2010.
[25]E. T. Thostenson, Z. Ren, and T.-W. Chou, "Advances in the science and technology of carbon nanotubes and their composites: a review," Composites science and technology, vol. 61, pp. 1899-1912, 2001.
[26]成會明, 奈米碳管: 五南圖書出版股份有限公司, 2004.
[27]韋進全, 張先鋒, and 王昆林, 奈米探管巨觀體: 物理化學特性與應用: 五南圖書出版公司, 2009.
[28]C. J. Lee, J. Park, and A. Y. Jeong, "Catalyst effect on carbon nanotubes synthesized by thermal chemical vapor deposition," Chemical Physics Letters, vol. 360, pp. 250-255, 2002.
[29]S. Noda, H. Sugime, K. Hasegawa, K. Kakehi, and Y. Shiratori, "A simple combinatorial method aiding research on single-walled carbon nanotube growth on substrates," Japanese Journal of Applied Physics, vol. 49, p. 02BA02, 2010.
[30]H. Dai, A. G. Rinzler, P. Nikolaev, A. Thess, D. T. Colbert, and R. E. Smalley, "Single-wall nanotubes produced by metal-catalyzed disproportionation of carbon monoxide," Chemical Physics Letters, vol. 260, pp. 471-475, 1996.
[31]R. Krishna, E. Titus, M. Salimian, O. Okhay, S. Rajendran, A. Rajkumar, et al., "Hydrogen Storage for energy application," in Hydrogen Storage, ed: InTech, 2012.
[32]A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, et al., "Superior thermal conductivity of single-layer graphene," Nano letters, vol. 8, pp. 902-907, 2008.
[33]A. K. Geim and K. S. Novoselov, "The rise of graphene," Nature materials, vol. 6, p. 183, 2007.
[34]A. Lerf, H. He, M. Forster, and J. Klinowski, "Structure of graphite oxide revisited," The Journal of Physical Chemistry B, vol. 102, pp. 4477-4482, 1998.
[35]T. Chen, B. Zeng, J. Liu, J. Dong, X. Liu, Z. Wu, et al., "High throughput exfoliation of graphene oxide from expanded graphite with assistance of strong oxidant in modified Hummers method," in Journal of Physics: Conference Series, 2009, p. 012051.
[36]G. Eda and M. Chhowalla, "Chemically derived graphene oxide: towards large‐area thin‐film electronics and optoelectronics," Advanced materials, vol. 22, pp. 2392-2415, 2010.
[37]Z.-S. Wu, W. Ren, L. Wen, L. Gao, J. Zhao, Z. Chen, et al., "Graphene anchored with Co3O4 nanoparticles as anode of lithium ion batteries with enhanced reversible capacity and cyclic performance," ACS nano, vol. 4, pp. 3187-3194, 2010.
[38]Y. Ding, Y. Jiang, F. Xu, J. Yin, H. Ren, Q. Zhuo, et al., "Preparation of nano-structured LiFePO4/graphene composites by co-precipitation method," Electrochemistry Communications, vol. 12, pp. 10-13, 2010.
[39]C. Berger, Z. Song, X. Li, X. Wu, N. Brown, C. Naud, et al., "Electronic confinement and coherence in patterned epitaxial graphene," Science, vol. 312, pp. 1191-1196, 2006.
[40]J. Kim, C. Bayram, H. Park, C.-W. Cheng, C. Dimitrakopoulos, J. A. Ott, et al., "Principle of direct van der Waals epitaxy of single-crystalline films on epitaxial graphene," Nature communications, vol. 5, p. 4836, 2014.
[41]Q. Yu, J. Lian, S. Siriponglert, H. Li, Y. P. Chen, and S.-S. Pei, "Graphene segregated on Ni surfaces and transferred to insulators," Applied Physics Letters, vol. 93, p. 113103, 2008.
[42]X. Li, W. Cai, L. Colombo, and R. S. Ruoff, "Evolution of graphene growth on Ni and Cu by carbon isotope labeling," Nano letters, vol. 9, pp. 4268-4272, 2009.
