1.Chen, X.; Wong, C. K. Y.; Yuan, C. A.; Zhang, G., Nanowire-based gas
sensors. Sensors and Actuators B: Chemical 2013, 177, 178-195.
2.Kukkola, J.; Mohl, M.; Leino, A.-R.; Tóth, G.; Wu, M.-C.; Shchukarev, A.;
Popov, A.; Mikkola, J.-P.; Lauri, J.; Riihimäki, M.; Lappalainen, J.;
Jantunen, H.; Kordás, K., Inkjet-printed gas sensors: metal decorated WO3
nanoparticles and their gas sensing properties. Journal of Materials
Chemistry 2012, 22, 17878.
3.Yuan, W.; Shi, G., Graphene-based gas sensors. Journal of Materials
Chemistry A 2013, 1, 10078.
4.Yang, X.; Li, L.; Yan, F., Polypyrrole/silver composite nanotubes for gas
sensors. Sensors and Actuators B: Chemical 2010, 145, 495-500.
5.吳泉毅; 楊宗燁; 林鴻明, 奈米半導體材料之氣體感測性質. 物理 2003, 405-415.
6.周瑞福,氣體感測器原理與應用,三聯科技股份有限公司25-31
7.世界衛生組織通過空氣汙染和癲癇得決議2015.
http://www.who.int/mediacentre/news/releases/2015/wha-26-may-2015/zh/
8.Zhang, Z.; Chen, Y.; Xu, X.; Zhang, J.; Xiang, G.; He, W.; Wang, X., Well-
defined metal-organic framework hollow nanocages. Angew Chem Int Ed Engl
2014, 53 (2), 429-33.
9.Qu, F.; Jiang, H.; Yang, M., Designed formation through a metal organic
framework route of ZnO/ZnCo2O4 hollow core-shell nanocages with enhanced gas
sensing properties. Nanoscale 2016, 8 (36), 16349-16356.
10.郭永吉,壓電式噴墨系統之液滴噴射行為模擬,國立東華大學碩士論文(2003)11.F., T. K.; W, V. R., Metallization of solar cells with ink jet printing and
silver metallo-organic inks. IEEE Transactions on Components 1988, 291-297.
12.Genina, N.; Janssen, E. M.; Breitenbach, A.; Breitkreutz, J.; Sandler, N.,
Evaluation of different substrates for inkjet printing of rasagiline
mesylate. Eur J Pharm Biopharm 2013, 85 (3 Pt B), 1075-83.
13.Hebner, T. R.; Wu, C. C.; Marcy, D.; Lu, M. H.; Sturm, J. C., Ink-jet
printing of doped polymers for organic light emitting devices. Applied
Physics Letters 1998, 72 (5), 519-521.
14.Zhang, Q.; Xie, G.; Xu, M.; Su, Y.; Tai, H.; Du, H.; Jiang, Y., Visible
light-assisted room temperature gas sensing with ZnO-Ag heterostructure
nanoparticles. Sensors and Actuators B: Chemical 2018, 259, 269-281.
15.Hammond, C. R., The Elements, in Handbook of Chemistry and Physics 81th. .
2004.
16.M., M. L.; I, T., Reduction and Stabilization of Silver Nanoparticles in
Ethanol by Nonionic Surfactants. Langmuir 1996, 3585-3589.
17.Beaudoin , B.; Figlarz, M.; B, B., Homogeneous and heterogeneous
nucleations in the polyol process for the preparation of micron and
submicron size metal particles. Solid State Ionics 1989, 32, 198-201.
18.Sun, Y.; Xia, Y., Large‐Scale Synthesis of Uniform Silver Nanowires Through
a Soft, Self‐Seeding, Polyol Process. Adv.Mater 2002, 14, 833-837.
