跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.59) 您好!臺灣時間:2025/10/16 18:41
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林子榆
研究生(外文):Tzu-Yu Lin
論文名稱:以光合菌與異營菌共培養系統生產高價值之FDCA
論文名稱(外文):Production of high-value FDCA (2,5-furandicarboxylic acid) in a synthetic mixed culture of cyanobacteria and heterotrophic bacteria
指導教授:蔡伸隆
指導教授(外文):Shen-Long Tsai
口試委員:蔡伸隆李振綱沈若樸蘭宜錚
口試委員(外文):Shen-Long TsaiCheng-Kang LeeRoa-Pu ShenEthan I. Lan
口試日期:2019-07-18
學位類別:碩士
校院名稱:國立臺灣科技大學
系所名稱:化學工程系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:99
中文關鍵詞:戀臭假單胞菌細長聚球藍細菌共培養羥甲基糠醛25-呋喃二甲酸
外文關鍵詞:Pseudomonas putidaSynechococcus elongatusCo-cultureHydroxymethylfurfural25-Furandicarboxylic acid
相關次數:
  • 被引用被引用:0
  • 點閱點閱:341
  • 評分評分:
  • 下載下載:13
  • 收藏至我的研究室書目清單書目收藏:0
近幾年來,面臨石化燃油耗竭及污染的問題,人們致力於尋找合適的替代能源,而當可再生能源成為一項新興議題後,微藻、藍綠菌等自營生物便逐漸受到關注,因其能在僅有光照及二氧化碳的條件下生產碳水化合物,然而,因產量有限與回收成本等缺點使整體程序不具經濟效益,因此,若自營菌出口的碳水化合物能作為碳源,直接提供給具有生產增值產品的異營菌,建立一具經濟價值的共培養系統,問題將被克服。
本研究以自營菌S. elongatus PCC7942及異營菌P. putida S12為宿主細胞,透過基因工程技術,使異營菌能以自營菌出口的蔗糖為唯一碳源,轉化HMF並生產高價值產品FDCA,並從中探討培養液酸鹼值、異營菌濃度及菌株透過表面佈置相互連接對FDCA產率之影響。
首先,成功將目標蛋白cscB建立於S. elongatus PCC7942中,且培養七天所得之最大蔗糖濃度為0.54g/L,另外cscA與HMFH蛋白也成功建立於P. putida S12中,活性結果顯示菌株能成功代謝蔗糖並轉化HMF,且反應效率與其以單醣為碳源時幾乎相同。接著,成功建立表面佈置菌株,使S. elongatus PCC7942與P. putida S12額外展示融合蛋白SomA-3(G4S)-SH3 ligand及INP-YFP-SH3 domain。
最後,利用上述工程菌株建立一生產高價值FDCA的共培養系統,結果顯示,當培養液酸鹼值調整至接近中性,同時提高異營菌的起始反應濃度,能使FDCA產率從39.6%增加到52%,且發現異營菌的存在能促進光合菌生長,而當菌株進行表面佈置共培養所測得的FDCA產率可再提高至59.5%。
本研究成功建立生產高價值產品FDCA的共培養系統,且表面佈置技術在共培養系統的應用中具有其潛力。
It becomes a major challenge for people to find suitable substitutes for the fossil resources in recent years. Autotrophs such as cyanobacteria and microalgae have been discussed for the ability to fix CO2 through photosynthetic metabolism and produce carbohydrates when renewable energy becomes an emerging issue. However, due to the limited production and the cost of product recovery, it seems like that if the carbohydrate can be used directly as a carbon source to support the growth of heterotrophs with production of high-value products, the overall procedure will be more economical. In this study, sucrose was exported from engineered S. elongatus PCC7942 and was utilized by engineered P. putida S12 that can oxidize HMF to form high-value product, FDCA. To this end, the sucrose transporter cscB was successfully expressed in S. elongatus PCC7942, and the maximum concentration of sucrose that accumulated in the medium was 0.54g/L in 7 days. In addition, cscA and HMFH were also successfully expressed in P. putida S12 and showed almost the same reaction efficiency as the unmodified one. In addition, the two strains were further modified with the fusion proteins SomA-3(G4S)-SH3 ligand and INP-YFP-SH3 domain on cell surface respectively. The effect of pH, cell density and cell attachment through surface modified strains on FDCA production was discussed. Results showed that the co-culture when the pH value of the culture medium was adjusted to neutral with the increased cell density of heterotrophs, the FDCA yield can increased from 39.6. % to 52%. The presence of the heterotrophs was found to promote the growth of autotrophs. In the surface modified co-culture system, the FDCA yield could be further increased to 59.5%. This study successfully established a co-culture system for the production of high-value product FDCA, and the surface display technology has its potential in the application of co-culture systems.