[43]C. Mattevi, H. Kim, and M. Chhowalla, "A review of chemical vapour deposition of graphene on copper," Journal of Materials Chemistry, vol. 21, pp. 3324-3334, 2011.
[44]王寅丞, "以CVD製備奈米碳管在多孔性鎳網之氣體擴散電極," 國立雲林科技大學微電子與光電工程研究所碩士論文, 2014.[45]S. Pearton, D. Norton, K. Ip, Y. Heo, and T. Steiner, "Recent progress in processing and properties of ZnO," Progress in materials science, vol. 50, pp. 293-340, 2005.
[46]Z. L. Wang, "Zinc oxide nanostructures: growth, properties and applications," Journal of physics: condensed matter, vol. 16, p. R829, 2004.
[47]Z. Tang, G. K. Wong, P. Yu, M. Kawasaki, A. Ohtomo, H. Koinuma, et al., "Room-temperature ultraviolet laser emission from self-assembled ZnO microcrystallite thin films," Applied Physics Letters, vol. 72, pp. 3270-3272, 1998.
[48]Y. Lin, W. Wei, Y. Wang, J. Zhou, D. Sun, X. Zhang, et al., "Highly stabilized and rapid sensing acetone sensor based on Au nanoparticle-decorated flower-like ZnO microstructures," Journal of Alloys and Compounds, vol. 650, pp. 37-44, 2015.
[49]R. Escudero and R. Escamilla, "Ferromagnetic behavior of high-purity ZnO nanoparticles," Solid State Communications, vol. 151, pp. 97-101, 2011.
[50]Y. Wu and P. Yang, "Direct observation of vapor− liquid− solid nanowire growth," Journal of the American Chemical Society, vol. 123, pp. 3165-3166, 2001.
[51]B. Yao, Y. Chan, and N. Wang, "Formation of ZnO nanostructures by a simple way of thermal evaporation," Applied Physics Letters, vol. 81, pp. 757-759, 2002.
[52]S. Y. Li, C. Y. Lee, and T. Y. Tseng, "Copper-catalyzed ZnO nanowires on silicon (1 0 0) grown by vapor–liquid–solid process," Journal of Crystal Growth, vol. 247, pp. 357-362, 2003.
[53]X. Wang, C. J. Summers, and Z. L. Wang, "Large-scale hexagonal-patterned growth of aligned ZnO nanorods for nano-optoelectronics and nanosensor arrays," Nano letters, vol. 4, pp. 423-426, 2004.
[54]L. Vayssieres, K. Keis, S.-E. Lindquist, and A. Hagfeldt, "Purpose-built anisotropic metal oxide material: 3D highly oriented microrod array of ZnO," The Journal of Physical Chemistry B, vol. 105, pp. 3350-3352, 2001.
[55]Y.-C. Wang, C. Leu, and M.-H. Hon, "Preparation of nanosized ZnO arrays by electrophoretic deposition," Electrochemical and solid-state letters, vol. 5, pp. C53-C55, 2002.
[56]M. Zheng, L. Zhang, G. Li, and W. Shen, "Fabrication and optical properties of large-scale uniform zinc oxide nanowire arrays by one-step electrochemical deposition technique," Chemical Physics Letters, vol. 363, pp. 123-128, 2002.
[57]H. J. Fan, W. Lee, R. Scholz, A. Dadgar, A. Krost, K. Nielsch, et al., "Arrays of vertically aligned and hexagonally arranged ZnO nanowires: a new template-directed approach," Nanotechnology, vol. 16, p. 913, 2005.
[58]G. Wu, T. Xie, X. Yuan, Y. Li, L. Yang, Y. Xiao, et al., "Controlled synthesis of ZnO nanowires or nanotubes via sol–gel template process," Solid State Communications, vol. 134, pp. 485-489, 2005.
[59]C. J. Brinker and G. W. Scherer, Sol-gel science: the physics and chemistry of sol-gel processing: Academic press, 2013.
[60]W.-J. Li, E.-W. Shi, W.-Z. Zhong, and Z.-W. Yin, "Growth mechanism and growth habit of oxide crystals," Journal of crystal growth, vol. 203, pp. 186-196, 1999.
