跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.152) 您好!臺灣時間:2025/11/01 23:18
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:戴育玄
研究生(外文):TAI, YU-HSUAN
論文名稱:以最佳化為基礎之隨機分析法用於配電饋線之太陽能承載容量評估
論文名稱(外文):Optimization-Based Stochastic Analysis Method for PV Hosting Capacity Assessment on Distribution Feeders
指導教授:劉祐任
指導教授(外文):LIU, YU-JEN
口試委員:蘇恆毅王宏魯呂學德
口試委員(外文):SU, HENG-YIWANG, HONG-LULU, SHIUE-DER
口試日期:2019-07-24
學位類別:碩士
校院名稱:國立中正大學
系所名稱:電機工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:121
中文關鍵詞:再生能源太陽能發電電力系統衝擊太陽能承載容量隨機分析方法粒子群最佳化演算法
外文關鍵詞:Renewable EnergySolar Power GenerationPower System ImpactHosting CapacityStochastic Analysis MethodParticle Swarm Optimization Algorithm
相關次數:
  • 被引用被引用:1
  • 點閱點閱:271
  • 評分評分:
  • 下載下載:2
  • 收藏至我的研究室書目清單書目收藏:0
在能源政策和獎勵機制推動下,再生能源發電在各個國家之電力系統中已逐漸有提高其設置占比,期能從中減少傳統石化燃料發電之利用,並促使環境得以永續發展。太陽能發電近年來因技術成熟度提高且設置成本大幅降低,使得其在眾多再生能源類型中程為主流項目之一。然而,隨著配電饋線中日益增加之太陽能併網,為避免太陽能發電之加入對饋線造成衝擊和危害,於系統規劃設置階段需要對饋線所能承受之最大可併網太陽能容量進行評估。
近年來,隨機分析方法被廣泛應用於配電饋線之太陽能發電承載容量分析;然而,相關文獻所採用之隨機分析方法技術有著分析時具有過多的分析場景數(亦即,太陽能發電佈署於饋線之情境數量)之問題,其進而會導致分析時之計算時間過為冗長的缺點,使致遇到較為龐大之系統饋線結構時,分析效能將較顯不足。為克服此項問題,本論文主要提出以最佳化演算法為基礎之隨機分析方法,可用在太陽能發電系統之規劃與安裝前,以決定出在不造成衝擊與危害下,饋線所能承載之適切太陽能安裝容量。本論文所提出之方法,主要將文獻中的改良式隨機分析法加入最佳化運算機制;先建立不同之電壓靈敏度指標,緊接利用粒子群最佳化演算法搭配各項系統限制式,來進行配電饋線之電壓靈敏度分析;最終,透過電壓靈敏度分析結果,來排除饋線中不適合安裝太陽能發電之位置。如此,在執行配電饋線太陽能承載容量分析時,可大幅減少需要被計算之場景數量,進而提高整體評估分析之效能。
本論文所提出之方法與相關系統建模及模擬分析係利用操作於MATLAB與OpenDSS之共同模擬來完成,並且分別利用台灣離島15-Bus、IEEE 37-Bus與IEEE 30-Bus之三個饋線系統來驗證所提出方法之有效性。


Driven by various energy policies and incentives, renewable energy has gradually increased its penetration in power systems among many countries, which can reduce the utilization of traditional fossil fuel power generation and promote the sustainable development of the environment. In recent years, solar photovoltaic (PV) power generation has become one of the mainstreams in many renewable energy types due to its development in technology and the significant reduction in installation costs. However, with the increasing integration of solar power into the distribution feeders, in order to avoid the impact and damage to the feeders caused by the addition of solar power generation, it is necessary and important task to evaluate the maximum allowed solar power installation capacity for the distribution feeders.
Currently, stochastic analysis methods have been widely used in the analysis of PV hosting capacity of distribution feeders; however, the traditional stochastic analysis methods have a drawback that have too many scenarios, i.e. amounts of the PV deployments, needed to analyze in solution process. This drawback then leads to the tedious calculation time is required in analysis, and makes the performance less effective when deal with a large-scale system structure. In order to overcome this problem, this thesis proposes an optimization-based stochastic analysis method for PV hosting capacity assessment; meanwhile, the voltage sensitivity analysis is carried out by Particle Swarm Optimization to overcome the drawback in traditional stochastic analysis methods. The implementation of MATLAB and OpenDSS co-simulation is used to realize the proposed method and the performances are validated by the tests in distribution feeders of islanded 15-Bus, IEEE 37-Bus, and IEEE 30-Bus, respectively.
