|
參考文獻 [1]Daffara, C.; Pezzati, L.; Ambrosini, D.; Paoletti, D.; Di Biase, R.; Mariotti, P. I.; Frosinini, C., Wide-Band IR Imaging in the NIR-MIR-FIR Regions for in Situ Analysis of Frescoes. Proc. SPIE 2011, 8084, 808406. [2]Cho, S.; Shin, M. H.; Kim, Y. K.; Seo, J. E.; Lee, Y. M.; Park, C. H.; Chung, J. H., Effects of Infrared Radiation and Heat on Human Skin Aging in Vivo. J. Investig. Dermatol. Symp. Proc. 2009, 14, 15-19. [3]Kamimura, M.; Matsumoto, T.; Suyari, S.; Umezawa, M.; Soga, K., Ratiometric Near-Infrared Fluorescence Nanothermometry in the OTN-NIR (NIR II/III) Biological Window Based on Rare-Earth Doped β-NaYF4 Nanoparticles. J. Mater. Chem. B 2017, 5, 1917-1925. [4]Chan, M. H.; Liu, R. S., Advanced Sensing, Imaging, and Therapy Nanoplatforms Based on Nd3+-Doped Nanoparticle Composites Exhibiting Upconversion Induced by 808 nm Near-Infrared Light. Nanoscale 2017, 9, 18153-18168. [5]Hemmer, E.; Benayas, A.; Légaré, F.; Vetrone, F., Exploiting the Biological Windows: Current Perspectives on Fluorescent Bioprobes Emitting above 1000 nm. Nanoscale Horiz. 2016, 1, 168-184. [6]Ceron, E. N.; Ortgies, D. H.; Del Rosal, B.; Ren, F.; Benayas, A.; Vetrone, F.; Ma, D.; Sanz Rodriguez, F.; Sole, J. G.; Jaque, D.; Rodriguez, E. M., Hybrid Nanostructures for High-Sensitivity Luminescence Nanothermometry in the Second Biological Window. Adv. Mater. 2015, 27, 4781-4787. [7]Hayashi, D.; van Dongen, A. M.; Boerekamp, J.; Spoor, S.; Lucassen, G.; Schleipen, J., A Broadband LED Source in Visible to Short-Wave-Infrared Wavelengths for Spectral Tumor Diagnostics. Appl. Phys. Lett. 2017, 110, 233701. [8]Zhou, J.; Leano, J. L., Jr.; Liu, Z.; Jin, D.; Wong, K. L.; Liu, R. S.; Bunzli, J. G., Impact of Lanthanide Nanomaterials on Photonic Devices and Smart Applications. Small 2018, 14, e1801882. [9]Huang, W. T.; Cheng, C. L.; Bao, Z.; Yang, C. W.; Lu, K. M.; Kang, C. Y.; Lin, C. M.; Liu, R. S., Broadband Cr3+, Sn4+-Doped Oxide Nanophosphors for Infrared Mini Light-Emitting Diodes. Angew. Chem. Int. Ed. 2019, 58, 2069-2072. [10]Wu, T.; Sher, C. W.; Lin, Y.; Lee, C. F.; Liang, S.; Lu, Y.; Huang Chen, S. W.; Guo, W.; Kuo, H. C.; Chen, Z., Mini-LED and Micro-LED: Promising Candidates for the Next Generation Display Technology. Appl. Sci. 2018, 8, 1557. [11]Licha, K.; Olbrich, C., Optical Imaging in Drug Discovery and Diagnostic Applications. Adv. Drug Deliv. Rev. 2005, 57, 1087-1108. [12]Hemmer, E.; Acosta Mora, P.; Méndez Ramos, J.; Fischer, S., Optical Nanoprobes for Biomedical Applications: Shining a Light on Upconverting and Near-Infrared Emitting Nanoparticles for Imaging, Thermal Sensing, and Photodynamic Therapy. J. Mater. Chem. B 2017, 5, 4365-4392. [13]Sevick-Muraca, E. M.; Houston, J. P.; Gurfinkel, M., Fluorescence-Enhanced, Near Infrared Diagnostic Imaging with Contrast Agents. Curr. Opin. Chem. Biol. 2002, 6, 642-650. [14]Rao, J.; Dragulescu Andrasi, A.; Yao, H., Fluorescence Imaging in Vivo: Recent Advances. Curr. Opin. Biotechnol. 