跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.152) 您好!臺灣時間:2025/11/03 20:58
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:潘佩瑩
論文名稱:探討一種新穎合成化合物PT262在克服人類非小細胞肺癌之EGFR突變的抗藥作用
論文名稱(外文):A novel synthetic compound PT262 in overcoming the drug resistance of EGFR mutations of non-small cell lung cancer
指導教授:趙瑞益趙瑞益引用關係
口試委員:梁美智 邱光裕
口試日期:2017-07-27
學位類別:碩士
校院名稱:國立交通大學
系所名稱:生物資訊及系統生物研究所
學門:生命科學學門
學類:生物訊息學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:英文
論文頁數:40
中文關鍵詞:非小細胞肺癌抗藥性新穎化合物PT262
外文關鍵詞:NSCLCdrug resistancePT262
相關次數:
  • 被引用被引用:0
  • 點閱點閱:142
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
目前非小細胞肺癌患者對於藥物產生抗藥性是臨床癌症治療的主要瓶頸。當病人的表皮生長因子受體上具有exon 19 缺失或是exon 21的單點突變時會對於第一代與第二代的酪氨酸激酶抑制劑,如Gefitinib及Erlotinib反應良好,然而這類的藥物治療一段時間後表皮生長因子受體基因會發生突變,而產生抗藥性,其中T790M是最為常見的突變位點。此外,癌幹的特性也被認為是非小細胞肺癌產生抗藥性的重要因素。因此發展新的化合物來克服非小細胞肺癌的抗藥性是高度需要的。在這個研究中我們使用一種新穎由 5,8-quinolinedione衍生而來的化合物PT262,有潛力克服非小細胞肺癌的T790M及癌幹性的作用。在實驗中發現,PT262具有誘導抗藥性細胞株H1975 (含EGFR T790M突變) 死亡及凋亡的能力,且能抑制Survivin的蛋白表現並誘發caspase 3及PARP的活化導致細胞凋亡。除此之外,這個化合物也能抑制在肺癌細胞中癌幹性蛋白Oct4的表現。我們並發現PT262能有效抑制由臨床非小細胞肺癌病人之肺肋脊液中分離出的肺癌細胞之生存率。根據上述的結果,這個新穎的化合物有潛力進一步研究及探討在克服非小細胞肺癌之抗藥性作用。
Drug resistance has become bottleneck in clinical cancer therapy of non-small cell lung carcinoma (NSCLC) patients. The mutations of epidermal growth factor receptor (EGFR) on exon 19 deletion and exon 21 point mutation are respond well to the first and second generation EGFR tyrosine kinase inhibitors (EGFR-TKIs) such as Gefitinib and Erlotinib for NSCLC therapy; however, patients acquired the T790M mutation of EGFR will induce drug resistance. In addition, cancer stemness properties are also a pivotal factor of drug resistance in NSCLC. Accordingly, development of novel compounds for overcoming drug resistance of NSCLC is highly desired. In this study, we show a novel synthetic compound PT262 that derived from 5,8-quinolinedione has potential in overcoming drug resistance of EGFR (T790M) and cancerous stemness in NSCLC. This new compound can induce cell death and apoptosis in the drug-resistant H1975 cells, which contained EGFR (T790M). This compound inhibited Survivin protein expression and conversely increased the active caspase 3 and cleaved PARP for apoptosis induction. In addition, this compound can inhibit the stemness protein expression of Oct4 in lung cancer cells. Moreover, it can also decrease the cell viability in drug resistance NSCLC cells, which were separated from pleural effusion of NSCLC. Taken together, we develop a novel compound, which has potential to further investigate for overcoming drug resistance in NSCLC.