第一章 緒論
1.1 研究背景
1.2 研究動機與目的
1.3 研究內容
第二章 文獻回顧
2.1 光合菌醣類生產機制
2.2 蔗糖代謝蛋白
2.3 Pseudomonas putida S12
2.4 HMF生物降解路徑
2.5 光合菌Surface display
2.6 INP蛋白
2.7 蛋白質交互作用
第三章 實驗材料與方法
3.1 菌種與質體
3.2 實驗藥品
3.3 實驗器材
3.4 實驗方法
第四章 結果與討論
4.1 質體建構Plasmid construction
4.2 戀臭假單胞菌之蛋白表達與活性測試
4.3 光合菌之蛋白表達與活性測試
4.4 共培養實驗
第五章 結論
參考文獻
1. Suzuki, Eiji, et al. "Carbohydrate metabolism in mutants of the cyanobacterium Synechococcus elongatus PCC 7942 defective in glycogen synthesis." Appl. Environ. Microbiol. 76.10 (2010): 3153-3159.
2. Niederholtmeyer, Henrike, et al. "Engineering cyanobacteria to synthesize and export hydrophilic products." Appl. Environ. Microbiol. 76.11 (2010): 3462-3466.
3. Ducat, Daniel C., et al. "Rerouting carbon flux to enhance photosynthetic productivity." Appl. Environ. Microbiol. 78.8 (2012): 2660-2668.
4. Hays, Stephanie G., et al. "Synthetic photosynthetic consortia define interactions leading to robustness and photoproduction." Journal of biological engineering 11.1 (2017): 4.
5. Eisenberg, Henryk, and Ellen J. Wachtel. "Structural studies of halophilic proteins, ribosomes, and organelles of bacteria adapted to extreme salt concentrations." Annual review of biophysics and biophysical chemistry 16.1 (1987): 69-92.
6. Klähn, Stephan, and Martin Hagemann. "Compatible solute biosynthesis in cyanobacteria." Environmental microbiology 13.3 (2011): 551-562.
7. Empadinhas, Nuno, and Milton S. da Costa. "Osmoadaptation mechanisms in prokaryotes: distribution of compatible solutes." Int Microbiol 11.3 (2008): 151-161.
8. Blumwald, Eduardo, Rolf J. Mehlhorn, and Lester Packer. "Studies of osmoregulation in salt adaptation of cyanobacteria with ESR spin-probe techniques." Proceedings of the National Academy of Sciences 80.9 (1983): 2599-2602.
9. Reed, Robert H., et al. "Carbohydrate accumulation and osmotic stress in cyanobacteria." Microbiology 130.1 (1984): 1-4.
10. Saier Jr, MILTON H., and J. O. N. A. T. H. A. N. Reizer. "Proposed uniform nomenclature for the proteins and protein domains of the bacterial phosphoenolpyruvate: sugar phosphotransferase system." Journal of bacteriology 174.5 (1992): 1433.
11. Jahreis, Knut, et al. "Adaptation of sucrose metabolism in the Escherichia coli wild-type strain EC3132." Journal of bacteriology 184.19 (2002): 5307-5316.