Driven by various energy policies and incentives, renewable energy has gradually increased its penetration in power systems among many countries, which can reduce the utilization of traditional fossil fuel power generation and promote the sustainable development of the environment. In recent years, solar photovoltaic (PV) power generation has become one of the mainstreams in many renewable energy types due to its development in technology and the significant reduction in installation costs. However, with the increasing integration of solar power into the distribution feeders, in order to avoid the impact and damage to the feeders caused by the addition of solar power generation, it is necessary and important task to evaluate the maximum allowed solar power installation capacity for the distribution feeders.
Currently, stochastic analysis methods have been widely used in the analysis of PV hosting capacity of distribution feeders; however, the traditional stochastic analysis methods have a drawback that have too many scenarios, i.e. amounts of the PV deployments, needed to analyze in solution process. This drawback then leads to the tedious calculation time is required in analysis, and makes the performance less effective when deal with a large-scale system structure. In order to overcome this problem, this thesis proposes an optimization-based stochastic analysis method for PV hosting capacity assessment; meanwhile, the voltage sensitivity analysis is carried out by Particle Swarm Optimization to overcome the drawback in traditional stochastic analysis methods. The implementation of MATLAB and OpenDSS co-simulation is used to realize the proposed method and the performances are validated by the tests in distribution feeders of islanded 15-Bus, IEEE 37-Bus, and IEEE 30-Bus, respectively.

致謝 i
摘要 ii
Abstract iv
目錄 vi
圖目錄 x
表目錄 xiii
第一章 緒論 1
1.1 研究背景與動機 1
1.2 文獻回顧 3
1.3 論文架構 6
第二章 太陽能發電併網衝擊與技術規範 8
2.1 太陽能發電併網衝擊問題 8
2.1.1 電壓劇變 8
2.1.2 逆送電流 8
2.1.3 線路元件老化之更新 9
2.1.4 保護設備之衝擊 9
2.1.5 天氣預測 10
2.1.6 鴨子曲線 11
2.2 太陽能併聯技術規範 12
2.2.1 國外相關併網規範 12
2.2.2 國內相關併網規範 13
第三章 太陽能承載容量概念與隨機分析法 14
3.1 太陽能承載容量概念與應用 14
3.2 太陽能承載容量分析方法 16
3.2.1 傳統隨機分析方法 16
3.2.2 改良式隨機分析法 17
3.3 利用變流器控制之太陽能承載容量提升 20
3.3.1 電壓─虛功智慧變流器控制(VVC) 21
3.3.2 電壓─實功智慧變流器控制(VWC) 23
第四章 以最佳化為基礎之隨機分析方法 24
4.1 最佳化隨機分析方法 24
4.2 電壓靈敏度指標 26
4.2.1 過電壓(Overvoltage) 27
4.2.2 電壓變動率(Voltage Deviation) 28
4.2.3 電壓間歇性(Voltage Fluctuation) 29
4.2.4 電壓不平衡(Voltage Unbalance) 30
4.3 最佳化目標函數 32
4.3.1 最佳化概念應用 32
4.3.2 最佳化單目標函數及求解法 33
4.3.3 最佳化多目標函數及求解法 34
4.4 系統限制條件 39
4.5 決策變數 40
第五章 粒子群最佳化演算法架構與共同模擬 42
5.1 傳統型粒子群演算法 42
5.1.1 饋線粒子化 42
5.1.2 世代與粒子間之比較 47
5.1.3 單目標函數粒子群演算法 51
5.1.4 多目標函數粒子群演算法 53
5.1.5 剔除匯流排 55
5.2 改良型粒子群演算法 58
5.2.1 饋線匯流排優劣分區機制 58
5.2.2 世代與粒子間之比較 62
5.2.5 剔除匯流排 65
5.3 MATLAB/OpenDSS共同模擬應用 66
第六章 配電饋線太陽能承載容量案例模擬與分析探討 68
6.1 15-Bus饋線 70
6.1.1單目標函數 71
6.1.1.1 傳統型粒子群演算法 71
6.1.1.2 加入改良式隨機分析法後之結果 73
6.2 IEEE 37-Bus饋線 80
6.2.1 多目標函數 82