19.Sun, Y., Yin, Y., Mayers, B., Herricks, T., Xia, Y. Chem. Uniform Silver
Nanowires Synthesis by Reducing AgNO3 with Ethylene Glycol in the Presence
of Seeds and Poly(Vinyl Pyrrolidone), Mater.,14, 4736-4745 (2002)
20.Kordas, K.; Mustonen, T.; Toth, G.; Jantunen, H.; Lajunen, M.; Soldano, C.;
Talapatra, S.; Kar, S.; Vajtai, R.; Ajayan, P. M., Inkjet printing of
electrically conductive patterns of carbon nanotubes. Small 2006, 2 (8-9),
1021-5.
21.Sun, Y.; Yin, Y.; Mayers, B. T.; Herricks, T.; Xia, Y., Uniform Silver
Nanowires Synthesis by Reducing AgNO3 with Ethylene Glycol in the Presence
of Seeds and Poly(Vinyl Pyrrolidone). Chem. Mater. 2002, 4736-4745.
22.Sun, Y.; Xia, Y., Shape-controlled synthesis of gold and silver
nanoparticles. Science 2002, 298.
23.Fievet, F.; Lagier, J. P.; Blin, B., Homogeneous and heterogeneous
nucleations in the polyol process for the preparation of micron and
submicron size metal particles. Solid State Ionics 1989, 198-205.
24.Sun, Y.; Xia, Y., Shape-controlled synthesis of gold and silver
nanoparticles. Science 2002, 298, 2176-2179.
25.Wiley, B.; Herricks, T.; Sun, Y.; Xia, Y., Polyol Synthesis of Silver
Nanoparticle Use of Chloride and Oxygen to Promote the Formation of Single-
Crystal Truncated Cubes and Tetrahedrons. American Chemical Society 2004.
26.Shen, W.; Zhang, X.; Huang, Q.; Xu, Q.; Song, W., Preparation of solid
silver nanoparticles for inkjet printed flexible electronics with high
conductivity. Nanoscale 2014, 6 (3), 1622-8.
27.陳奕安; 周更生, 以噴墨製程製作電子元件. 化工技術 2008, 78-92.
28.Derby, B.; Reis, N., Preparation of solid silver nanoparticles for inkjet
printed flexible electronics with high conductivity. Nanoscale 2014, 6,
1622–1628.
29.Derby, B.; Reis, N., Inkjet Printing of Highly Loaded Particulate
Suspensions. Mrs bulletin 2003.
30.B, S.; Fuller; J, E.; Wilhelm; M, J.; Jacobson, Ink-jet printed
nanoparticle microelectromechanical systems. Journal of
microelectromechanical systems 2002, 11.
31.Li, R. Z.; Hu, A.; Zhang, T.; Oakes, K. D., Direct writing on paper of
foldable capacitive touch pads with silver nanowire inks. ACS Appl Mater
Interfaces 2014, 6 (23), 21721-9.
32.Huang, Q.; Shen, W.; Xu, Q.; Tan, R.; Song, W., Properties of polyacrylic
acid-coated silver nanoparticle ink for inkjet printing conductive tracks
on paper with high conductivity. Materials Chemistry and Physics 2014, 147
(3), 550-556.
33.Kim, D.; Moon, J., Highly Conductive Ink Jet Printed Films of Nanosilver
Particles for Printable Electronics. Electrochemical and Solid-State
Letters 2005, 8 (11), J30.
34.Woo, K.; Jang, D.; Kim, Y.; Moon, J., Relationship between printability and
rheological behavior of ink-jet conductive inks. Ceramics International
2013, 39 (6), 7015-7021.
35.Chiolerio, A.; Cotto, M.; Pandolfi, P.; Martino, P.; Camarchia, V.; Pirola,
M.; Ghione, G., Ag nanoparticle-based inkjet printed planar transmission
lines for RF and microwave applications: Considerations on ink composition,
nanoparticle size distribution and sintering time. Microelectronic
Engineering 2012, 97, 8-15.