2007, 18, 17-25. [15]Hilderbrand, S. A.; Weissleder, R., Near-Infrared Fluorescence: Application to in Vivo Molecular Imaging. Curr. Opin. Chem. Biol. 2010, 14, 71-79. [16]Haque, A.; Faizi, M. S. H.; Rather, J. A.; Khan, M. S., Next Generation NIR Fluorophores for Tumor Imaging and Fluorescence-Guided Surgery: A Review. Bioorg. Med. Chem. 2017, 25. [17]Wang, X.; Ku, G.; Wegiel, M. A.; Bornhop, D. J.; Stoica, G.; Wang, L. V., Noninvasive Photoacoustic Angiography of Animal Brains in Vivo with Near-Infrared Light and an Optical Contrast Agent. Opt. Lett. 2004, 29, 730-732. [18]Villringer, A.; Planck, J.; Hock, C.; Schleinkofer, L.; Dirnagl, U., Near Infrared Spectroscopy (NIRS): A New Tool to Study Hemodynamic Changes During Activation of Brain Function in Human Adults. Neurosci. Lett. 1993, 154, 101-104. [19]Zell, K.; Sperl, J.; Vogel, M.; Niessner, R.; Haisch, C., Acoustical Properties of Selected Tissue Phantom Materials for Ultrasound Imaging. Phys. Med. Biol. 2007, 52, N475. [20]Fenster, A.; Downey, D. B.; Cardinal, H. N., Three-Dimensional Ultrasound Imaging. Phys. Med. Biol. 2001, 46, R67. [21]Nicholson, P. H.; Bouxsein, M. L., Bone Marrow Influences Quantitative Ultrasound Measurements in Human Cancellous Bone. Ultrasound Med. Biol. 2002, 28, 369-375. [22]Wagner, D. R., Ultrasound as a Tool to Assess Body Fat. J. Obes. 2013, 2013. [23]Lensing, A. W.; Prandoni, P.; Brandjes, D.; Huisman, P. M.; Vigo, M.; Tomasella, G.; Krekt, J.; ten Cate, J. W.; Huisman, M. V.; Büller, H. R., Detection of Deep-Vein Thrombosis by Real-Time B-Mode Ultrasonography. N. Engl. J. Med. 1989, 320, 342-345. [24]De Jong, N.; Ten Cate, F.; Lancee, C.; Roelandt, J.; Bom, N., Principles and Recent Developments in Ultrasound Contrast Agents. Ultrasonics 1991, 29, 324-330. [25]Correas, J. M.; Bridal, L.; Lesavre, A.; Méjean, A.; Claudon, M.; Hélénon, O., Ultrasound Contrast Agents: Properties, Principles of Action, Tolerance, and Artifacts. Eur. Radiol. 2001, 11, 1316-1328. [26]Van der Meer, S. M.; Dollet, B.; Voormolen, M. M.; Chin, C. T.; Bouakaz, A.; de Jong, N.; Versluis, M.; Lohse, D., Microbubble Spectroscopy of Ultrasound Contrast Agents. J. Acoust. Soc. Am. 2007, 121, 648-656. [27]Yin, T.; Wang, P.; Zheng, R.; Zheng, B.; Cheng, D.; Zhang, X.; Shuai, X., Nanobubbles for Enhanced Ultrasound Imaging of Tumors. Inter. J. Nanomed. 2012, 7, 895. [28]Hernot, S.; Klibanov, A. L., Microbubbles in Ultrasound-Triggered Drug and Gene Delivery. Adv. Drug Deliv. Rev. 2008, 60, 1153-1166. [29]Gorce, J. M.; Arditi, M.; Schneider, M., Influence of Bubble Size Distribution on the Echogenicity of Ultrasound Contrast Agents: A Study of Sonovue™. Invest. Radiol. 2000, 35, 661-671. [30]Zhu, W.; Bartos, P. J.; Porro, A., Application of Nanotechnology in Construction. Mater. Struct. 2004, 37, 649-658. [31]Ojea-Jiménez, I.; Tort, O.; Lorenzo, J.; Puntes, V. F., Engineered Nonviral Nanocarriers for Intracellular Gene Delivery Applications. Biomed. Mater. 