6.2.1.1 傳統型粒子群演算法 82
6.2.1.2 改良型粒子群演算法 84
6.2.1.3 加入改良式隨機分析法後之結果 86
6.3 IEEE 30-Bus饋線 94
6.3.1單目標函數 96
6.3.1.1 傳統型粒子群演算法 96
6.3.1.2 改良型粒子群演算法 98
6.3.1.3 加入改良式隨機分析法後之結果 98
6.3.2 多目標函數 102
6.3.2.1 傳統型粒子群演算法 102
6.3.2.2 改良型粒子群演算法 104
6.3.2.3 加入改良式隨機分析法後之結果 107
6.3.2.4 智慧變流器控制 111
第七章 結論與未來工作 114
7.1 結論 114
7.2 未來工作 114
參考文獻 116

[1] G. Masson, I Kaizuka, “Snapshot of Global PV Markets,” Newsletters, IEA, April 2019. Available online: http://www.iea-pvps.org/fileadmin/dam/public/report/statistics/IEA-PVPS_T1_35_Snapshot2019-Report.pdf
[2] 經濟部能源局,「臺灣屋頂型太陽光電發展政策與進展」,2018年7月。
[3] 經濟部能源局,「能源統計月報-可再生能源裝置容量」,2019年1月。
[4]太陽光電推動方案重點推動方案(計畫),Available online: https://energywhitepaper.tw/upload/201803/152030100910819.pdf
[5] F. Ebe, B. Idlbi, J. Morris, G. Heilscher, and F. Meier, “Evaluation of PV Hosting Capacity of Distribuion Grids Considering a Solar Roof Potential Analysis—Comparison of Different Algorithms,” 2017 IEEE Manchester PowerTech, Manchester, UK, June 2017.
[6] L. Rogers, “Impact Factors, Methods, and Considerations for Calculating and Applying Hosting Capacity,” Electric Power Research Institute Technical Report, USA, Feb. 2018.
[7] M. Rylander, J. Smith, and W. Sunderman, “Streamlined Method for Determining Distribution System Hosting Capacity,” IEEE Rural Electric Power Conference, vol.52 pp. 3-9, April 2015.
[8] M. T. Alturki, “Hosting Capacity Optimization in Modern Distribution Grids,” Doctoral Thesis, Electrical Engineering, Denver, Nov. 2018.
[9] M. Rylander, L. Rogers, C. Punt, and T. Mimnagh “Utilities Develop a Hosting Capacity Analysis Tool for Distributed Energy Resources,” Newsletters, T&DWorld, Nov, 2018. Available online: https://www.tdworld.com/generation-and-renewables/how-much-der-fits
[10] J. Smith, “Stochastic Analysis to Determine Feeder Hosting Capacity for Distributed Solar PV,” Electric Power Research Institute Technical Report, USA, Dec. 212.
[11] 林承緯,考慮設置組合因素之隨機分析方法用於配電系統饋線最大允許太陽能發電滲透率評估,碩士論文,國立中正大學電機工程研究所,2017年。
[12] F. Ding, B. Mather, N. Ainsworth, P. Gotseff, and K. Baker, “Locational Sensitivity Investigation on PV Hosting Capacity and Fast Track PV Screening,” IEEE/PES Transmission and Distribution Conference and Exposition , pp. 1-5, May 2016.
[13] R. Torquato, D. Salles, C. O. Pereira, P. C. M. Meira, and W. Freitas, “A Comprehensive Assessment of PV Hosting Capacity on low-voltage Distribution Systems,” IEEE Transactions on Power Delivery, vol. 33, no. 2, pp. 1002-1012, Jan. 2018.
[14] C. A. M. Gomes, and H. P. Ferreira, “Hosting capacity Evaluation of Distributed Generation Systems with Genetic Algorithm,” 2018 Simposio Brasileiro de Sistemas Eletricos (SBSE), Niteroi, Brazil, May 2018.
[15] R. A. Aguirre, C. P. C. C. Caampued, and R. A. M. Dayapera, “Determination of Hosting Capacity of Solar and Wind Distributed Generation (DG) Using Stochastic Approach,” TENCON 2018-2018 IEEE Region 10 Conference, Jeju, Korea (South), Korea (South), Oct. 2018.