12. Sabri, Suriana, Lars K. Nielsen, and Claudia E. Vickers. "Molecular control of sucrose utilization in Escherichia coli W, an efficient sucrose-utilizing strain." Appl. Environ. Microbiol. 79.2 (2013): 478-487.
13. Kim, Jong Rae, et al. "Construction of homologous and heterologous synthetic sucrose utilizing modules and their application for carotenoid production in recombinant Escherichia coli." Bioresource technology 130 (2013): 288-295.
14. Löwe, Hannes, et al. "Metabolic engineering to expand the substrate spectrum of Pseudomonas putida toward sucrose." Microbiologyopen 6.4 (2017): e00473.
15. Kovacevic, Vujadin, and Justus Wesseler. "Cost-effectiveness analysis of algae energy production in the EU." Energy Policy 38.10 (2010): 5749-5757.
16. Vadyvaloo, Viveka, et al. "Conservation of residues involved in sugar/H+ symport by the sucrose permease of Escherichia coli relative to lactose permease." Journal of molecular biology 358.4 (2006): 1051-1059.
17. Pinkart, Holly C., et al. "Cell envelope changes in solvent-tolerant and solvent-sensitive Pseudomonas putida strains following exposure to o-xylene." Appl. Environ. Microbiol. 62.3 (1996): 1129-1132.
18. Hosseini, Rohola, et al. "Regulation of solvent tolerance in P seudomonas putida S12 mediated by mobile elements." Microbial biotechnology 10.6 (2017): 1558-1568.
19. Isken, Sonja, and Jan AM de Bont. "Bacteria tolerant to organic solvents." Extremophiles 2.3 (1998): 229-238.
20. Kieboom, Jasper, et al. "Identification and molecular characterization of an efflux pump involved in Pseudomonas putida S12 solvent tolerance." Journal of Biological Chemistry 273.1 (1998): 85-91.
21. Heipieper, H. J., and J. A. De Bont. "Adaptation of Pseudomonas putida S12 to ethanol and toluene at the level of fatty acid composition of membranes." Appl. Environ. Microbiol. 60.12 (1994): 4440-4444.
22. Wery, Jan, et al. "An insertion sequence prepares Pseudomonas putida S12 for severe solvent stress." Journal of Biological Chemistry 276.8 (2001): 5700-5706.
23. Kieboom, Jasper, et al. "Active Efflux of Organic Solvents byPseudomonas putida S12 Is Induced by Solvents." Journal of Bacteriology 180.24 (1998): 6769-6772.
24. Van den Oever, Martien, et al. Bio-based and biodegradable plastics: facts and figures: focus on food packaging in the Netherlands. No. 1722. Wageningen Food & Biobased Research, 2017.
25. Pang, K., R. Kotek, and A. Tonelli. "Review of conventional and novel polymerization processes for polyesters." Progress in polymer science 31.11 (2006): 1009-1037.
26. Sousa, Andreia F., et al. "New copolyesters derived from terephthalic and 2, 5-furandicarboxylic acids: A step forward in the development of biobased polyesters." Polymer 54.2 (2013): 513-519.
27. Zhang, Junhua, et al. "Advances in catalytic production of bio-based polyester monomer 2, 5-furandicarboxylic acid derived from lignocellulosic biomass." Carbohydrate polymers 130 (2015): 420-428.
28. Boisen, A., et al. "Process integration for the conversion of glucose to 2, 5-furandicarboxylic acid." Chemical engineering research and design 87.9 (2009): 1318-1327.
29. Hanke, Paul D. "Enzymatic oxidation of hydroxymethylfurfural." U.S. Patent No. 8,183,020. 22 May 2012.
30. Koopman, Frank, et al. "Identification and characterization of the furfural and 5-(hydroxymethyl) furfural degradation pathways of Cupriavidus basilensis HMF14." Proceedings of the National Academy of Sciences 107.11 (2010): 4919-4924.
31. Koopman, Frank, et al. "Efficient whole-cell biotransformation of 5-(hydroxymethyl) furfural into FDCA, 2, 5-furandicarboxylic acid." Bioresource technology 101.16 (2010): 6291-6296.