[61]A. Sugunan, H. C. Warad, M. Boman, and J. Dutta, "Zinc oxide nanowires in chemical bath on seeded substrates: role of hexamine," Journal of Sol-Gel Science and Technology, vol. 39, pp. 49-56, 2006.
[62]呂宗昕, "圖解奈米科技與光觸媒," 台北市: 商周, 2003.
[63]A. Rokade, S. Rondiya, A. Jadhavar, S. Pandharkar, S. Karpe, K. Diwate, et al., "Electrochemical synthesis of p-Cu2O/n-ZnO nanorods hetero-junction for photovoltaic application," in AIP Conference Proceedings, 2016, p. 020009.
[64]T. Lan, A. Fallatah, E. Suiter, and S. Padalkar, "Size Controlled Copper (I) Oxide Nanoparticles Influence Sensitivity of Glucose Biosensor," Sensors, vol. 17, p. 1944, 2017.
[65]C. Karuppiah, S. Palanisamy, S.-M. Chen, V. Veeramani, and P. Periakaruppan, "Direct electrochemistry of glucose oxidase and sensing glucose using a screen-printed carbon electrode modified with graphite nanosheets and zinc oxide nanoparticles," Microchimica Acta, vol. 181, pp. 1843-1850, 2014.
[66]J. Y. Kim, S.-Y. Jo, G.-J. Sun, A. Katoch, S.-W. Choi, and S. S. Kim, "Tailoring the surface area of ZnO nanorods for improved performance in glucose sensors," Sensors and Actuators B: Chemical, vol. 192, pp. 216-220, 2014.
[67]Z. Kang, X. Yan, Y. Wang, Z. Bai, Y. Liu, Z. Zhang, et al., "Electronic structure engineering of Cu 2 O film/ZnO nanorods array all-oxide pn heterostructure for enhanced photoelectrochemical property and self-powered biosensing application," Scientific reports, vol. 5, p. 7882, 2015.
[68]K. Tian, S. Alex, G. Siegel, and A. Tiwari, "Enzymatic glucose sensor based on Au nanoparticle and plant-like ZnO film modified electrode," Materials Science and Engineering: C, vol. 46, pp. 548-552, 2015.
[69]S. P. Usha, A. M. Shrivastav, and B. D. Gupta, "FO-SPR based dextrose sensor using Ag/ZnO nanorods/GOx for insulinoma detection," Biosensors and Bioelectronics, vol. 85, pp. 986-995, 2016.
[70]A. Patterson, "The Scherrer formula for X-ray particle size determination," Physical review, vol. 56, p. 978, 1939.
[71]V. Ciupină, S. Zamfirescu, and G. Prodan, "Evaluation of mean diameter values using Scherrer equation applied to electron diffraction images," in Nanotechnology–Toxicological Issues and Environmental Safety and Environmental Safety, ed: Springer, 2007, pp. 231-237.
[72]N. Colthup, Introduction to infrared and Raman spectroscopy: Elsevier, 2012.
[73]S. Petrovic, "Cyclic voltammetry of hexachloroiridate (IV): An alternative to the electrochemical study of the ferricyanide ion," The Chemical Educator, vol. 5, pp. 231-235, 2000.
[74]K. Lee, J.-W. Lee, S.-I. Kim, and B.-k. Ju, "Single-walled carbon nanotube/Nafion composites as methanol sensors," Carbon, vol. 49, pp. 787-792, 2011.
[75]M. Pimenta, G. Dresselhaus, M. S. Dresselhaus, L. Cancado, A. Jorio, and R. Saito, "Studying disorder in graphite-based systems by Raman spectroscopy," Physical chemistry chemical physics, vol. 9, pp. 1276-1290, 2007.
[76]Y. Zhao, W. Li, L. Pan, D. Zhai, Y. Wang, L. Li, et al., "ZnO-nanorods/graphene heterostructure: a direct electron transfer glucose biosensor," Scientific reports, vol. 6, p. 32327, 2016.
