跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.35) 您好!臺灣時間:2025/12/17 17:25
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:李佳諭
研究生(外文):Chia-Yu Li
論文名稱:噴墨印刷法製備可撓曲式金屬-有機骨架材料衍生之 多孔氧化鋅/氧化銅低溫型氣體感測器之研究
論文名稱(外文):Preparation of inkjet printed flexible MOF-derived porous ZnO/CuO gas sensor with low operating temperature
指導教授:高立衡高立衡引用關係
指導教授(外文):Li-Heng Kao
口試委員:張健桂張育誠
口試委員(外文):Chien-Kuei ChangJang-Yu Chang
口試日期:2018-05-29
學位類別:碩士
校院名稱:國立高雄應用科技大學
系所名稱:化學工程與材料工程系博碩士班
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:中文
論文頁數:181
中文關鍵詞:噴墨印刷銀奈米顆粒金屬氧化物半導體氣體感測器金屬有機-骨架材料
外文關鍵詞:inkjet printingsilver nanoparticlesmetal oxide semiconductorgas sensormetal-organic framework material
相關次數:
  • 被引用被引用:0
  • 點閱點閱:247
  • 評分評分:
  • 下載下載:7
  • 收藏至我的研究室書目清單書目收藏:0
本研究以噴墨印刷技術製備由奈米銀粒子構成的迴圈式電極於可撓曲之聚醯亞胺(polyimide, PI)薄膜上,再結合由金屬-有機骨架材料衍生之多孔半導體型氣敏材料氧化鋅、氧化銅等作為感測層,製備成氣體感測器元件,以探討自製氣體感測元件在室溫下對還原性氣體之感測能力,並配合低瓦數的UV-LED (10 W)燈,來改善半導體形氣敏材料需應用於高溫環境下的限制。
使用乙二醇當作還原劑、聚乙烯吡咯烷酮(Polyvinylpyrrolidone, PVP)作為保護劑,利用簡便的多元醇還原法還原硝酸銀(Silver nitrate, AgNO3),製備奈米銀顆粒。以XRD鑑定得知銀奈米顆粒為面心立方堆積的球形金屬銀,由SEM、TEM與粒徑分析儀得知其粒徑約為60-80 nm,將銀奈米顆粒配製成5 wt%的含銀墨水,將墨水填充於市售EPSON T50印表機墨水匣後,在聚醯亞胺薄膜上印製奈米銀電極後,再塗覆一層氣敏材料,其中感測層分別為氧化鋅(N-type)、氧化銅(P-type)及氧化鋅混和氧化銅形成異質接面(P-N junction),完成感測元件的製備;將感測元件置於實驗室自製氣體感測氣室中,以10 W UV- LED燈照射下,通入還原性氣體 (0-400 ppm)進行感測試驗。感測元件連接萬用電表(Keithley 2400),在不同還原性氣體濃度下讀取電流值,連接電腦軟體紀錄後,探討氣體感測器在室溫下之感測性能。自製感測器在室溫條件下感測50 ppm丙酮時,氧化鋅(N-type)、氧化銅(P-type)及氧化鋅混和氧化銅 (P-N junction)的響應值分別為為34.9、20.9與63.6,響應時間(Tres)分別為3秒、52秒與5秒、恢復時間(Trec)為5秒、14秒、8秒,且感測的瞬間電流值隨丙酮氣體濃度增加而有明顯變化,為有效的丙酮氣體感測器。在室溫下以10 W UV燈輔助照射,在異質結構的接觸,有加成放大的協同效應,顯示感測元件可有效取代傳統金屬氧化物半導體氣體感測器須於高工作溫度下操作之限制,在室溫下對低濃度ppm級之丙酮氣體具有良好的感測能力。

In this study, inkjet printing technology was used to prepare a looped electrode composed of silver nanoparticles on a flexible polyimide (PI) film, and a porous semiconductor-type gas-sensing material such as zinc oxide and copper oxide, which were derived from a metal-organic framework material was used as sensing layer, and coated onto nanosilver loop type electrode. To investigate the sensing capability of the homemade gas sensor under reducing gas atmosphere at room temperature with a low wattage UV-LED (10 W) lamp irradiated, to improve the semiconductor gas sensitive materials need to be applied to the limitations of high-temperature environment.