[16] H. Shareef, A. A. Ibrahim, and A. H. Mutlag, “Lightning Search Algorithm,” Applied Soft Computing, pp. 315-333, 2015.
[17] L. A. Wong, N. A. Ramlee, and T. M. Hii, “Optimal Photovoltaic Distributed Generation Placement for Losses Reduction using Improved Lighting Search Algorithm,” 2018 IEEE 7th International Conference on Power and Energy (PECon), Kuala Lumpur, Malaysia, Dec. 2018.
[18] S. Moskwa, S. Koziel, M. Siłuszyk, and Z. Galias “Multiobjective Optimization for Switch Allocation in Radial Power Distribution Grids,” 2018 International Conference on Signals and Electronic Systems (ICSES), Kraków, Poland, Sep. 2018.
[19] S. Jothibasu, and S. Santoso, “Sensitivity Analysis of Photovoltaic Hosting Capacity of Distribution Circuits,” Power and Energy Society General Meeting (PESGM), Boston, MA, USA, July 2016.
[20] M. Žnidarec, D. Šljivac, and D. Topić, “Influence of Distributed Generation from Renewable Energy Sources on Distribution Network Hosting Capacity,” 2017 6th International Youth Conference on Energy (IYCE), Budapest, Hungary, June 2017.
[21] S. Wang, S. Chen, L. Ge, and L. Wu, “Distributed Generation Hosting Capacity Evaluation for Distribution Systems Considering the Robust Optimal Operation of OLTC and SVC,” IEEE Transactions on Sustainable Energy, vol. 7, no. 3, pp. 1111-1123, July 2016.
[22] H. V. Padullaparti, N. Ganta, and S. Santoso, “Voltage Regulation at Grid Edge: Tuning of PV Smart Inverter Control,” 2018 IEEE/PES Transmission and Distribution Conference and Exposition (T&D), Denver, CO, USA, April 2018.
[23] M. Patsalides, G. E. Georghiou, A. Stavrou and V. Efthymiou, “Voltage Regulation via Photovoltaic (PV) Inverters in Distribution Grids with High PV Penetration Levels,” 8th Mediterranean Conference on Power Generation, Transmission, Distribution and Energy Conversion (MEDPOWER), Cagliari, Italy , Oct. 2012.
[24] T. Aziz and N. Ketjoy, “PV Penetration Limits in Low Voltage Networks and Voltage Variations,” IEEE Access, pp. 16784-16792, Aug. 30, 2017.
[25] Y. Miyamoto, and Y. Hayashi, “Evaluation of Generation Efficiency and Voltage Deviation in Residentail Clustered PV Voltage Control,” 2011 37th IEEE Photovoltaic Specialists Conference, Seattle, WA, USA , April 2012.
[26] S. M. Ismael, S. H. A. Aleem, A. Y. Abdelaziz, and A. F. Zobaa, “State-of-the-Art of Hosting Capacity in Modern Power Systems with Distributed Generation,” Renewable energy, pp. 1002-1020, July 2018.
[27] F. AlAlamat, “Increasing the Hosting Capacity of Radial Distribution Grids in Jordan,” Engineering Science, UPPSALA University, June 2015.
[28] 葉貞君,楊宗穎,沈柏丞,郭傳薪,黃柏元,林彥均,張嘉諳,張凱翔,陳斌魁,推動再生能源面臨的議題,台灣能源期刊,第三卷第四期,第385頁-415頁,中華民國105年12月。
[29] M. Victoria and G. B. Andresen, “Using Validated Reanalysis Data to Investigate the Impact of the PV System Configurations at High Penetration Levels in European Countries,” Progress in Photovoltaics: Research and Applications, Denmark, July 2018.
[30] California ISO, “What the duck curve tells us about managing a green grid,” Available online: http://www.caiso.com/Documents/FlexibleResourcesHelpRenewables_FastFacts.pdf
[31] 魏逸樺,全球儲能技術發展對臺灣推動再生能源之啟示,經濟前瞻,pp 91-95,2017。
[32] IEEE Guide for Identifying and Improving Voltage Quality in Power Systems, IEEE Std 1250-2017, Oct. 2017.