Contents
中文摘要 i
Abstract ii
Abbreviations iii
1. Introduction 1
1.1. Lung cancer and EGFR 1
1.2. EGFR mutation and Tyrosine Kinase Inhibitors 1
1.3. Drug resistance of TKIs 2
1.4. Drug resistance of cancer stem cells 2
1.5. Derivatives of 5, 8-quinolinediones 3
1.6. Apoptosis and apoptosis-regulation proteins 3
1.7. Purpose of this study 4
2. Materials and Methods 5
2.1. Regents and Drugs 5
2.2. Antibodies 5
2.3. Cell lines and cell culture 6
2.4. Cell cytotoxicity MTT assay 6
2.5. Annexin V-PI analysis 6
2.6. Western blot 7
2.7. Immunofluorescence staining and confocal microscopy 8
2.8. Xenografted human lung tumors in nude mice 8
2.9. Transfection 8
2.10. Separation of lung cancer cells from the pleural effusion of NSCLC patients 9
2.11. Statistical analysis 9
3. Results and Discussion 10
3.1. PT262 inhibited cell viability in the EGFR T790M mutation NSCLC cells 10
3.2. PT262 and AZD9291 induced apoptosis in the H1975 NSCLC cells 10
3.3. PT262 inhibited Survivin protein levels but conversely increases the active caspase-3 and PARP protein expression in the H1975 cells 11
3.4. PT262 enhanced the inhibition of tumor growth in the xenografted human NSCLC model 11
3.5. PT262 inhibited cell vitality in the Oct4 ectopic expression of H1975 cells 12
3.6. PT262 inhibited Survivin for apoptosis in the Oct4-expressed H1975 cells 12
3.7. The morphology and stemness protein expression in the clinical NSCLC patients cells 13
3.8. PT262 reduced the cell viability in clinical patient NSCLC cells 13
4. Conclusions 15
5. References 16
6. Figures 24
Fig. 1. The effects of PT262 and AZD9291 in the reduction of cell viability of H1975 cells 24
Fig. 2. Comparison of PT262 and AZD9291 in the apoptosis induction of H1975 cells 25
Fig. 3. The expression of EGFR, p-EGFR, survivin, caspase 3 and PARP in H1975 cells after treatment with PT262 26
Fig. 4. The protein expression and survivin and active caspase 3 after treatment with PT262 in H1975 cells 27
Fig. 5. The effect of tumor growth inhibition of PT262 in the xenografted human H1975 lung tumor in animal model 28
Fig. 6. The effect of transfection of Oct4 expressed vector on the PT262-induced cell death in H1975 cells 29
Fig. 7. The expression and location of Oct4 proteins by transfection of Oct4 vector in H1975 30
Fig. 8. The effect of PT262 on the Oct4, survivin and PARP protein levels in the transfection of Oct4 vector in H1975 cells 31
Fig. 9. The cellular morphology and protein expression of clinical NSCLC patients in collagen coating dishes 32
Fig. 10. The cellular morphology and protein expression of clinical NSCLC patients in matrigel culture environment 33
Fig. 11. Comparison of PT262 and AZD9291 on cell viability assay in lung cancer cells which were separated from pleural effusion of clinical NSCLC patients. 34
Fig. 12. Comparison of PT262 and AZD9291 in the apoptosis induction of the human lung cancer patient PLC26 cells 35
Fig. 13. The model of PT262 in overcoming drug resistance 36
7. Appendixes 37
Appendix. 1. The major types of lung cancer. 37
Appendix. 2. The downstream signaling pathways of EGFR. 38
Appendix. 3. TKIs inhibited the phosphorylation of TK domain and cause cell death. 39
Appendix. 4. The mutation sites that sensitive or resistant to TKI drugs. 40
Ambrose M, Ryan A, O'Sullivan GC, Dunne C, Barry OP. 2006. Induction of apoptosis in renal cell carcinoma by reactive oxygen species: involvement of extracellular signal-regulated kinase 1/2, p38delta/gamma, cyclooxygenase-2 down-regulation, and translocation of apoptosis-inducing factor. Mol Pharmacol 69:1879-1890.
Ambrosini G, Adida C, Altieri DC. 1997. A novel anti-apoptosis gene, survivin, expressed in cancer and lymphoma. Nat Med 3:917-921.