Using ethylene glycol as a reducing agent and polyvinylpyrrolidone (PPV) as a protective agent, silver nitrate (AgNO3) was reduced by a simple polyol reduction method to prepare nanosilver particles. X-ray diffraction (XRD) results indicate that the silver nanoparticles are spherical metal silver with face-centered cubic structure. The particle size is approximately 60-80 nm by Scanning Electron Microscope (SEM) and Transmission Electron Microscopy (TEM) and particle size analyzer. The silver nanoparticle was formulated into 5 wt% silver ink, and the ink was filled in a commercially available EPSON T50 printer ink cartridge. The nanosilver loop type electrode is printed on the polyimide film and then coated with a layer of gas sensitive material, wherein the sensing layer is ZnO (N-type) and CuO (P-type), and the formation of heterogeneous interface (P-N Junction) of ZnO mixed with CuO (ZnO/CuO) to complete the preparation of sensors. The sensors are placed in a homemade gas sensing chamber, and the sensing test is carried out under reducing gas atmosphere (0-400 ppm) at room temperature with a low wattage UV-LED (10 W) lamp irradiated. The sensors was connected to a universal meter (Keithley 2400), and the current value was read at different reducing gas concentrations. After the computer software was recorded, the sensing performance of the gas sensor at room temperature was investigated.
When the sensor was used to sense 50 ppm acetone at room temperature, the response values of ZnO, CuO, and ZnO/CuO were 34.9, 20.9 and 63.6 respectively. The response time (Tres) was 3, 52 and 5 seconds respectively, the recovery time (Trec) was 5, 14 and 8 seconds, respectively, and the sensed instantaneous current value significantly changed with increasing acetone gas concentration, and was an effective acetone gas sensor. It is worth noting that sensors with heterostructure materials (ZnO/CuO) have obviously synergistic effects. Which show that the sensors can effectively improve the limitations of conventional metal oxide semiconductor gas sensors operating at high operating temperature, and have good sensing ability for the acetone gas with low ppm concentration at room temperature.

摘要
Abstract
致謝
總目錄
表目錄
圖目錄
第一章 緒論
第二章 基本原理與文獻回顧
2-1銀的物理性質
2-1-1銀的晶體結構與特性
2-1-2奈米銀顆粒合成之簡介
2-1-3多元醇系統製備奈米粒子之簡介
2-1-4奈米銀墨水製備
2-2可撓曲式印刷電路板
2-2-1聚醯亞胺(Polyimide, PI)
2-3噴墨印刷製程製作電子元件
2-3-1噴墨印刷技術
2-3-2壓電式噴墨技術
2-3-3熱泡式噴墨技術
2-3-4噴墨印刷技術之文獻
2-4氣體感測器
2-4-1金屬半導體型(Metal-Oxide-Semiconductor sensor, MOSS)
2-4-2觸媒燃燒型 (Metal-Oxide-Semiconductor sensor)
2-4-3電化學固態電解質型(Solid electrolyte sensor)
2-4-4場效電晶體型 (Metal-Oxide-Semiconductor Field-Effect Transistor)
2-5金屬氧化物半導體感測簡介
2-5-1金屬氧化物半導體(MOS)感測機制
2-5-2金屬-有機骨架材料簡介
2-5-3金屬-有機骨架材料的種類與合成