36.Layani, M.; Grouchko, M.; Shemesh, S.; Magdassi, S., Conductive patterns on
plastic substrates by sequential inkjet printing of silver nanoparticles
and electrolyte sintering solutions. Journal of Materials Chemistry 2012,
22 (29), 14349.
37.Chen, C. N.; Chen, C. P.; Dong, T. Y.; Chang, T. C.; Chen, M. C.; Chen, H.
T.; Chen, I. G., Using nanoparticles as direct-injection printing ink to
fabricate conductive silver features on a transparent flexible PET
substrate at room temperature. Acta Materialia 2012, 60 (16), 5914-5924.
38.Chiolerio, A.; Maccioni, G.; Martino, P.; Cotto, M.; Pandolfi, P.; Rivolo,
P.; Ferrero, S.; Scaltrito, L., Inkjet printing and low power laser
annealing of silver nanoparticle traces for the realization of low
resistivity lines for flexible electronics. Microelectronic Engineering
2011, 88 (8), 2481-2483.
39.Faddoul, R.; Reverdy-Bruas, N.; Blayo, A.; Khelifi, B., Inkjet printing of
silver nano-suspensions on ceramic substrates – Sintering temperature
effect on electrical properties. Microelectronic Engineering 2013, 105, 31-
39
40.Arin, M.; Lommens, P.; Avci, N.; Hopkins, S. C.; De Buysser, K.; Arabatzis,
I. M.; Fasaki, I.; Poelman, D.; Van Driessche, I., Inkjet printing of
photocatalytically active TiO2 thin films from water based precursor
solutions. Journal of the European Ceramic Society 2011, 31 (6), 1067-1074.
41.Lin, Y.; Huang, L.; Chen, L.; Zhang, J.; Shen, L.; Chen, Q.; Shi, W., Fully
gravure-printed NO2 gas sensor on a polyimide foil using WO3-PEDOT:PSS
nanocomposites and Ag electrodes. Sensors and Actuators B: Chemical 2015,
216, 176-183.
42.K.F.Teng, Metallization of solar cells with ink jet printing and silver
metallo-organic inks. IEEE Transa ctions on componlnts, hybrids, and
Manufacturing technolggy 1988, 11.
43.Heinzl, J.; Hertz, C. H., Ink-Jet Printing. 1985, 65, 91-171.
44.Lee, H. H.; Chou, K. S.; Huang, K. C., Inkjet printing of nanosized silver
colloids. Nanotechnology 2005, 16 (10), 2436-41.
45.楊明長; 曾坤億; 王瓊紫, 一氧化碳感測器之原理與應用. 化工技術 2000, 2, 158-167.
46.鄭宜驊, "單根氧化鋅奈米線一氧化氮氣體感測器製作與吸附動力學研究", 清華大學材料科學
工程學系學位論文 , 2011.
47.Comini, E.; Cristalli, A.; Faglia, G.; Sberveglieri, G., Light enhanced gas
sensing properties of indium oxide and tin dioxide sensors. Sensors and
Actuators B: Chemical 2000, 65, 260-263.
48.Anothainart, K.; Burgmair, M.; Karthigeyan, A.; Zimmer, M.; Eisele, I.,
Light enhanced NO2 gas sensing with tin oxide at room temperature:
conductance and work function measurements. Sensors and Actuators B:
Chemical 2003, 93 (1-3), 580-584.
49.de Lacy Costello, B. P. J.; Ewen, R. J.; Ratcliffe, N. M.; Richards, M.,
Highly sensitive room temperature sensors based on the UV-LED activation of
zinc oxide nanoparticles. Sensors and Actuators B: Chemical 2008, 134 (2),
945-952.
50.鄭創元, "Au/TiO2應用在甲醛氣體探測器之研究", 靜宜大學應用化學系學位論文, 2013.
51.顧志鴻, MOSFET氣體感測器. 材料與社會 1992, 68, 71-75.
52.葉國泰, 奈米碳管毒性氣體偵測器簡介. 簡介勞工安全衛生簡訊 2005.
