跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.182) 您好!臺灣時間:2025/10/09 20:10
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:王昱婷
研究生(外文):Yu-Ting Wang
論文名稱:含不同世代樹枝狀聚胺基甲酸酯之PLGA高分子微胞的製備及作為藥物傳遞系統之研究
論文名稱(外文):Preparation of PLGA conjugated with different generation polyurethane dendrimers polymeric micelles and study on drug delivery
指導教授:蕭明達蕭明達引用關係
指導教授(外文):Min-Da Shau
口試委員:李國榮吳炳慶
口試委員(外文):Kuo-Jung LiPing-Ching Wu
口試日期:2014-07-03
學位類別:碩士
校院名稱:嘉南藥理大學
系所名稱:生物科技系
學門:生命科學學門
學類:生物科技學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:106
中文關鍵詞:微胞兩性共聚物樹枝狀聚合物
外文關鍵詞:micelleamphiphilic copolymerdendrimer
相關次數:
  • 被引用被引用:0
  • 點閱點閱:299
  • 評分評分:
  • 下載下載:4
  • 收藏至我的研究室書目清單書目收藏:0
作為藥物輸送系統來提高藥物的治療功效形式相當多種,而近年來高分子奈米微胞 (polymeric micelle) 已被越來越多的研究指出,能夠作為水難溶解性藥物的輸送載體,而一般常見的高分子奈米微胞通常由兩性共聚物 (amphiphilic copolymer) 構成。本研究目的在於設計兩性共聚物高分子形成奈米微胞,疏水端的部分能包覆藥物形成核心,而以樹枝狀聚合物設計的親水端也能供藥物的裝載,使其具備更高的載藥量與穩定性,由於此藥物載體具有兩種不同高分子材料,因此也會有兩種不同的藥物釋放速率。本研究利用生物可分解材料 poly(lactide-co-glycolide)(PLGA) 與不同世代 (generation) 之樹枝狀聚胺基甲酸酯 (G 2.0 PUAD、G 3.0 PUAD) 以脫水合成的方式,形成兩性共聚物。利用傅立葉紅外線光譜 (FT-IR) 與核磁共振光譜儀 (NMR) 確定其化學結構。並進行以下之性質研究:DLS與TEM粒徑分析、細胞毒性、藥物溶解度、藥物負載及藥物釋控。
Drug delivery system to improve the efficacy of treatment have a considerable types. In recent years some studies indicate that polymer nano-micelles can be used as delivery vehicles for drug with lower solubility. Polymeric micelles usually consists of amphiphilic copolymer. The purpose of this study is to design amphiphilic copolymer to form polymeric micelles. Hydrophobic side of the copolymer form the core, and then dendrimer hydrophilic end stabilize the particles in the aqueous medium. The amphiphilic copolymer was obtained through the reaction between the PLGA and different generation polyurethane dendrimers (PUAD) via dehydration. The chemical structure of the amphiphilic copolymer was indentified by fourier transform infrared spectroscopy (FT-IR) and nuclear magnetic resonance spectroscopy (NMR). We also studied various properties about the synthesized amphiphilic copolymer as DLS and TEM to determine particle size, cytotoxicity, the increasement of drug solubility, drug loading, and controlled release.