2-5-4感測層材料-多孔氧化鋅 (ZnO)
2-5-4感測層材料-氧化銅 (CuO)
2-5-5氧化銅晶體結構與性質
2-6氣體感測器之應用
2-6-1工業上應用
2-6-3丙酮於醫學上應用
2-7氣體感測機制
2-7-1氧化鋅多孔材料對丙酮氣體感測機制
2-7-2 氧化銅材料對丙酮氣體感測機制
2-7-3 氧化銅/氧化鋅材料對丙酮氣體感測機制
第三章 實驗
3-1實驗藥品
3-2分析儀器及設備
3-3-1商用噴墨印表機 (Ink-jet Printer)
3-2-2 多功能電源電表(Sourcemeter)
3-2-3 四點探針(four-point probe system)
3-2-4掃描式電子顯微鏡(Scanning Electron Microscope, SEM)
3-2-5 X光繞射儀(X-ray Diffractometer, XRD)
3-2-6熱重損失分析儀 (Thermogravimetry Analyzer, TGA)
3-3實驗流程
3-3-1銀奈米顆粒製備
3-3-2墨水製備
3-3-3利用印刷技術製備銀電極
3-3-4迴圈式電極圖形
3-3-5 ZnO感測層製備
3-3-6 CuO感測層製備
3-3-6氣體感測分析(Gas sensing test)
第四章 結果與討論
4-1奈米銀電極之性質分析
4-1-1銀顆粒之表面型態
4-1-2銀奈米顆粒晶體結構
4-1-3奈米銀顆粒結晶結構
4-2噴墨印刷列印迴圈式奈米銀電極之鑑定
4-2-1可撓曲奈米銀電極圖形
4-2-2不同列印次數濃度之奈米銀電極表面形貌
4-2-3奈米銀電極經熱處理表面形貌
4-2-4奈米銀電極電性分析
4-3列印基板-可撓曲式聚醯亞胺薄膜
4-3-1聚醯亞胺薄膜熱性質分析
4-4氧化鋅感測層之性質分析
4-4-1氧化鋅表面形貌之鑑定
4-4-2多孔氧化鋅結晶結構
4-4-3氧化銅結晶結構
4-4-2氧化銅結晶結構
4-5氣體感測試驗
4-5-1氣體感測試驗-丙酮
4-5-2氣體感測試驗-甲醇
4-5-3氣體感測試驗-乙醇
4-5-4氣體感測試驗-甲醛
4-5-5氣體感測試驗-甲苯
4-5-6氣體選擇性
4-5-7不同比例ZnO/CuO之比較
4-5-8 ZnO/CuO異質接合2/1與1/2-丙酮
4-5-9 ZnO/CuO異質接合2/1與1/2-甲醇
4-5-10 ZnO/CuO異質接合2/1與1/2-乙醇
4-5-11 ZnO/CuO異質接合2/1與1/2-甲醛
4-5-12 ZnO/CuO異質接合2/1與1/2-甲苯
第五章 結論
第六章 未來展望
第七章 參考文獻

1.Chen, X.; Wong, C. K. Y.; Yuan, C. A.; Zhang, G., Nanowire-based gas
sensors. Sensors and Actuators B: Chemical 2013, 177, 178-195.
2.Kukkola, J.; Mohl, M.; Leino, A.-R.; Tóth, G.; Wu, M.-C.; Shchukarev, A.;
Popov, A.; Mikkola, J.-P.; Lauri, J.; Riihimäki, M.; Lappalainen, J.;
Jantunen, H.; Kordás, K., Inkjet-printed gas sensors: metal decorated WO3
nanoparticles and their gas sensing properties. Journal of Materials
Chemistry 2012, 22, 17878.
3.Yuan, W.; Shi, G., Graphene-based gas sensors. Journal of Materials
Chemistry A 2013, 1, 10078.
4.Yang, X.; Li, L.; Yan, F., Polypyrrole/silver composite nanotubes for gas
sensors. Sensors and Actuators B: Chemical 2010, 145, 495-500.
5.吳泉毅; 楊宗燁; 林鴻明, 奈米半導體材料之氣體感測性質. 物理 2003, 405-415.
6.周瑞福,氣體感測器原理與應用,三聯科技股份有限公司25-31
7.世界衛生組織通過空氣汙染和癲癇得決議2015.
http://www.who.int/mediacentre/news/releases/2015/wha-26-may-2015/zh/
8.Zhang, Z.; Chen, Y.; Xu, X.; Zhang, J.; Xiang, G.; He, W.; Wang, X., Well-
defined metal-organic framework hollow nanocages. Angew Chem Int Ed Engl
2014, 53 (2), 429-33.
9.Qu, F.; Jiang, H.; Yang, M., Designed formation through a metal organic
framework route of ZnO/ZnCo2O4 hollow core-shell nanocages with enhanced gas
sensing properties. Nanoscale 2016, 8 (36), 16349-16356.
10.郭永吉,壓電式噴墨系統之液滴噴射行為模擬,國立東華大學碩士論文(2003)
11.F., T. K.; W, V. R., Metallization of solar cells with ink jet printing and
silver metallo-organic inks. IEEE Transactions on Components 1988, 291-297.
12.Genina, N.; Janssen, E. M.; Breitenbach, A.; Breitkreutz, J.; Sandler, N.,
Evaluation of different substrates for inkjet printing of rasagiline
mesylate. Eur J Pharm Biopharm 2013, 85 (3 Pt B), 1075-83.