2012, 7, 054106. [32]Chen, H. M.; Liu, R. S., Architecture of Metallic Nanostructures: Synthesis Strategy and Specific Applications. J. Phys. Chem. C 2011, 115, 3513-3527. [33]Buffat, P.; Borel, J. P., Size Effect on the Melting Temperature of Gold Particles. Phys. Rev. A 1976, 13, 2287. [34]Roduner, E., Size Matters: Why Nanomaterials Are Different. Chem. Soc. Rev. 2006, 35, 583-592. [35]Li, Y.; Boone, E.; El-Sayed, M. A., Size Effects of PVP-Pd Nanoparticles on the Catalytic Suzuki Reactions in Aqueous Solution. Langmuir 2002, 18, 4921-4925. [36]Kubo, R., Electronic Properties of Metallic Fine Particles. I. J. Phys. Soc. Jpn. 1962, 17, 975-986. [37]Daniel, M. C.; Astruc, D., Gold Nanoparticles: Assembly, Supramolecular Chemistry, Quantum-Size-Related Properties, and Applications toward Biology, Catalysis, and Nanotechnology. Chem. Rev. 2004, 104, 293-346. [38]Chen, H.; Zhao, Y., Applications of Light-Responsive Systems for Cancer Theranostics. ACS Appl. Mater. Interfaces 2018, 10, 21021-21034. [39]Wang, J.; Ma, Q.; Wang, Y.; Shen, H.; Yuan, Q., Recent Progress in Biomedical Applications of Persistent Luminescence Nanoparticles. Nanoscale 2017, 9, 6204-6218. [40]Sun, S. K.; Wang, H. F.; Yan, X. P., Engineering Persistent Luminescence Nanoparticles for Biological Applications: From Biosensing/Bioimaging to Theranostics. Acc. Chem. Res. 2018, 51, 1131-1143. [41]Paefgen, V.; Doleschel, D.; Kiessling, F., Evolution of Contrast Agents for Ultrasound Imaging and Ultrasound-Mediated Drug Delivery. Front. Pharmacol. 2015, 6, 197. [42]Kodama, T.; Tomita, Y.; Koshiyama, K.; Blomley, M. J., Transfection Effect of Microbubbles on Cells in Superposed Ultrasound Waves and Behavior of Cavitation Bubble. Ultrasound Med. Biol. 2006, 32, 905-914. [43]Wang, F.; Liu, X., Recent Advances in the Chemistry of Lanthanide-Doped Upconversion Nanocrystals. Chem. Soc. Rev. 2009, 38, 976-989. [44]Dong, H.; Sun, L. D.; Yan, C. H., Energy Transfer in Lanthanide Upconversion Studies for Extended Optical Applications. Chem. Soc. Rev. 2015, 44, 1608-1634. [45]Xu, Z.; Li, C.; Yang, P.; Zhang, C.; Huang, S.; Lin, J., Rare Earth Fluorides Nanowires/Nanorods Derived from Hydroxides: Hydrothermal Synthesis and Luminescence Properties. Cryst. Growth Des. 2009, 9, 4752-4758. [46]Zhou, J.; Liu, Q.; Feng, W.; Sun, Y.; Li, F., Upconversion Luminescent Materials: Advances and Applications. Chem. Rev. 2014, 115, 395-465. [47]Shen, J.; Chen, G.; Vu, A. M.; Fan, W.; Bilsel, O. S.; Chang, C. C.; Han, G., Engineering the Upconversion Nanoparticle Excitation Wavelength: Cascade Sensitization of Tri‐Doped Upconversion Colloidal Nanoparticles at 800 nm. Adv. Opt. Mater. 