Atlasi Y, Mowla SJ, Ziaee SA, Bahrami AR. 2007. OCT-4, an embryonic stem cell marker, is highly expressed in bladder cancer. Int J Cancer 120:1598-1602.
Bar J, Herbst RS, Onn A. 2008. Multitargeted inhibitors in lung cancer: new clinical data. Clin Lung Cancer 9 Suppl 3:S92-99.
Barnes TA, O'Kane GM, Vincent MD, Leighl NB. 2017. Third-Generation Tyrosine Kinase Inhibitors Targeting Epidermal Growth Factor Receptor Mutations in Non-Small Cell Lung Cancer. Front Oncol 7:113.
Ben-Porath I, Thomson MW, Carey VJ, Ge R, Bell GW, Regev A, Weinberg RA. 2008. An embryonic stem cell-like gene expression signature in poorly differentiated aggressive human tumors. Nat Genet 40:499-507.
Bongiovanni L, Di Diodoro F, Della Salda L, Brachelente C. 2014. On the role of survivin as a stem cell biomarker of canine hair follicle and related tumours. Vet Dermatol 25:138-141, e139-140.
Boulares AH, Yakovlev AG, Ivanova V, Stoica BA, Wang G, Iyer S, Smulson M. 1999. Role of poly(ADP-ribose) polymerase (PARP) cleavage in apoptosis. Caspase 3-resistant PARP mutant increases rates of apoptosis in transfected cells. J Biol Chem 274:22932-22940.
Boyer LA, Lee TI, Cole MF, Johnstone SE, Levine SS, Zucker JP, Guenther MG, Kumar RM, Murray HL, Jenner RG, Gifford DK, Melton DA, Jaenisch R, Young RA. 2005. Core transcriptional regulatory circuitry in human embryonic stem cells. Cell 122:947-956.
Caulin C, Salvesen GS, Oshima RG. 1997. Caspase cleavage of keratin 18 and reorganization of intermediate filaments during epithelial cell apoptosis. J Cell Biol 138:1379-1394.
Chen X, Duan N, Zhang C, Zhang W. 2016. Survivin and Tumorigenesis: Molecular Mechanisms and Therapeutic Strategies. J Cancer 7:314-323.
Chen YC, Hsu HS, Chen YW, Tsai TH, How CK, Wang CY, Hung SC, Chang YL, Tsai ML, Lee YY, Ku HH, Chiou SH. 2008. Oct-4 expression maintained cancer stem-like properties in lung cancer-derived CD133-positive cells. PLoS One 3:e2637.
Chong CR, Janne PA. 2013. The quest to overcome resistance to EGFR-targeted therapies in cancer. Nat Med 19:1389-1400.
Ciardiello F, Caputo R, Bianco R, Damiano V, Pomatico G, De Placido S, Bianco AR, Tortora G. 2000. Antitumor effect and potentiation of cytotoxic drugs activity in human cancer cells by ZD-1839 (Iressa), an epidermal growth factor receptor-selective tyrosine kinase inhibitor. Clin Cancer Res 6:2053-2063.
Clarke MF, Dick JE, Dirks PB, Eaves CJ, Jamieson CH, Jones DL, Visvader J, Weissman IL, Wahl GM. 2006. Cancer stem cells--perspectives on current status and future directions: AACR Workshop on cancer stem cells. Cancer Res 66:9339-9344.
Clevers H. 2011. The cancer stem cell: premises, promises and challenges. Nat Med 17:313-319.
Cross DA, Ashton SE, Ghiorghiu S, Eberlein C, Nebhan CA, Spitzler PJ, Orme JP, Finlay MR, Ward RA, Mellor MJ, Hughes G, Rahi A, Jacobs VN, Red Brewer M, Ichihara E, Sun J, Jin H, Ballard P, Al-Kadhimi K, Rowlinson R, Klinowska T, Richmond GH, Cantarini M, Kim DW, Ranson MR, Pao W. 2014. AZD9291, an irreversible EGFR TKI, overcomes T790M-mediated resistance to EGFR inhibitors in lung cancer. Cancer Discov 4:1046-1061.