摘要 I
ABSTRACT II
目錄 III
圖目錄 VII
表目錄 X
縮寫表 XI
第一章 緒論 1
1-1醫藥高分子材料 1
1-2 奈米技術的運用 1
1-3 藥物輸送系統 2
1-4 Micelles發展 3
1-5 Mixed micelle 5
1-6 微胞之製備 6
1-7 樹枝狀聚合物 8
1-8 生物可分解性高分子 9
1-8-1 聚乳酸種類 10
1-8-2 聚乳酸與甘醇酸性質 10
1-9 抗癌藥物薑黃素 (Curcumin) 13
1-10 研究動機 14
第二章 實驗材料與方法 16
2-1 實驗儀器 16
2-2 實驗藥品 17
2-3 實驗流程 18
2-4製備兩性共聚物 19
2-4-1製備樹枝狀聚胺基甲酸酯(PUAD)高分子 19
2-4-2製備PUAD-PLGA 35
2-5高分子分析與鑑定 36
2-5-1 傅立葉紅外線光譜儀(FT-IR)結構分析 36
2-5-2 核磁共振光譜儀 (1H-NMR) 分析 37
2-6粒徑分析 37
2-7表面電位分析 39
2-8電子顯微鏡照影(TEM) 40
2-9微胞包覆藥物效率 40
2-9-1濃度校正曲線 40
2-9-2包覆藥物效率 41
2-10兩性共聚物載藥UV分析 42
2-11細胞毒性分析 43
2-11-1細胞種類 43
2-11-2配製培養液 43
2-11-3解凍細胞 44
2-11-4細胞培養與繼代 44
2-11-5細胞毒性分析原理 45
2-11-6兩性共聚物對細胞毒性分析 45
2-11-7兩性共聚物包覆Curcumin與Free curcumin對細胞毒性分析 46
2-12微胞之curcumin釋控分析 47
第三章 結果 48
3-1 兩性共聚物結構鑑定與分析 48
3-1-1 G0.5 PUAD、G1.5 PUAD、G2.5 PUAD FT-IR光譜鑑定 48
3-1-2 G1.0 PUAD、G2.0 PUAD、G3.0 PUAD FT-IR光譜鑑定 48
3-1-3 G 2.0 PUAD-EA、G 3.0 PUAD-EA FT-IR光譜鑑定 48
3-1-4 G 2.0 PUAD-NH2、G 3.0 PUAD-NH2 FT-IR光譜鑑定 48
3-1-5 G2.0 PUAD-PLGA、G3.0 PUAD-PLGA FT-IR光譜鑑定 49
3-1-6 G2.0 PUAD-PLGA、G3.0 PUAD-PLGA 1H-NMR光譜鑑定 49
3-2 G2.0 PUAD-PLGA、G3.0 PUAD-PLGA形成微胞之粒徑大小與電位分析 49
3-2-1 PUAD-PLGA微胞備製 49
3-2-2 微胞之粒徑大小 50
3-2-3 微胞之表面電位分析 50
3-2-4 G2.0 PUAD-PLGA、G3.0 PUAD-PLGA之電子顯微鏡分析 50
3-3 藥物包覆效率 51
3-4對COS-7細胞毒性測試 51
3-5對HeLa細胞毒性測試 52
3-6微胞之 curcumin 釋控分析 52
第四章 討論 54
4-1兩性共聚物結構鑑定與分析 54
4-2微胞之粒徑大小與表面電位 55
4-3藥物包覆效率 56
4-4細胞毒性測試 56
4-5藥物釋控分析 57
第五章 結論 59
參考文獻 61
圖與表 68

1.Dinarvand R, Sepehri N, Manoochehri S, Rouhani H, Atyabi F. Polylactide-co-glycolide nanoparticles for controlled delivery of anticancer agents. Int J Nanomedicine. 2011;6:877-895.
2.Duncan R. Polymer conjugates as anticancer nanomedicines. Nat Rev Cancer. 2006;6(9):688-701.
3.Lammers T, Kiessling F, Hennink WE, Storm G. Nanotheranostics and image-guided drug delivery: current concepts and future directions. Mol Pharm. 2010;7(6):1899-1912.
4.Lasic DD. Doxorubicin in sterically stabilized liposomes. Nature. 1996;380(6574):561-562.
5.Jones M, Leroux J. Polymeric micelles - a new generation of colloidal drug carriers. Eur J Pharm Biopharm. 1999;48(2):101-111.
6.Kwon GS, Yokoyama M, Okano T, Sakurai Y, Kataoka K. Biodistribution of micelle-forming polymer-drug conjugates. Pharm Res. 1993;10(7):970-974.
7.Bae Y, Fukushima S, Harada A, Kataoka K. Design of environment-sensitive supramolecular assemblies for intracellular drug delivery: polymeric micelles that are responsive to intracellular pH change. Angew Chem Int Ed Engl. 2003;42(38):4640-4643.