32. Wierckx, Nick, et al. "Microbial degradation of furanic compounds: biochemistry, genetics, and impact." Applied microbiology and biotechnology 92.6 (2011): 1095-1105.
33. Chungjatupornchai, Wipa, and Sirirat Fa-Aroonsawat. "Biodegradation of organophosphate pesticide using recombinant Cyanobacteria with surface-and intracellular-expressed organophosphorus hydrolase." Journal of microbiology and biotechnology 18.5 (2008): 946-951.
34. Chungjatupornchai, Wipa, and Sirirat Fa-Aroonsawat. "Translocation of green fluorescent protein to cyanobacterial periplasm using ice nucleation protein." The Journal of Microbiology 47.2 (2009): 187-192.
35. Umeda, Hiroyuki, Hirofumi Aiba, and Takeshi Mizuno. "somA, a novel gene that encodes a major outer-membrane protein of Synechococcus sp. PCC 7942." Microbiology 142.8 (1996): 2121-2128.
36. Chungjatupornchai, Wipa, Attapon Kamlangdee, and Sirirat Fa-Aroonsawat. "Display of organophosphorus hydrolase on the cyanobacterial cell surface using Synechococcus outer membrane protein A as an anchoring motif." Applied biochemistry and biotechnology 164.7 (2011): 1048-1057.
37. Fedeson, Derek T., and Daniel C. Ducat. "Cyanobacterial surface display system mediates engineered interspecies and abiotic binding." ACS synthetic biology 6.2 (2016): 367-374.
38. Gaurb Karki. 2017. “Bacterial cell wall : Structure, composition and types.” Online biology notes, July 25. https://www.onlinebiologynotes.com/bacterial-cell-wall-structure-composition-types/.
39. Wolber, Paul K. "Bacterial ice nucleation." Advances in microbial physiology. Vol. 34. Academic Press, 1993. 203-237.
40. Sarhan, Mohammed AA. "Ice nucleation protein as a bacterial surface display protein." Archives of Biological Sciences 63.4 (2011): 943-948.
41. Wu, Mei Li, Chun Yung Tsai, and Tsai Hsia Chen. "Cell surface display of Chi92 on Escherichia coli using ice nucleation protein for improved catalytic and antifungal activity." FEMS microbiology letters 256.1 (2006): 119-125.
42. Shimazu, Mark, Ashok Mulchandani, and Wilfred Chen. "Simultaneous degradation of organophosphorus pesticides and p‐nitrophenol by a genetically engineered Moraxella sp. with surface‐expressed organophosphorus hydrolase." Biotechnology and Bioengineering 76.4 (2001): 318-324.
43. Weiss, Taylor L., Eric J. Young, and Daniel C. Ducat. "A synthetic, light-driven consortium of cyanobacteria and heterotrophic bacteria enables stable polyhydroxybutyrate production." Metabolic engineering 44 (2017): 236-245.
44. Fedeson, Derek T., et al. "Biotransformation of 2, 4-dinitrotoluene in a phototrophic co-culture of engineered Synechococcus elongatus and Pseudomonas putida." bioRxiv (2018): 404988.
45. Löwe, Hannes, et al. "Photoautotrophic production of polyhydroxyalkanoates in a synthetic mixed culture of Synechococcus elongatus cscB and Pseudomonas putida cscAB." Biotechnology for biofuels 10.1 (2017): 190.
46. Weng, Zhigang, et al. "Structure-function analysis of SH3 domains: SH3 binding specificity altered by single amino acid substitutions." Molecular and cellular biology 15.10 (1995): 5627-5634.
47. Cell signaling technology. 2019. “SH3 Protein Domain.” https://www.cellsignal.com/contents/resources-protein-domains-interactions/sh3-protein-domain/domains-sh3.
48. Zavřel, Tomáš, Maria A. Sinetova, and Jan Červený. "Measurement of chlorophyll a and carotenoids concentration in cyanobacteria." Journal of Biotechnology (2012).
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top