53.Kim, Y.-S.; Tai, W.-P.; Shu, S.-J., Effect of preheating temperature on
structural and optical properties of ZnO thin films by sol–gel process.
Thin Solid Films 2005, 491 (1-2), 153-160.
54.Steinhauer, S.; Chapelle, A.; Menini, P.; Sowwan, M., Local CuO Nanowire
Growth on Microhotplates: In Situ Electrical Measurements and Gas Sensing
Application. ACS Sensors 2016, 1 (5), 503-507.
55.Weimar, U.; Barsan, N., Conduction Model of Metal Oxide Gas Sensors. 2001.
56.Kim, H.-J.; Lee, J.-H., Highly sensitive and selective gas sensors using p-
type oxide semiconductors: Overview. Sensors and Actuators B: Chemical
2014, 192, 607-627.
57.Abideen, Z. U.; Katoch, A.; Kim, J.-H.; Kwon, Y. J.; Kim, H. W.; Kim, S.
S., Excellent gas detection of ZnO nanofibers by loading with reduced
graphene oxide nanosheets. Sensors and Actuators B: Chemical 2015, 221,
1499-1507.
58.Poloju, M.; Jayababu, N.; Ramana Reddy, M. V., Improved gas sensing
performance of Al doped ZnO/CuO nanocomposite based ammonia gas sensor.
Materials Science and Engineering: B 2018, 227, 61-67.
59.Kim, J.-H.; Lee, J.-H.; Mirzaei, A.; Kim, H. W.; Kim, S. S., Optimization
and gas sensing mechanism of n-SnO2 -p-Co3O4 composite nanofibers. Sensors
and Actuators B: Chemical 2017, 248, 500-511.
60.Dhakshinamoorthy, A.; Asiri, A. M.; Garcia, H., Catalysis by metal-organic
frameworks in water. Chem Commun (Camb) 2014, 50 (85), 12800-14.
61.Furukawa, H.; Cordova, K. E.; O'Keeffe, M.; Yaghi, O. M., The chemistry and
applications of metal-organic frameworks. Science 2013, 341 (6149),
1230444.
62.Dai, H.; Xia, B.; Wen, L.; Du, C.; Su, J.; Luo, W.; Cheng, G., Synergistic
catalysis of AgPd@ZIF-8 on dehydrogenation of formic acid. Applied
Catalysis B: Environmental 2015, 165, 57-62.
63.李秉翰, 利用MOF孔洞材分離捕獲或轉化利用二氧化碳. 化工 2016, 63.
64.Žunkovič, E.; Mazaj, M.; Mali, G.; Rangus, M.; Devic, T.; Serre, C.; Logar,
N. Z., Structural study of Ni- or Mg-based complexes incorporated within
UiO-66-NH2 framework and their impact on hydrogen sorption properties.
Journal of Solid State Chemistry 2015, 225, 209-215.
65.Zhang, L.; Liand, F.; Luo, L., Preparation Methods of Metal Organic
Frameworks and Their Capture of CO2. IOP Conference Series: Earth and
Environmental Science 2018, 108, 042104.
66.Zi, G.; Yan, Z.; Wang, Y.; Chen, Y.; Guo, Y.; Yuan, F.; Gao, W.; Wang, Y.;
Wang, J., Catalytic hydrothermal conversion of carboxymethyl cellulose to
value-added chemicals over metal-organic framework MIL-53(Al). Carbohydr
Polym 2015, 115, 146-51.
67.Cao, F.; Sun, Y.; Wang, L.; Sun, H., Kinetic effects in predicting
adsorption using the GCMC method – using CO2 adsorption on ZIFs as an
example. RSC Adv. 2014, 4 (52), 27571-27581.
68.Liu, Z.; Stoddart, J. F., Extended metal-carbohydrate frameworks. Pure and
Applied Chemistry 2014, 86 (9), 1323-1334.
69.李晉成; 劉歡; 張靜; 吳立冬; 宋懌, Application of metal organic frameworks in
separation and analysis. 2015.