Degterev A, Boyce M, Yuan J. 2003. A decade of caspases. Oncogene 22:8543-8567.
Dempke WC, Suto T, Reck M. 2010. Targeted therapies for non-small cell lung cancer. Lung Cancer 67:257-274.
Ding L, Getz G, Wheeler DA, Mardis ER, McLellan MD, Cibulskis K, Sougnez C, Greulich H, Muzny DM, Morgan MB, Fulton L, Fulton RS, Zhang Q, Wendl MC, Lawrence MS, Larson DE, Chen K, Dooling DJ, Sabo A, Hawes AC, Shen H, Jhangiani SN, Lewis LR, Hall O, Zhu Y, Mathew T, Ren Y, Yao J, Scherer SE, Clerc K, Metcalf GA, Ng B, Milosavljevic A, Gonzalez-Garay ML, Osborne JR, Meyer R, Shi X, Tang Y, Koboldt DC, Lin L, Abbott R, Miner TL, Pohl C, Fewell G, Haipek C, Schmidt H, Dunford-Shore BH, Kraja A, Crosby SD, Sawyer CS, Vickery T, Sander S, Robinson J, Winckler W, Baldwin J, Chirieac LR, Dutt A, Fennell T, Hanna M, Johnson BE, Onofrio RC, Thomas RK, Tonon G, Weir BA, Zhao X, Ziaugra L, Zody MC, Giordano T, Orringer MB, Roth JA, Spitz MR, Wistuba, II, Ozenberger B, Good PJ, Chang AC, Beer DG, Watson MA, Ladanyi M, Broderick S, Yoshizawa A, Travis WD, Pao W, Province MA, Weinstock GM, Varmus HE, Gabriel SB, Lander ES, Gibbs RA, Meyerson M, Wilson RK. 2008. Somatic mutations affect key pathways in lung adenocarcinoma. Nature 455:1069-1075.
Donzelli M, Squatrito M, Ganoth D, Hershko A, Pagano M, Draetta GF. 2002. Dual mode of degradation of Cdc25 A phosphatase. EMBO J 21:4875-4884.
Douillard JY, Shepherd FA, Hirsh V, Mok T, Socinski MA, Gervais R, Liao ML, Bischoff H, Reck M, Sellers MV, Watkins CL, Speake G, Armour AA, Kim ES. 2010. Molecular predictors of outcome with gefitinib and docetaxel in previously treated non-small-cell lung cancer: data from the randomized phase III INTEREST trial. J Clin Oncol 28:744-752.
Earnshaw WC, Martins LM, Kaufmann SH. 1999. Mammalian caspases: structure, activation, substrates, and functions during apoptosis. Annu Rev Biochem 68:383-424.
Eberlein CA, Stetson D, Markovets AA, Al-Kadhimi KJ, Lai Z, Fisher PR, Meador CB, Spitzler P, Ichihara E, Ross SJ, Ahdesmaki MJ, Ahmed A, Ratcliffe LE, O'Brien EL, Barnes CH, Brown H, Smith PD, Dry JR, Beran G, Thress KS, Dougherty B, Pao W, Cross DA. 2015. Acquired Resistance to the Mutant-Selective EGFR Inhibitor AZD9291 Is Associated with Increased Dependence on RAS Signaling in Preclinical Models. Cancer Res 75:2489-2500.
Elmore S. 2007. Apoptosis: a review of programmed cell death. Toxicol Pathol 35:495-516.
Fulda S, Debatin KM. 2006. Extrinsic versus intrinsic apoptosis pathways in anticancer chemotherapy. Oncogene 25:4798-4811.
Gainor JF, Shaw AT. 2013. Emerging paradigms in the development of resistance to tyrosine kinase inhibitors in lung cancer. J Clin Oncol 31:3987-3996.