13.Hebner, T. R.; Wu, C. C.; Marcy, D.; Lu, M. H.; Sturm, J. C., Ink-jet
printing of doped polymers for organic light emitting devices. Applied
Physics Letters 1998, 72 (5), 519-521.
14.Zhang, Q.; Xie, G.; Xu, M.; Su, Y.; Tai, H.; Du, H.; Jiang, Y., Visible
light-assisted room temperature gas sensing with ZnO-Ag heterostructure
nanoparticles. Sensors and Actuators B: Chemical 2018, 259, 269-281.
15.Hammond, C. R., The Elements, in Handbook of Chemistry and Physics 81th. .
2004.
16.M., M. L.; I, T., Reduction and Stabilization of Silver Nanoparticles in
Ethanol by Nonionic Surfactants. Langmuir 1996, 3585-3589.
17.Beaudoin , B.; Figlarz, M.; B, B., Homogeneous and heterogeneous
nucleations in the polyol process for the preparation of micron and
submicron size metal particles. Solid State Ionics 1989, 32, 198-201.
18.Sun, Y.; Xia, Y., Large‐Scale Synthesis of Uniform Silver Nanowires Through
a Soft, Self‐Seeding, Polyol Process. Adv.Mater 2002, 14, 833-837.
19.Sun, Y., Yin, Y., Mayers, B., Herricks, T., Xia, Y. Chem. Uniform Silver
Nanowires Synthesis by Reducing AgNO3 with Ethylene Glycol in the Presence
of Seeds and Poly(Vinyl Pyrrolidone), Mater.,14, 4736-4745 (2002)
20.Kordas, K.; Mustonen, T.; Toth, G.; Jantunen, H.; Lajunen, M.; Soldano, C.;
Talapatra, S.; Kar, S.; Vajtai, R.; Ajayan, P. M., Inkjet printing of
electrically conductive patterns of carbon nanotubes. Small 2006, 2 (8-9),
1021-5.
21.Sun, Y.; Yin, Y.; Mayers, B. T.; Herricks, T.; Xia, Y., Uniform Silver
Nanowires Synthesis by Reducing AgNO3 with Ethylene Glycol in the Presence
of Seeds and Poly(Vinyl Pyrrolidone). Chem. Mater. 2002, 4736-4745.
22.Sun, Y.; Xia, Y., Shape-controlled synthesis of gold and silver
nanoparticles. Science 2002, 298.
23.Fievet, F.; Lagier, J. P.; Blin, B., Homogeneous and heterogeneous
nucleations in the polyol process for the preparation of micron and
submicron size metal particles. Solid State Ionics 1989, 198-205.
24.Sun, Y.; Xia, Y., Shape-controlled synthesis of gold and silver
nanoparticles. Science 2002, 298, 2176-2179.
25.Wiley, B.; Herricks, T.; Sun, Y.; Xia, Y., Polyol Synthesis of Silver
Nanoparticle Use of Chloride and Oxygen to Promote the Formation of Single-
Crystal Truncated Cubes and Tetrahedrons. American Chemical Society 2004.
26.Shen, W.; Zhang, X.; Huang, Q.; Xu, Q.; Song, W., Preparation of solid
silver nanoparticles for inkjet printed flexible electronics with high
conductivity. Nanoscale 2014, 6 (3), 1622-8.
27.陳奕安; 周更生, 以噴墨製程製作電子元件. 化工技術 2008, 78-92.
28.Derby, B.; Reis, N., Preparation of solid silver nanoparticles for inkjet
printed flexible electronics with high conductivity. Nanoscale 2014, 6,
1622–1628.
29.Derby, B.; Reis, N., Inkjet Printing of Highly Loaded Particulate
Suspensions. Mrs bulletin 2003.
30.B, S.; Fuller; J, E.; Wilhelm; M, J.; Jacobson, Ink-jet printed
nanoparticle microelectromechanical systems. Journal of
microelectromechanical systems 2002, 11.
31.Li, R. Z.; Hu, A.; Zhang, T.; Oakes, K. D., Direct writing on paper of
foldable capacitive touch pads with silver nanowire inks. ACS Appl Mater
Interfaces 2014, 6 (23), 21721-9.
