|
1. Suzuki, Eiji, et al. "Carbohydrate metabolism in mutants of the cyanobacterium Synechococcus elongatus PCC 7942 defective in glycogen synthesis." Appl. Environ. Microbiol. 76.10 (2010): 3153-3159. 2. Niederholtmeyer, Henrike, et al. "Engineering cyanobacteria to synthesize and export hydrophilic products." Appl. Environ. Microbiol. 76.11 (2010): 3462-3466. 3. Ducat, Daniel C., et al. "Rerouting carbon flux to enhance photosynthetic productivity." Appl. Environ. Microbiol. 78.8 (2012): 2660-2668. 4. Hays, Stephanie G., et al. "Synthetic photosynthetic consortia define interactions leading to robustness and photoproduction." Journal of biological engineering 11.1 (2017): 4. 5. Eisenberg, Henryk, and Ellen J. Wachtel. "Structural studies of halophilic proteins, ribosomes, and organelles of bacteria adapted to extreme salt concentrations." Annual review of biophysics and biophysical chemistry 16.1 (1987): 69-92. 6. Klähn, Stephan, and Martin Hagemann. "Compatible solute biosynthesis in cyanobacteria." Environmental microbiology 13.3 (2011): 551-562. 7. Empadinhas, Nuno, and Milton S. da Costa. "Osmoadaptation mechanisms in prokaryotes: distribution of compatible solutes." Int Microbiol 11.3 (2008): 151-161. 8. Blumwald, Eduardo, Rolf J. Mehlhorn, and Lester Packer. "Studies of osmoregulation in salt adaptation of cyanobacteria with ESR spin-probe techniques." Proceedings of the National Academy of Sciences 80.9 (1983): 2599-2602. 9. Reed, Robert H., et al. "Carbohydrate accumulation and osmotic stress in cyanobacteria." Microbiology 130.1 (1984): 1-4. 10. Saier Jr, MILTON H., and J. O. N. A. T. H. A. N. Reizer. "Proposed uniform nomenclature for the proteins and protein domains of the bacterial phosphoenolpyruvate: sugar phosphotransferase system." Journal of bacteriology 174.5 (1992): 1433. 11. Jahreis, Knut, et al. "Adaptation of sucrose metabolism in the Escherichia coli wild-type strain EC3132." Journal of bacteriology 184.19 (2002): 5307-5316. 12. Sabri, Suriana, Lars K. Nielsen, and Claudia E. Vickers. "Molecular control of sucrose utilization in Escherichia coli W, an efficient sucrose-utilizing strain." Appl. Environ. Microbiol. 79.2 (2013): 478-487. 13. Kim, Jong Rae, et al. "Construction of homologous and heterologous synthetic sucrose utilizing modules and their application for carotenoid production in recombinant Escherichia coli." Bioresource technology 130 (2013): 288-295. 14. Löwe, Hannes, et al. "Metabolic engineering to expand the substrate spectrum of Pseudomonas putida toward sucrose." Microbiologyopen 6.4 (2017): e00473. 15. Kovacevic, Vujadin, and Justus Wesseler. "Cost-effectiveness analysis of algae energy production in the EU." Energy Policy 38.10 (2010): 5749-5757. 16. Vadyvaloo, Viveka, et al. "Conservation of residues involved in sugar/H+ symport by the sucrose permease of Escherichia coli relative to lactose permease." Journal of molecular biology 358.4 (2006): 1051-1059. 17. Pinkart, Holly C., et al. "Cell envelope changes in solvent-tolerant and solvent-sensitive Pseudomonas putida strains following exposure to o-xylene." Appl. Environ. Microbiol. 62.3 (1996): 1129-1132. 18. Hosseini, Rohola, et al. "Regulation of solvent tolerance in P seudomonas putida S12 mediated by mobile elements." Microbial biotechnology 10.6 (2017): 1558-1568. 19. Isken, Sonja, and Jan AM de Bont. "Bacteria tolerant to organic solvents." Extremophiles 2.3 (1998): 229-238. 20. Kieboom, Jasper, et al. "Identification and molecular characterization of an efflux pump involved in Pseudomonas putida S12 solvent tolerance." Journal of Biological Chemistry 273.1 (1998): 85-91. 21. Heipieper, H. J., and J. A. De Bont. "Adaptation of Pseudomonas putida S12 to ethanol and toluene at the level of fatty acid composition of membranes." Appl. Environ. Microbiol. 60.12 (1994): 4440-4444. 22. Wery, Jan, et al. "An insertion sequence prepares Pseudomonas putida S12 for severe solvent stress." Journal of Biological Chemistry 276.8 (2001): 5700-5706. 23. Kieboom, Jasper, et al. "Active Efflux of Organic Solvents byPseudomonas putida S12 Is Induced by Solvents." Journal of Bacteriology 180.24 (1998): 6769-6772. 24. Van den Oever, Martien, et al. Bio-based and biodegradable plastics: facts and figures: focus on food packaging in the Netherlands. No. 1722. Wageningen Food & Biobased Research, 2017. 25. Pang, K., R. Kotek, and A. Tonelli. "Review of conventional and novel polymerization processes for polyesters." Progress in polymer science 31.11 (2006): 1009-1037. 