Gavrieli Y, Sherman Y, Ben-Sasson SA. 1992. Identification of programmed cell death in situ via specific labeling of nuclear DNA fragmentation. J Cell Biol 119:493-501.
Gazdar AF. 2009. Activating and resistance mutations of EGFR in non-small-cell lung cancer: role in clinical response to EGFR tyrosine kinase inhibitors. Oncogene 28 Suppl 1:S24-31.
Giaccone G, Zatloukal P, Roubec J, Floor K, Musil J, Kuta M, van Klaveren RJ, Chaudhary S, Gunther A, Shamsili S. 2009. Multicenter phase II trial of YM155, a small-molecule suppressor of survivin, in patients with advanced, refractory, non-small-cell lung cancer. J Clin Oncol 27:4481-4486.
Guo J, Parise RA, Joseph E, Lan J, Pan SS, Joo B, Egorin MJ, Wipf P, Lazo JS, Eiseman JL. 2007. Pharmacology and antitumor activity of a quinolinedione Cdc25 phosphatase inhibitor DA3003-1 (NSC 663284). Anticancer Res 27:3067-3073.
Guo Y, Mantel C, Hromas RA, Broxmeyer HE. 2008. Oct-4 is critical for survival/antiapoptosis of murine embryonic stem cells subjected to stress: effects associated with Stat3/survivin. Stem Cells 26:30-34.
Herbst RS. 2004. Review of epidermal growth factor receptor biology. Int J Radiat Oncol Biol Phys 59:21-26.
Hirsch FR, Varella-Garcia M, Cappuzzo F. 2009. Predictive value of EGFR and HER2 overexpression in advanced non-small-cell lung cancer. Oncogene 28 Suppl 1:S32-37.
Hsu TS, Chen C, Lee PT, Chiu SJ, Liu HF, Tsai CC, Chao JI. 2008. 7-Chloro-6-piperidin-1-yl-quinoline-5,8-dione (PT-262), a novel synthetic compound induces lung carcinoma cell death associated with inhibiting ERK and CDC2 phosphorylation via a p53-independent pathway. Cancer Chemother Pharmacol 62:799-808.
Janne PA, Yang JC, Kim DW, Planchard D, Ohe Y, Ramalingam SS, Ahn MJ, Kim SW, Su WC, Horn L, Haggstrom D, Felip E, Kim JH, Frewer P, Cantarini M, Brown KH, Dickinson PA, Ghiorghiu S, Ranson M. 2015. AZD9291 in EGFR inhibitor-resistant non-small-cell lung cancer. N Engl J Med 372:1689-1699.
Jordan CT, Guzman ML, Noble M. 2006. Cancer stem cells. N Engl J Med 355:1253-1261.
Kanthala S, Pallerla S, Jois S. 2015. Current and future targeted therapies for non-small-cell lung cancers with aberrant EGF receptors. Future Oncol 11:865-878.
Kobayashi I, Takahashi F, Nurwidya F, Nara T, Hashimoto M, Murakami A, Yagishita S, Tajima K, Hidayat M, Shimada N, Suina K, Yoshioka Y, Sasaki S, Moriyama M, Moriyama H, Takahashi K. 2016. Oct4 plays a crucial role in the maintenance of gefitinib-resistant lung cancer stem cells. Biochem Biophys Res Commun 473:125-132.
Kroemer G, El-Deiry WS, Golstein P, Peter ME, Vaux D, Vandenabeele P, Zhivotovsky B, Blagosklonny MV, Malorni W, Knight RA, Piacentini M, Nagata S, Melino G, Nomenclature Committee on Cell D. 2005. Classification of cell death: recommendations of the Nomenclature Committee on Cell Death. Cell Death Differ 12 Suppl 2:1463-1467.