70.Lee, C. J.; Lee, T. J.; Lyu, S. C.; Zhang, Y.; Ruh, H.; Lee, H. J., Field
emission from well-aligned zinc oxide nanowires grown at low temperature.
Applied Physics Letters 2002, 81 (19), 3648-3650.
71.Könenkamp, R. R.; Word, R. C.; Schlegel, C. C., Vertical nanowire light-
emitting diode. Physics Faculty Publications and Presentations 2004, 6004-
6006.
72.Baxter, J. B.; Walker, A. M.; Ommering, K. V.; Aydil, E. S., Synthesis and
characterization of ZnO nanowires and their integration into dye-sensitized
solar cells. Nanotechnology 2006, 17 (11), S304-S312.
73.Wang, J. X.; Sun, X. W.; Wei, A.; Lei, Y.; Cai, X. P.; Li, C. M.; Dong, Z.
L., Zinc oxide nanocomb biosensor for glucose detection. Applied Physics
Letters 2006, 88 (23), 233106.
74.Kröger, F. A., The Chemistry of Imperfect Crystals. 1964. North‐Holland
Publishing Company ‐ Amsterdam/London 1973 American Elsevier Publishing
75.Li, W.; Wu, X.; Han, N.; Chen, J.; Qian, X.; Deng, Y.; Tang, W.; Chen, Y.,
MOF-derived hierarchical hollow ZnO nanocages with enhanced low-
concentration VOCs gas-sensing performance. Sensors and Actuators B:
Chemical 2016, 225, 158-166.
76.Zhang, L.; Wang, L. L.; Gongle, L.; Feng, X. F.; Luo, M. B.; Luo, F.,
Coumarin-modified microporous-mesoporous Zn-MOF-74 showing ultra-high
uptake capacity and photo-switched storage/release of U(VI) ions. J Hazard
Mater 2016, 311, 30-6.
77.Botas, J. A.; Calleja, G.; Sánchez-Sánchez, M.; Orcajo, M. G., Effect of
Zn/Co ratio in MOF-74 type materials containing exposed metal sites on
their hydrogen adsorption behaviour and on their band gap energy.
International Journal of Hydrogen Energy 2011, 36 (17), 10834-10844.
78.Srinivas, G.; Krungleviciute, V.; Guo, Z.-X.; Yildirim, T., Exceptional CO2
capture in a hierarchically porous carbon with simultaneous high surface
area and pore volume. Energy Environ. Sci. 2014, 7 (1), 335-342.
79.Achmann, S.; Hagen, G.; Kita, J.; Malkowsky, I. M.; Kiener, C.; Moos, R.,
Metal-organic frameworks for sensing applications in the gas phase. Sensors
(Basel) 2009, 9 (3), 1574-89.
80.彭峻彥, 脈衝雷射沉積非極性A面氧化鋅於面氧化鋅於面氧化鋅於 R面藍寶石基板之磊晶基板
之磊晶研. ", 國立交通大學材料科學與工程研究所論文 , 2012.
81.陳南宏, 利用熱氧化法生成氧化亞銅應用於太陽能電池之研製.國立中山大學光電工程學系碩
士論文2013.
82.Wang, R.; King, L. L. H.; Sleight, A. W., Highly conducting transparent
thin films based on zinc oxide. Journal of Materials research 1996, 11.
83.Bdick, R.; Setzer, J. V.; Bjtaylor; Shukla, R., Neurobehavioural effects of
short duration exposures to acetone and methyl ethyl ketone. British
Journal of Industrial Medicine 1989, 46, 111-121.
84.國家毒物研究中心網
http://nehrc.nhri.org.tw/toxic/toxfaq_detail.php?id=1.
85.Li, J.; Fan, H.; Jia, X., Multilayered ZnO Nanosheets with 3D Porous
Architectures Synthesis and Gas Sensing Application. J. Phys. Chem 2010,
114, 14684–14691.