26. Sousa, Andreia F., et al. "New copolyesters derived from terephthalic and 2, 5-furandicarboxylic acids: A step forward in the development of biobased polyesters." Polymer 54.2 (2013): 513-519. 27. Zhang, Junhua, et al. "Advances in catalytic production of bio-based polyester monomer 2, 5-furandicarboxylic acid derived from lignocellulosic biomass." Carbohydrate polymers 130 (2015): 420-428. 28. Boisen, A., et al. "Process integration for the conversion of glucose to 2, 5-furandicarboxylic acid." Chemical engineering research and design 87.9 (2009): 1318-1327. 29. Hanke, Paul D. "Enzymatic oxidation of hydroxymethylfurfural." U.S. Patent No. 8,183,020. 22 May 2012. 30. Koopman, Frank, et al. "Identification and characterization of the furfural and 5-(hydroxymethyl) furfural degradation pathways of Cupriavidus basilensis HMF14." Proceedings of the National Academy of Sciences 107.11 (2010): 4919-4924. 31. Koopman, Frank, et al. "Efficient whole-cell biotransformation of 5-(hydroxymethyl) furfural into FDCA, 2, 5-furandicarboxylic acid." Bioresource technology 101.16 (2010): 6291-6296. 32. Wierckx, Nick, et al. "Microbial degradation of furanic compounds: biochemistry, genetics, and impact." Applied microbiology and biotechnology 92.6 (2011): 1095-1105. 33. Chungjatupornchai, Wipa, and Sirirat Fa-Aroonsawat. "Biodegradation of organophosphate pesticide using recombinant Cyanobacteria with surface-and intracellular-expressed organophosphorus hydrolase." Journal of microbiology and biotechnology 18.5 (2008): 946-951. 34. Chungjatupornchai, Wipa, and Sirirat Fa-Aroonsawat. "Translocation of green fluorescent protein to cyanobacterial periplasm using ice nucleation protein." The Journal of Microbiology 47.2 (2009): 187-192. 35. Umeda, Hiroyuki, Hirofumi Aiba, and Takeshi Mizuno. "somA, a novel gene that encodes a major outer-membrane protein of Synechococcus sp. PCC 7942." Microbiology 142.8 (1996): 2121-2128. 36. Chungjatupornchai, Wipa, Attapon Kamlangdee, and Sirirat Fa-Aroonsawat. "Display of organophosphorus hydrolase on the cyanobacterial cell surface using Synechococcus outer membrane protein A as an anchoring motif." Applied biochemistry and biotechnology 164.7 (2011): 1048-1057. 37. Fedeson, Derek T., and Daniel C. Ducat. "Cyanobacterial surface display system mediates engineered interspecies and abiotic binding." ACS synthetic biology 6.2 (2016): 367-374. 38. Gaurb Karki. 2017. “Bacterial cell wall : Structure, composition and types.” Online biology notes, July 25. https://www.onlinebiologynotes.com/bacterial-cell-wall-structure-composition-types/. 39. Wolber, Paul K. "Bacterial ice nucleation." Advances in microbial physiology. Vol. 34. Academic Press, 1993. 203-237. 40. Sarhan, Mohammed AA. "Ice nucleation protein as a bacterial surface display protein." Archives of Biological Sciences 63.4 (2011): 943-948. 41. Wu, Mei Li, Chun Yung Tsai, and Tsai Hsia Chen. "Cell surface display of Chi92 on Escherichia coli using ice nucleation protein for improved catalytic and antifungal activity." FEMS microbiology letters 256.1 (2006): 119-125. 42. Shimazu, Mark, Ashok Mulchandani, and Wilfred Chen. "Simultaneous degradation of organophosphorus pesticides and p‐nitrophenol by a genetically engineered Moraxella sp. with surface‐expressed organophosphorus hydrolase." Biotechnology and Bioengineering 76.4 (2001): 318-324. 43. Weiss, Taylor L., Eric J. Young, and Daniel C. Ducat. "A synthetic, light-driven consortium of cyanobacteria and heterotrophic bacteria enables stable polyhydroxybutyrate production." Metabolic engineering 44 (2017): 236-245. 44. Fedeson, Derek T., et al. "Biotransformation of 2, 4-dinitrotoluene in a phototrophic co-culture of engineered Synechococcus elongatus and Pseudomonas putida." bioRxiv (2018): 404988. 45. Löwe, Hannes, et al. "Photoautotrophic production of polyhydroxyalkanoates in a synthetic mixed culture of Synechococcus elongatus cscB and Pseudomonas putida cscAB." Biotechnology for biofuels 10.1 (2017): 190. 46. Weng, Zhigang, et al. "Structure-function analysis of SH3 domains: SH3 binding specificity altered by single amino acid substitutions." Molecular and cellular biology 15.10 (1995): 5627-5634. 47. Cell signaling technology. 2019. “SH3 Protein Domain.” https://www.cellsignal.com/contents/resources-protein-domains-interactions/sh3-protein-domain/domains-sh3. 48. Zavřel, Tomáš, Maria A. Sinetova, and Jan Červený. "Measurement of chlorophyll a and carotenoids concentration in cyanobacteria." Journal of Biotechnology (2012).
|