32.Huang, Q.; Shen, W.; Xu, Q.; Tan, R.; Song, W., Properties of polyacrylic
acid-coated silver nanoparticle ink for inkjet printing conductive tracks
on paper with high conductivity. Materials Chemistry and Physics 2014, 147
(3), 550-556.
33.Kim, D.; Moon, J., Highly Conductive Ink Jet Printed Films of Nanosilver
Particles for Printable Electronics. Electrochemical and Solid-State
Letters 2005, 8 (11), J30.
34.Woo, K.; Jang, D.; Kim, Y.; Moon, J., Relationship between printability and
rheological behavior of ink-jet conductive inks. Ceramics International
2013, 39 (6), 7015-7021.
35.Chiolerio, A.; Cotto, M.; Pandolfi, P.; Martino, P.; Camarchia, V.; Pirola,
M.; Ghione, G., Ag nanoparticle-based inkjet printed planar transmission
lines for RF and microwave applications: Considerations on ink composition,
nanoparticle size distribution and sintering time. Microelectronic
Engineering 2012, 97, 8-15.
36.Layani, M.; Grouchko, M.; Shemesh, S.; Magdassi, S., Conductive patterns on
plastic substrates by sequential inkjet printing of silver nanoparticles
and electrolyte sintering solutions. Journal of Materials Chemistry 2012,
22 (29), 14349.
37.Chen, C. N.; Chen, C. P.; Dong, T. Y.; Chang, T. C.; Chen, M. C.; Chen, H.
T.; Chen, I. G., Using nanoparticles as direct-injection printing ink to
fabricate conductive silver features on a transparent flexible PET
substrate at room temperature. Acta Materialia 2012, 60 (16), 5914-5924.
38.Chiolerio, A.; Maccioni, G.; Martino, P.; Cotto, M.; Pandolfi, P.; Rivolo,
P.; Ferrero, S.; Scaltrito, L., Inkjet printing and low power laser
annealing of silver nanoparticle traces for the realization of low
resistivity lines for flexible electronics. Microelectronic Engineering
2011, 88 (8), 2481-2483.
39.Faddoul, R.; Reverdy-Bruas, N.; Blayo, A.; Khelifi, B., Inkjet printing of
silver nano-suspensions on ceramic substrates – Sintering temperature
effect on electrical properties. Microelectronic Engineering 2013, 105, 31-
39
40.Arin, M.; Lommens, P.; Avci, N.; Hopkins, S. C.; De Buysser, K.; Arabatzis,
I. M.; Fasaki, I.; Poelman, D.; Van Driessche, I., Inkjet printing of
photocatalytically active TiO2 thin films from water based precursor
solutions. Journal of the European Ceramic Society 2011, 31 (6), 1067-1074.
41.Lin, Y.; Huang, L.; Chen, L.; Zhang, J.; Shen, L.; Chen, Q.; Shi, W., Fully
gravure-printed NO2 gas sensor on a polyimide foil using WO3-PEDOT:PSS
nanocomposites and Ag electrodes. Sensors and Actuators B: Chemical 2015,
216, 176-183.
42.K.F.Teng, Metallization of solar cells with ink jet printing and silver
metallo-organic inks. IEEE Transa ctions on componlnts, hybrids, and
Manufacturing technolggy 1988, 11.
43.Heinzl, J.; Hertz, C. H., Ink-Jet Printing. 1985, 65, 91-171.
44.Lee, H. H.; Chou, K. S.; Huang, K. C., Inkjet printing of nanosized silver
colloids. Nanotechnology 2005, 16 (10), 2436-41.
45.楊明長; 曾坤億; 王瓊紫, 一氧化碳感測器之原理與應用. 化工技術 2000, 2, 158-167.
46.鄭宜驊, "單根氧化鋅奈米線一氧化氮氣體感測器製作與吸附動力學研究", 清華大學材料科學
工程學系學位論文 , 2011.
47.Comini, E.; Cristalli, A.; Faglia, G.; Sberveglieri, G., Light enhanced gas
sensing properties of indium oxide and tin dioxide sensors. Sensors and
Actuators B: Chemical 2000, 65, 260-263.
48.Anothainart, K.; Burgmair, M.; Karthigeyan, A.; Zimmer, M.; Eisele, I.,
Light enhanced NO2 gas sensing with tin oxide at room temperature:
conductance and work function measurements. Sensors and Actuators B:
Chemical 2003, 93 (1-3), 580-584.