8.Yu BG, Okano T, Kataoka K, Sardari S, Kwon GS. In vitro dissociation of antifungal efficacy and toxicity for amphotericin B-loaded poly(ethylene oxide)-block-poly(beta benzyl L aspartate) micelles. J Control Release. 1998;56(1-3):285-291.
9.Mi FL, Shyu SS, Lin YM, et al. Chitin/PLGA blend microspheres as a biodegradable drug delivery system: a new delivery system for protein. Biomaterials. 2003;24(27):5023-5036.
10.Brigger I, Dubernet C, Couvreur P. Nanoparticles in cancer therapy and diagnosis. Adv Drug Deliv Rev. 2002;54(5):631-651.
11.Panyam J, Labhasetwar V. Biodegradable nanoparticles for drug and gene delivery to cells and tissue. Adv Drug Deliv Rev. 24 2003;55(3):329-347.
12.Sahoo SK, Labhasetwar V. Nanotech approaches to drug delivery and imaging. Drug Discov Today. 15 2003;8(24):1112-1120.
13.Jain KK. Editorial: targeted drug delivery for cancer. Technol Cancer Res Treat. 2005;4(4):311-313.
14.Gref R, Minamitake Y, Peracchia MT, et al. Biodegradable long-circulating polymeric nanospheres. Science. 1994;263(5153):1600-1603.
15.Jeong YI, Jin SG, Kim IY, et al. Doxorubicin-incorporated nanoparticles composed of poly(ethylene glycol)-grafted carboxymethyl chitosan and antitumor activity against glioma cells in vitro. Colloids Surf B Biointerfaces. 2010;79(1):149-155.
16.La SB, Okano T, Kataoka K. Preparation and characterization of the micelle-forming polymeric drug indomethacin-incorporated poly(ethylene oxide)-poly(beta-benzyl L-aspartate) block copolymer micelles. J Pharm Sci. 1996;85(1):85-90.
17.McGinity JW, O'Donnell PB. Preparation of microspheres by the solvent evaporation technique. Adv Drug Deliv Rev. 1997;28(1):25-42.
18.Jeon HJ, Jeong YI, Jang MK, Park YH, Nah JW. Effect of solvent on the preparation of surfactant-free poly(DL-lactide-co-glycolide) nanoparticles and norfloxacin release characteristics. Int J Pharm. 2000;207(1-2):99-108.
19.Schubert MA, Muller-Goymann CC. Solvent injection as a new approach for manufacturing lipid nanoparticles--evaluation of the method and process parameters. Eur J Pharm Biopharm. 2003;55(1):125-131.
20.Hong S, Leroueil PR, Majoros IJ, et al. The binding avidity of a nanoparticle-based multivalent targeted drug delivery platform. Chem Biol. 2007;14(1):107-115.
21.Menjoge AR, Kannan RM, Tomalia DA. Dendrimer-based drug and imaging conjugates: design considerations for nanomedical applications. Drug Discov Today. 2010;15(5-6):171-185.
22.Zhao L, Wu Q, Cheng Y, et al. High-throughput screening of dendrimer-binding drugs. J Am Chem Soc. 2010;132(38):13182-13184.
23.Astruc D, Boisselier E, Ornelas C. Dendrimers designed for functions: from physical, photophysical, and supramolecular properties to applications in sensing, catalysis, molecular electronics, photonics, and nanomedicine. Chem Rev. 2010;110(4):1857-1959.
24.Cheng Y, Xu T. The effect of dendrimers on the pharmacodynamic and pharmacokinetic behaviors of non-covalently or covalently attached drugs. Eur J Med Chem. 2008;43(11):2291-2297.
25.Gillies ER, Frechet JM. Dendrimers and dendritic polymers in drug delivery. Drug Discov Today. 2005;10(1):35-43.