Kroemer G, Galluzzi L, Vandenabeele P, Abrams J, Alnemri ES, Baehrecke EH, Blagosklonny MV, El-Deiry WS, Golstein P, Green DR, Hengartner M, Knight RA, Kumar S, Lipton SA, Malorni W, Nunez G, Peter ME, Tschopp J, Yuan J, Piacentini M, Zhivotovsky B, Melino G, Nomenclature Committee on Cell D. 2009. Classification of cell death: recommendations of the Nomenclature Committee on Cell Death 2009. Cell Death Differ 16:3-11.
Lazo JS, Aslan DC, Southwick EC, Cooley KA, Ducruet AP, Joo B, Vogt A, Wipf P. 2001. Discovery and biological evaluation of a new family of potent inhibitors of the dual specificity protein phosphatase Cdc25. J Med Chem 44:4042-4049.
Li C, Yan Y, Ji W, Bao L, Qian H, Chen L, Wu M, Chen H, Li Z, Su C. 2012. OCT4 positively regulates Survivin expression to promote cancer cell proliferation and leads to poor prognosis in esophageal squamous cell carcinoma. PLoS One 7:e49693.
Li F. 2005. Role of survivin and its splice variants in tumorigenesis. Br J Cancer 92:212-216.
Lodygin D, Menssen A, Hermeking H. 2002. Induction of the Cdk inhibitor p21 by LY83583 inhibits tumor cell proliferation in a p53-independent manner. J Clin Invest 110:1717-1727.
Marshall CJ. 1995. Specificity of receptor tyrosine kinase signaling: transient versus sustained extracellular signal-regulated kinase activation. Cell 80:179-185.
Mityaev MV, Kopantzev EP, Buzdin AA, Vinogradova TV, Sverdlov ED. 2008. Functional significance of a putative sp1 transcription factor binding site in the survivin gene promoter. Biochemistry (Mosc) 73:1183-1191.
Mok TS, Wu YL, Thongprasert S, Yang CH, Chu DT, Saijo N, Sunpaweravong P, Han B, Margono B, Ichinose Y, Nishiwaki Y, Ohe Y, Yang JJ, Chewaskulyong B, Jiang H, Duffield EL, Watkins CL, Armour AA, Fukuoka M. 2009. Gefitinib or carboplatin-paclitaxel in pulmonary adenocarcinoma. N Engl J Med 361:947-957.
Morgensztern D, Politi K, Herbst RS. 2015. EGFR Mutations in Non-Small-Cell Lung Cancer: Find, Divide, and Conquer. JAMA Oncol 1:146-148.
Nichols J, Zevnik B, Anastassiadis K, Niwa H, Klewe-Nebenius D, Chambers I, Scholer H, Smith A. 1998. Formation of pluripotent stem cells in the mammalian embryo depends on the POU transcription factor Oct4. Cell 95:379-391.
Norbury CJ, Hickson ID. 2001. Cellular responses to DNA damage. Annu Rev Pharmacol Toxicol 41:367-401.
Normanno N, De Luca A, Bianco C, Strizzi L, Mancino M, Maiello MR, Carotenuto A, De Feo G, Caponigro F, Salomon DS. 2006. Epidermal growth factor receptor (EGFR) signaling in cancer. Gene 366:2-16.
Noronha V, Choughule A, Patil VM, Joshi A, Kumar R, Susan Joy Philip D, Banavali S, Dutt A, Prabhash K. 2017. Epidermal growth factor receptor exon 20 mutation in lung cancer: types, incidence, clinical features and impact on treatment. Onco Targets Ther 10:2903-2908.
Pao W, Chmielecki J. 2010. Rational, biologically based treatment of EGFR-mutant non-small-cell lung cancer. Nat Rev Cancer 10:760-774.
Pao W, Miller VA, Politi KA, Riely GJ, Somwar R, Zakowski MF, Kris MG, Varmus H. 2005. Acquired resistance of lung adenocarcinomas to gefitinib or erlotinib is associated with a second mutation in the EGFR kinase domain. PLoS Med 2:e73.