49.de Lacy Costello, B. P. J.; Ewen, R. J.; Ratcliffe, N. M.; Richards, M.,
Highly sensitive room temperature sensors based on the UV-LED activation of
zinc oxide nanoparticles. Sensors and Actuators B: Chemical 2008, 134 (2),
945-952.
50.鄭創元, "Au/TiO2應用在甲醛氣體探測器之研究", 靜宜大學應用化學系學位論文, 2013.
51.顧志鴻, MOSFET氣體感測器. 材料與社會 1992, 68, 71-75.
52.葉國泰, 奈米碳管毒性氣體偵測器簡介. 簡介勞工安全衛生簡訊 2005.
53.Kim, Y.-S.; Tai, W.-P.; Shu, S.-J., Effect of preheating temperature on
structural and optical properties of ZnO thin films by sol–gel process.
Thin Solid Films 2005, 491 (1-2), 153-160.
54.Steinhauer, S.; Chapelle, A.; Menini, P.; Sowwan, M., Local CuO Nanowire
Growth on Microhotplates: In Situ Electrical Measurements and Gas Sensing
Application. ACS Sensors 2016, 1 (5), 503-507.
55.Weimar, U.; Barsan, N., Conduction Model of Metal Oxide Gas Sensors. 2001.
56.Kim, H.-J.; Lee, J.-H., Highly sensitive and selective gas sensors using p-
type oxide semiconductors: Overview. Sensors and Actuators B: Chemical
2014, 192, 607-627.
57.Abideen, Z. U.; Katoch, A.; Kim, J.-H.; Kwon, Y. J.; Kim, H. W.; Kim, S.
S., Excellent gas detection of ZnO nanofibers by loading with reduced
graphene oxide nanosheets. Sensors and Actuators B: Chemical 2015, 221,
1499-1507.
58.Poloju, M.; Jayababu, N.; Ramana Reddy, M. V., Improved gas sensing
performance of Al doped ZnO/CuO nanocomposite based ammonia gas sensor.
Materials Science and Engineering: B 2018, 227, 61-67.
59.Kim, J.-H.; Lee, J.-H.; Mirzaei, A.; Kim, H. W.; Kim, S. S., Optimization
and gas sensing mechanism of n-SnO2 -p-Co3O4 composite nanofibers. Sensors
and Actuators B: Chemical 2017, 248, 500-511.
60.Dhakshinamoorthy, A.; Asiri, A. M.; Garcia, H., Catalysis by metal-organic
frameworks in water. Chem Commun (Camb) 2014, 50 (85), 12800-14.
61.Furukawa, H.; Cordova, K. E.; O'Keeffe, M.; Yaghi, O. M., The chemistry and
applications of metal-organic frameworks. Science 2013, 341 (6149),
1230444.
62.Dai, H.; Xia, B.; Wen, L.; Du, C.; Su, J.; Luo, W.; Cheng, G., Synergistic
catalysis of AgPd@ZIF-8 on dehydrogenation of formic acid. Applied
Catalysis B: Environmental 2015, 165, 57-62.
63.李秉翰, 利用MOF孔洞材分離捕獲或轉化利用二氧化碳. 化工 2016, 63.
64.Žunkovič, E.; Mazaj, M.; Mali, G.; Rangus, M.; Devic, T.; Serre, C.; Logar,
N. Z., Structural study of Ni- or Mg-based complexes incorporated within
UiO-66-NH2 framework and their impact on hydrogen sorption properties.
Journal of Solid State Chemistry 2015, 225, 209-215.
65.Zhang, L.; Liand, F.; Luo, L., Preparation Methods of Metal Organic
Frameworks and Their Capture of CO2. IOP Conference Series: Earth and
Environmental Science 2018, 108, 042104.
66.Zi, G.; Yan, Z.; Wang, Y.; Chen, Y.; Guo, Y.; Yuan, F.; Gao, W.; Wang, Y.;
Wang, J., Catalytic hydrothermal conversion of carboxymethyl cellulose to
value-added chemicals over metal-organic framework MIL-53(Al). Carbohydr
Polym 2015, 115, 146-51.
67.Cao, F.; Sun, Y.; Wang, L.; Sun, H., Kinetic effects in predicting
adsorption using the GCMC method – using CO2 adsorption on ZIFs as an
example. RSC Adv. 2014, 4 (52), 27571-27581.