[33] American National Standard For Electric Power Systems and Equipment— Voltage Ratings (60 Hertz), ANSI C84.1-2016, January 2016.
[34] IEEE Standard for Interconnection and Interoperability of Distributed Energy Resources with Associated Electric Power Systems Interfaces, IEEE Std 1547-2018, Feb. 2018.
[35] Automatic Disconnection Device Between a Generator and the Public Low Voltage Grid, VDE 0126, Feb. 2006.
[36] Power Generation Systems Connected to the Low-Voltage Distribution Network Technical Minimum Requirements for the Connection to and Paralell Operation with Low-Voltage Distribution Networks, VDE 4105, Aug. 2011.
[37] GB/T 12326-2008, Power quality–Voltage fluctuation and flicker, Aug. 2008.
[38] Q. Alsafasfeh, O. A. Saraereh, I. Khan, and S. Kim, “Solar PV grid power flow analysis,” Sustainability , vol. 11, no. 6, pp. 1744, March 2019.
[39] Electromagnetic Compatibility (EMC)—Part 2-2: Environment—Compatibility Levels for Low-Frequency Conducted Disturbances and Signalling in Public Low-Voltage Power Supply Systems, IEC 61000-2-2.
[40] Voltage Characteristics of Electricity Supplied by Public Electricity Networks, EN 50160:2010/A1:2015.
[41] Electromagnetic Compatibility (EMC)—Part 3-7: Limits—Assessment of Emission Limits for the Connection of Fluctuating Installations to MV, HV and EHV Power Systems, IEC 61000-3-7, 2008.
[42] 台灣電力股份有限公司,「台灣電力股份有限公司在生能源發電系統併聯技術要點」,2018年11月20日。
[43] J. Seuss, M. J. Reno, R. J. Broderick, and S. Grijalva, “Improving Distribution Network PV Hosting Capacity via Smart Inverter Reactive Power Support,” 2015 IEEE Power & Energy Society General Meeting, Denver, CO, USA, July 2015.
[44] A. Nelson, K. Prabakar, A. Nagarajan, S. Nepal, A. Hoke, M. Asano, and E. Ifuku, “Power Hardware-in-the-loop Evaluation of PV Inverter Grid Support on Hawaiian Electric Feeders,” 2017 IEEE Power & Energy Society Innovative Smart Grid Technologies Conference (ISGT), Washington, DC, USA, April 2017.
[45] F. Ding and B. Mather, “On Distributed PV Hosting Capacity Estimation, Sensitivity Study, and Improvement,” IEEE Transactions on Sustainable Energy, pp.1010-1020, Dec. 2016.
[46] F. Ding, B. Mather, and P. Gotseff, “Technologies to Increase PV Hosting Capacity in Distribution Feeders,” IEEE Power and Energy Society General Meeting, Boston, MA, USA, July 2016. IEEE.
[47] F. Ding, A. Nagarajan, S. Chakraborty, M. Baggu, A. Nguyen, S. Walinga and F. Bell, “Photovoltaic Impact Assessment of Smart Inverter Volt-var Control on Distribution System Conservation Voltage Reduction and Power Quality,” Technical Report, National Renewable Energy Lab, Golden, USA, Dec. 2016.
[48] A. Ehsan, and Q. Yang, “Optimal Integration and Planning of Renewable Distributed Generation in the Power Distribution Networks: A review of analytical techniques,” Applied Energy, pp. 44-59, 2018.
[49] Y. Africano, D. Celeita, and G. Ramos, “Co-simulation Strategy of PV Hosting Capacity Applying a Stochastic Analysis,” Workshop on Power Electronics and Power Quality Applications (PEPQA), Bogota, Colombia, May 2017.
[50] Z. J. Ye, “Black-start Restoration of Planning on Kinmen Power System,” Master Thesis, Department of Electrical Engineering, Tatung University, 2017.
[51] “1992 Test Feeder Cases,” IEEE Power and Energy Society Resources. Available online: http://sites.ieee.org/pes-testfeeders/resources/
[52] “Appendix - A DATA FOR IEEE-30 BUS TEST SYSTEM,” IEEE 30Bus System DATA2.pdf, Available online: https://al-roomi.org/multimedia/Power_Flow/30BusSystem/IEEE30BusSystemDATA2.pdf


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