Pennati M, Folini M, Zaffaroni N. 2007. Targeting survivin in cancer therapy: fulfilled promises and open questions. Carcinogenesis 28:1133-1139.
Pu L, Amoscato AA, Bier ME, Lazo JS. 2002. Dual G1 and G2 phase inhibition by a novel, selective Cdc25 inhibitor 6-chloro-7-[corrected](2-morpholin-4-ylethylamino)-quinoline-5,8-dione. J Biol Chem 277:46877-46885.
Ray P, Tan YS, Somnay V, Mehta R, Sitto M, Ahsan A, Nyati S, Naughton JP, Bridges A, Zhao L, Rehemtulla A, Lawrence TS, Ray D, Nyati MK. 2016. Differential protein stability of EGFR mutants determines responsiveness to tyrosine kinase inhibitors. Oncotarget 7:68597-68613.
Reya T, Morrison SJ, Clarke MF, Weissman IL. 2001. Stem cells, cancer, and cancer stem cells. Nature 414:105-111.
Riedl SJ, Shi Y. 2004. Molecular mechanisms of caspase regulation during apoptosis. Nat Rev Mol Cell Biol 5:897-907.
Rosell R, Carcereny E, Gervais R, Vergnenegre A, Massuti B, Felip E, Palmero R, Garcia-Gomez R, Pallares C, Sanchez JM, Porta R, Cobo M, Garrido P, Longo F, Moran T, Insa A, De Marinis F, Corre R, Bover I, Illiano A, Dansin E, de Castro J, Milella M, Reguart N, Altavilla G, Jimenez U, Provencio M, Moreno MA, Terrasa J, Munoz-Langa J, Valdivia J, Isla D, Domine M, Molinier O, Mazieres J, Baize N, Garcia-Campelo R, Robinet G, Rodriguez-Abreu D, Lopez-Vivanco G, Gebbia V, Ferrera-Delgado L, Bombaron P, Bernabe R, Bearz A, Artal A, Cortesi E, Rolfo C, Sanchez-Ronco M, Drozdowskyj A, Queralt C, de Aguirre I, Ramirez JL, Sanchez JJ, Molina MA, Taron M, Paz-Ares L, Spanish Lung Cancer Group in collaboration with Groupe Francais de P-C, Associazione Italiana Oncologia T. 2012. Erlotinib versus standard chemotherapy as first-line treatment for European patients with advanced EGFR mutation-positive non-small-cell lung cancer (EURTAC): a multicentre, open-label, randomised phase 3 trial. Lancet Oncol 13:239-246.
Ryu CK, Kim DH. 1994. The antifungal activities of some 6-[N-(halophenyl)amino]-7-chloro-5,8-quinolinediones against Candida species. Arch Pharm Res 17:483-486.
Sakurada A, Shepherd FA, Tsao MS. 2006. Epidermal growth factor receptor tyrosine kinase inhibitors in lung cancer: impact of primary or secondary mutations. Clin Lung Cancer 7 Suppl 4:S138-144.
Scaltriti M, Baselga J. 2006. The epidermal growth factor receptor pathway: a model for targeted therapy. Clin Cancer Res 12:5268-5272.
Sequist LV, Waltman BA, Dias-Santagata D, Digumarthy S, Turke AB, Fidias P, Bergethon K, Shaw AT, Gettinger S, Cosper AK, Akhavanfard S, Heist RS, Temel J, Christensen JG, Wain JC, Lynch TJ, Vernovsky K, Mark EJ, Lanuti M, Iafrate AJ, Mino-Kenudson M, Engelman JA. 2011. Genotypic and histological evolution of lung cancers acquiring resistance to EGFR inhibitors. Sci Transl Med 3:75ra26.
Seshacharyulu P, Ponnusamy MP, Haridas D, Jain M, Ganti AK, Batra SK. 2012. Targeting the EGFR signaling pathway in cancer therapy. Expert Opin Ther Targets 16:15-31.