2013, 1, 644-650. [48]Schietinger, S.; Aichele, T.; Wang, H. Q.; Nann, T.; Benson, O., Plasmon-Enhanced Upconversion in Single NaYF4: Yb3+/Er3+ Codoped Nanocrystals. Nano Lett. 2009, 10, 134-138. [49]Zhan, Q.; Zhang, X.; Zhao, Y.; Liu, J.; He, S., Tens of Thousands‐Fold Upconversion Luminescence Enhancement Induced by a Single Gold Nanorod. Laser Photonics Rev. 2015, 9, 479-487. [50]Yin, T.; Wang, P.; Li, J.; Zheng, R.; Zheng, B.; Cheng, D.; Li, R.; Lai, J.; Shuai, X., Ultrasound-Sensitive Sirna-Loaded Nanobubbles Formed by Hetero-Assembly of Polymeric Micelles and Liposomes and Their Therapeutic Effect in Gliomas. Biomaterials 2013, 34, 4532-4543. [51]Chauhan, D. S.; Prasad, R.; Devrukhkar, J.; Selvaraj, K.; Srivastava, R., Disintegrable NIR Light Triggered Gold Nanorods Supported Liposomal Nanohybrids for Cancer Theranostics. Bioconjug. Chem. 2018, 29, 1510-1518. [52]Chan, M. H.; Pan, Y. T.; Chan, Y. C.; Hsiao, M.; Chen, C. H.; Sun, L.; Liu, R. S., Nanobubble-Embedded Inorganic 808 nm Excited Upconversion Nanocomposites for Tumor Multiple Imaging and Treatment. Chem. Sci. 2018, 9, 3141-3151. [53]Taguchi, T.; Uchida, Y.; Kobashi, K., Efficient White LED Lighting and its Application to Medical Fields. Phys. Status Solidi A 2004, 201, 2730-2735. [54]Song, S.; Zhang, Y.; Fong, C. C.; Tsang, C. H.; Yang, Z.; Yang, M., Cdna Microarray Analysis of Gene Expression Profiles in Human Fibroblast Cells Irradiated with Red Light. J. Investig. Dermatol. Symp. Proc. 2003, 120, 849-857. [55]Holzman, D. C., What’s in a Color? The Unique Human Health Effects of Blue Light. Environ. Health Perspect. 2010, 118. [56]Hemne, P. S.; Kunghatkar, R. G.; Dhoble, S. J.; Moharil, S. V.; Singh, V., Phosphor for Phototherapy: Review on Psoriasis. Luminescence 2017, 32, 260-270. [57]Chan, M. H.; Chen, S. P.; Chen, C. W.; Chan, Y. C.; Lin, R. J.; Tsai, D. P.; Hsiao, M.; Chung, R. J.; Chen, X.; Liu, R. S., Single 808 nm Laser Treatment Comprising Photothermal and Photodynamic Therapies by Using Gold Nanorods Hybrid Upconversion Particles. J. Phys. Chem. C 2018, 122, 2402-2412. [58]Henderson, B. W.; Dougherty, T. J., How Does Photodynamic Therapy Work? Photochem. Photobiol. 1992, 55, 145-157. [59]Dolmans, D. E.; Fukumura, D.; Jain, R. K., Photodynamic Therapy for Cancer. Nat. Rev. Cancer 2003, 3, 380. [60]Juarranz, Á.; Jaén, P.; Sanz-Rodríguez, F.; Cuevas, J.; González, S., Photodynamic Therapy of Cancer. Basic Principles and Applications. Clin. Transl. Oncol. 2008, 10, 148-154. [61]Qian, H. S.; Guo, H. C.; Ho, P. C. L.; Mahendran, R.; Zhang, Y., Mesoporous‐Silica‐Coated up‐Conversion Fluorescent Nanoparticles for Photodynamic Therapy. Small 2009, 5, 2285-2290. [62]Das, M.; Mohanty, C.; Sahoo, S. K., Ligand-Based Targeted Therapy for Cancer Tissue. Expert Opin. Drug Deliv. 2009, 6, 285-304. [63]Pecora, R., Dynamic Light Scattering Measurement of Nanometer Particles in Liquids. J. Nanopart. Res. 2000, 2, 123-131. [64]Bhattacharjee, S., Dls and Zeta Potential–What They Are and What They Are Not? J. Controlled Release 2016, 235, 337-351. [65]Lichtman, J. W.; Conchello, J. A., Fluorescence Microscopy. Nat. Methods 2005, 2, 910. [66]Bessière, A.; Jacquart, S.; Priolkar, K.; Lecointre, A.; Viana, B.; Gourier, D., ZnGa2O4:Cr3+: A New Red Long-Lasting Phosphor with High Brightness. Opt. Express 2011, 19, 10131-10137.
|