68.Liu, Z.; Stoddart, J. F., Extended metal-carbohydrate frameworks. Pure and
Applied Chemistry 2014, 86 (9), 1323-1334.
69.李晉成; 劉歡; 張靜; 吳立冬; 宋懌, Application of metal organic frameworks in
separation and analysis. 2015.
70.Lee, C. J.; Lee, T. J.; Lyu, S. C.; Zhang, Y.; Ruh, H.; Lee, H. J., Field
emission from well-aligned zinc oxide nanowires grown at low temperature.
Applied Physics Letters 2002, 81 (19), 3648-3650.
71.Könenkamp, R. R.; Word, R. C.; Schlegel, C. C., Vertical nanowire light-
emitting diode. Physics Faculty Publications and Presentations 2004, 6004-
6006.
72.Baxter, J. B.; Walker, A. M.; Ommering, K. V.; Aydil, E. S., Synthesis and
characterization of ZnO nanowires and their integration into dye-sensitized
solar cells. Nanotechnology 2006, 17 (11), S304-S312.
73.Wang, J. X.; Sun, X. W.; Wei, A.; Lei, Y.; Cai, X. P.; Li, C. M.; Dong, Z.
L., Zinc oxide nanocomb biosensor for glucose detection. Applied Physics
Letters 2006, 88 (23), 233106.
74.Kröger, F. A., The Chemistry of Imperfect Crystals. 1964. North‐Holland
Publishing Company ‐ Amsterdam/London 1973 American Elsevier Publishing
75.Li, W.; Wu, X.; Han, N.; Chen, J.; Qian, X.; Deng, Y.; Tang, W.; Chen, Y.,
MOF-derived hierarchical hollow ZnO nanocages with enhanced low-
concentration VOCs gas-sensing performance. Sensors and Actuators B:
Chemical 2016, 225, 158-166.
76.Zhang, L.; Wang, L. L.; Gongle, L.; Feng, X. F.; Luo, M. B.; Luo, F.,
Coumarin-modified microporous-mesoporous Zn-MOF-74 showing ultra-high
uptake capacity and photo-switched storage/release of U(VI) ions. J Hazard
Mater 2016, 311, 30-6.
77.Botas, J. A.; Calleja, G.; Sánchez-Sánchez, M.; Orcajo, M. G., Effect of
Zn/Co ratio in MOF-74 type materials containing exposed metal sites on
their hydrogen adsorption behaviour and on their band gap energy.
International Journal of Hydrogen Energy 2011, 36 (17), 10834-10844.
78.Srinivas, G.; Krungleviciute, V.; Guo, Z.-X.; Yildirim, T., Exceptional CO2
capture in a hierarchically porous carbon with simultaneous high surface
area and pore volume. Energy Environ. Sci. 2014, 7 (1), 335-342.
79.Achmann, S.; Hagen, G.; Kita, J.; Malkowsky, I. M.; Kiener, C.; Moos, R.,
Metal-organic frameworks for sensing applications in the gas phase. Sensors
(Basel) 2009, 9 (3), 1574-89.
80.彭峻彥, 脈衝雷射沉積非極性A面氧化鋅於面氧化鋅於面氧化鋅於 R面藍寶石基板之磊晶基板
之磊晶研. ", 國立交通大學材料科學與工程研究所論文 , 2012.
81.陳南宏, 利用熱氧化法生成氧化亞銅應用於太陽能電池之研製.國立中山大學光電工程學系碩
士論文2013.
82.Wang, R.; King, L. L. H.; Sleight, A. W., Highly conducting transparent
thin films based on zinc oxide. Journal of Materials research 1996, 11.
83.Bdick, R.; Setzer, J. V.; Bjtaylor; Shukla, R., Neurobehavioural effects of
short duration exposures to acetone and methyl ethyl ketone. British
Journal of Industrial Medicine 1989, 46, 111-121.
84.國家毒物研究中心網
http://nehrc.nhri.org.tw/toxic/toxfaq_detail.php?id=1.
85.Li, J.; Fan, H.; Jia, X., Multilayered ZnO Nanosheets with 3D Porous
Architectures Synthesis and Gas Sensing Application. J. Phys. Chem 2010,
114, 14684–14691.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