Sharma SV, Bell DW, Settleman J, Haber DA. 2007. Epidermal growth factor receptor mutations in lung cancer. Nat Rev Cancer 7:169-181.
Shien K, Toyooka S, Yamamoto H, Soh J, Jida M, Thu KL, Hashida S, Maki Y, Ichihara E, Asano H, Tsukuda K, Takigawa N, Kiura K, Gazdar AF, Lam WL, Miyoshi S. 2013. Acquired resistance to EGFR inhibitors is associated with a manifestation of stem cell-like properties in cancer cells. Cancer Res 73:3051-3061.
Sociali G, Galeno L, Parenti MD, Grozio A, Bauer I, Passalacqua M, Boero S, Donadini A, Millo E, Bellotti M, Sturla L, Damonte P, Puddu A, Ferroni C, Varchi G, Franceschi C, Ballestrero A, Poggi A, Bruzzone S, Nencioni A, Del Rio A. 2015. Quinazolinedione SIRT6 inhibitors sensitize cancer cells to chemotherapeutics. Eur J Med Chem 102:530-539.
Tamm I, Wang Y, Sausville E, Scudiero DA, Vigna N, Oltersdorf T, Reed JC. 1998. IAP-family protein survivin inhibits caspase activity and apoptosis induced by Fas (CD95), Bax, caspases, and anticancer drugs. Cancer Res 58:5315-5320.
Thress KS, Paweletz CP, Felip E, Cho BC, Stetson D, Dougherty B, Lai Z, Markovets A, Vivancos A, Kuang Y, Ercan D, Matthews SE, Cantarini M, Barrett JC, Janne PA, Oxnard GR. 2015. Acquired EGFR C797S mutation mediates resistance to AZD9291 in non-small cell lung cancer harboring EGFR T790M. Nat Med 21:560-562.
Tomas A, Futter CE, Eden ER. 2014. EGF receptor trafficking: consequences for signaling and cancer. Trends Cell Biol 24:26-34.
Torre LA, Siegel RL, Jemal A. 2016. Lung Cancer Statistics. Adv Exp Med Biol 893:1-19.
Tsai CC, Liu HF, Hsu KC, Yang JM, Chen C, Liu KK, Hsu TS, Chao JI. 2011. 7-Chloro-6-piperidin-1-yl-quinoline-5,8-dione (PT-262), a novel ROCK inhibitor blocks cytoskeleton function and cell migration. Biochem Pharmacol 81:856-865.
Wang BY, Huang JY, Cheng CY, Lin CH, Ko J, Liaw YP. 2013. Lung cancer and prognosis in taiwan: a population-based cancer registry. J Thorac Oncol 8:1128-1135.
Wang Z, Yang JJ, Huang J, Ye JY, Zhang XC, Tu HY, Han-Zhang H, Wu YL. 2017. Brief Report: Lung adenocarcinoma harboring EGFR T790M and in trans C797S responds to combination therapy of first and third generation EGFR-TKIs and shifts allelic configuration at resistance. J Thorac Oncol.
Yu HA, Arcila ME, Rekhtman N, Sima CS, Zakowski MF, Pao W, Kris MG, Miller VA, Ladanyi M, Riely GJ. 2013. Analysis of tumor specimens at the time of acquired resistance to EGFR-TKI therapy in 155 patients with EGFR-mutant lung cancers. Clin Cancer Res 19:2240-2247.
Yu HA, Pao W. 2013. Targeted therapies: Afatinib--new therapy option for EGFR-mutant lung cancer. Nat Rev Clin Oncol 10:551-552.
Zhang K, Li Y, Liu W, Gao X, Zhang K. 2015. Silencing survivin expression inhibits the tumor growth of non-small-cell lung cancer cells in vitro and in vivo. Mol Med Rep 11:639-644.
Zhou BB, Zhang H, Damelin M, Geles KG, Grindley JC, Dirks PB. 2009. Tumour-initiating cells: challenges and opportunities for anticancer drug discovery. Nat Rev Drug Discov 8:806-823.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