26.Zhang Y, Sun Y, Xu X, et al. Synthesis, biodistribution, and microsingle photon emission computed tomography (SPECT) imaging study of technetium-99m labeled PEGylated dendrimer poly(amidoamine) (PAMAM)-folic acid conjugates. J Med Chem. 2010;53(8):3262-3272.
27.Zhang Y, Sun Y, Xu X, et al. Radiosynthesis and micro-SPECT imaging of 99mTc-dendrimer poly(amido)-amine folic acid conjugate. Bioorg Med Chem Lett. 2010;20(3):927-931.
28.Xu X, Zhang Y, Wang X, et al. Radiosynthesis, biodistribution and micro-SPECT imaging study of dendrimer-avidin conjugate. Bioorg Med Chem. 2011;19(5):1643-1648.
29.Nikander K. Drug delivery systems. J Aerosol Med. 1994;7(Suppl 1):S19-24.
30.Pannier AK, Shea LD. Controlled release systems for DNA delivery. Mol Ther. 2004;10(1):19-26.
31.Shau MD, Tseng SJ, Yang TF, Cherng JY, Chin WK. Effect of molecular weight on the transfection efficiency of novel polyurethane as a biodegradable gene vector. J Biomed Mater Res A. 2006;77(4):736-746.
32.Hung WC, Shau MD, Kao HC, Shih MF, Cherng JY. The synthesis of cationic polyurethanes to study the effect of amines and structures on their DNA transfection potential. J Control Release. 2009;133(1):68-76.
33.Chacon M, Molpeceres J, Berges L, Guzman M, Aberturas MR. Stability and freeze-drying of cyclosporine loaded poly(D,L lactide-glycolide) carriers. Eur J Pharm Sci. 1999;8(2):99-107.
34.Boskovic M, Toskic-Radojicic M. [Influence of manufacturing procedure on stability of Unguentum contra perniones preparations]. Vojnosanit Pregl. 2005;62(4):293-299.
35.Di Toro R, Betti V, Spampinato S. Biocompatibility and integrin-mediated adhesion of human osteoblasts to poly(DL-lactide-co-glycolide) copolymers. Eur J Pharm Sci. 2004;21(2-3):161-169.
36.Faisant N, Akiki J, Siepmann F, Benoit JP, Siepmann J. Effects of the type of release medium on drug release from PLGA-based microparticles: experiment and theory. Int J Pharm. 2006;314(2):189-197.
37.Panyam J, Dali MM, Sahoo SK, et al. Polymer degradation and in vitro release of a model protein from poly(D,L-lactide-co-glycolide) nano- and microparticles. J Control Release. 2003;92(1-2):173-187.
38.Barratt GM. Therapeutic applications of colloidal drug carriers. Pharm Sci Technolo Today. 2000;3(5):163-171.
39.Panyam J, Zhou WZ, Prabha S, Sahoo SK, Labhasetwar V. Rapid endo-lysosomal escape of poly(DL-lactide-co-glycolide) nanoparticles: implications for drug and gene delivery. FASEB J. 2002;16(10):1217-1226.
40.Jain RA. The manufacturing techniques of various drug loaded biodegradable poly(lactide-co-glycolide) (PLGA) devices. Biomaterials. 2000;21(23):2475-2490.
41.Anand P, Thomas SG, Kunnumakkara AB, et al. Biological activities of curcumin and its analogues (Congeners) made by man and Mother Nature. Biochem Pharmacol. 2008;76(11):1590-1611.
42.Ray B, Lahiri DK. Neuroinflammation in Alzheimer's disease: different molecular targets and potential therapeutic agents including curcumin. Curr Opin Pharmacol. 2009;9(4):434-444.
43.Goel A, Kunnumakkara AB, Aggarwal BB. Curcumin as "Curecumin": from kitchen to clinic. Biochem Pharmacol. 2008;75(4):787-809.
44.Rao CV, Rivenson A, Simi B, Reddy BS. Chemoprevention of colon carcinogenesis by dietary curcumin, a naturally occurring plant phenolic compound. Cancer Res. 1995;55(2):259-266.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top