[77]N. G. Elfadill, M. Hashim, K. M. Chahrour, M. Qaeed, and M. Bououdina, "The influence of Cu2O crystal structure on the Cu2O/ZnO heterojunction photovoltaic performance," Superlattices and Microstructures, vol. 85, pp. 908-917, 2015.
[78]D. K. Sarkar and R. W. Paynter, "One-Step deposition process to obtain nanostructured superhydrophobic thin films by galvanic exchange reactions," Journal of Adhesion Science and Technology, vol. 24, pp. 1181-1189, 2010.
[79]S. Felix, P. Kollu, B. P. Raghupathy, S. K. Jeong, and A. N. Grace, "Electrocatalytic activity of Cu 2 O nanocubes based electrode for glucose oxidation," Journal of Chemical Sciences, vol. 126, pp. 25-32, 2014.
[80]C. Lee, S. H. Lee, M. Cho, and Y. Lee, "Nonenzymatic amperometric glucose sensor based on a composite prepared from CuO, reduced graphene oxide, and carbon nanotube," Microchimica Acta, vol. 183, pp. 3285-3292, 2016.
[81]Q. Qian, Q. Hu, L. Li, P. Shi, J. Zhou, J. Kong, et al., "Sensitive fiber microelectrode made of nickel hydroxide nanosheets embedded in highly-aligned carbon nanotube scaffold for nonenzymatic glucose determination," Sensors and Actuators B: Chemical, vol. 257, pp. 23-28, 2018.
[82]H.-F. Cui, J.-S. Ye, W.-D. Zhang, C.-M. Li, J. H. Luong, and F.-S. Sheu, "Selective and sensitive electrochemical detection of glucose in neutral solution using platinum–lead alloy nanoparticle/carbon nanotube nanocomposites," Analytica chimica acta, vol. 594, pp. 175-183, 2007.
[83]M. Liu, R. Liu, and W. Chen, "Graphene wrapped Cu2O nanocubes: non-enzymatic electrochemical sensors for the detection of glucose and hydrogen peroxide with enhanced stability," Biosensors and Bioelectronics, vol. 45, pp. 206-212, 2013.
[84]A. Esmaeeli, A. Ghaffarinejad, A. Zahedi, and O. Vahidi, "Copper oxide-polyaniline nanofiber modified fluorine doped tin oxide (FTO) electrode as non-enzymatic glucose sensor," Sensors and Actuators B: Chemical, vol. 266, pp. 294-301, 2018/08/01/ 2018.
[85]X. Liu, L. Long, W. Yang, L. Chen, and J. Jia, "Facilely electrodeposited coral-like copper micro-/nano-structure arrays with excellent performance in glucose sensing," Sensors and Actuators B: Chemical, vol. 266, pp. 853-860, 2018/08/01/ 2018.
[86]S. Palanisamy, S. Cheemalapati, and S.-M. Chen, "Enzymatic glucose biosensor based on multiwalled carbon nanotubes-zinc oxide composite," Int J Electrochem Sci, vol. 7, p. 8394, 2012.
[87]B.-Y. Wu, S.-H. Hou, F. Yin, Z.-X. Zhao, Y.-Y. Wang, X.-S. Wang, et al., "Amperometric glucose biosensor based on multilayer films via layer-by-layer self-assembly of multi-wall carbon nanotubes, gold nanoparticles and glucose oxidase on the Pt electrode," Biosensors and Bioelectronics, vol. 22, pp. 2854-2860, 2007.
[88]M. Y. Elahi, A. Khodadadi, and Y. Mortazavi, "A glucose biosensor based on glucose oxidase immobilized on ZnO/Cu2O graphene oxide nanocomposite electrode," Journal of The Electrochemical Society, vol. 161, pp. B81-B87, 2014.
[89]S. Palanisamy, A. E. Vilian, and S.-M. Chen, "Direct electrochemistry of glucose oxidase at reduced graphene oxide/zinc oxide composite modified electrode for glucose sensor," Int. J. Electrochem. Sci, vol. 7, pp. 2153-2163, 2012.