|
[1]A.V. Oppenheim and R. W. Schafer, Discrete-time Signal Processing, 3rd ed. Prentice-Hall, 2009. [2]S. K. Mitra, Digital signal processing: a computer-based approach., 2nd ed. McGraw-Hill, 2001. [3]C. K. Ahn, “Some new results on the stability of direct-form digital filters with finite wordlength nonlinearities,” Signal Processing, vol. 108, pp. 549–557, 2015. [4]“Digital Filter.” [Online]. Available: https://en.wikipedia.org/wiki/Digital_filter. [5]“Digital Filter.” . [6]R. E. Kalman, “A New Approach to Linear Filtering and Prediction Problems,” J. Basic Eng., vol. 82, no. 1, p. 35, 1960. [7]M. Gevers and G. Li, Parametrizations in Control, Estimation and Filtering Problems: Accuracy Aspects. Springer-Verlag, 1993. [8]C. Xiao, “Improved $L_2$-sensitivity for state-space digital system,” IEEE Trans. Signal Process., vol. 45, no. 4, pp. 837–840, Apr.1997. [9]W.-Y. Yan and J. B. Moore, “On $L^2$-sensitivity minimization of linear state-space systems,” IEEE Trans. Circuits Syst. I Fundam. Theory Appl., vol. 39, no. 8, pp. 641–648, 1992. [10]G. Li, “On frequency weighted minimal $L_2$ sensitivity of 2-D systems using Fornasini-Marchesini LSS model,” IEEE Trans. Circuits Syst. I Fundam. Theory Appl., vol. 44, no. 7, pp. 642–646, Jul.1997. [11]G. Li, “Two-dimensional system optimal realizations with $L_2$-sensitivity minimization.,” IEEE Trans. Signal Process., vol. 46, no. 3, pp. 809–813, 1998. [12]T. Hinamoto, S. Yokoyama, T. Inoue, W. Zeng, and W.-S. Lu, “Analysis and minimization of $L_2$-sensitivity for linear systems and two-dimensional state-space filters using general controllability and observability Gramians,” IEEE Trans. Circuits Syst. I Fundam. Theory Appl., vol. 49, no. 9, pp. 1279–1289, Sep.2002. [13]T. Hinamoto, H. Ohnishi, and W.-S. Lu, “Minimization of $L_2$-sensitivity for state-space digital filters subject to $L_2$-dynamic-range scaling constraints.,” IEEE Trans. Circuits Syst. II Express Briefs, vol. 52, no. 10, pp. 641–645, Oct.2005. [14]T. Hinamoto, K. Iwata, and W.-S. Lu, “$L_2$-sensitivity minimization of one- and two-dimensional state-space digital filters subject to $L_2$-scaling constraints,” IEEE Trans. Signal Process., vol. 54, no. 5, pp. 1804–1812, May2006. [15]T. Hinamoto, T. Oumi, O. I. Omoifo, and W.-S. Lu, “Minimization of Frequency-Weighted $l_2$-Sensitivity Subject to $l_2$-Scaling Constraints for Two-Dimensional State-Space Digital Filters.,” IEEE Trans. Signal Process., vol. 56, no. 10, pp. 5157–5168, Oct.2008. [16]S. Yamaki, M. Abe, and M. Kawamata, “A closed form solution to $L_2$-sensitivity minimization of second-order state-space digital filters subject to $L_2$-scaling constraints.,” IEICE Trans. Fundam. Electron. Commun. Comput. Sci., vol. E91–A, no. 7, pp. 1697–1705, 2008. [17]T. Hilaire, “New $L_2$-dynamic-range-scaling constraints for low parametric sensitivity realizations,” Eur. Signal Process. Conf., no. Eusipco, pp. 988–992, 2009. [18]T. Hilaire, “Low-Parametric-Sensitivity Realizations With Relaxed $L_{2}$ Dynamic-Range-Scaling Constraints,” IEEE Trans. Circuits Syst. II Express Briefs, vol. 56, no. 7, pp. 590–594, Jul.2009. [19]S. YAMAKI, M. ABE, and M. KAWAMATA, “Closed Form Solutions to $L_2$-Sensitivity Minimization Subject to $L_2$-Scaling Constraints for Second-Order State-Space Digital Filters with Real Poles,” IEICE Trans. Fundam. Electron. Commun. Comput. Sci., vol. E93–A, no. 2, pp. 476–487, 2010. [20]C. K. Ahn, “$l_{2} - l_{\infty}$ Elimination of Overflow Oscillations in 2-D Digital Filters Described by Roesser Model With External Interference,” IEEE Trans. Circuits Syst. II Express Briefs, vol. 60, no. 6, pp. 361–365, Jun.2013. [21]C. K. Ahn, “$l_{2}-l_{\infty} Suppression of Limit Cycles in Interfered Two-Dimensional Digital Filters: A Fornasini-Marchesini Model Case,” IEEE Trans. Circuits Syst. II Express Briefs, vol. 61, no. 8, pp. 614–618, Aug.2014. [22]G. Li, “On pole and zero sensitivity of linear systems.,” IEEE Trans. Circuits Syst. I Fundam. Theory Appl., vol. 44, no. 7, pp. 583–590, 1997. [23]G. Li, “On the structure of digital controllers with finite word length consideration.,” IEEE Trans. Automat. Contr., vol. 43, no. 5, pp. 689–693, May1998. [24]R. S. H. Istepanian and J. F. Whidborne, Digital Controller implementation and fragility. Springer-Verlag London Ltd., 2001. [25]J. F. Whidborne, R. S. H. Istepanian, and J. Wu, “Reduction of controller fragility by pole sensitivity minimization.,” IEEE Trans. Autom. Contr., vol. 46, no. 2, pp. 320–325, 2001. [26]J. Wu, S. Chen, G. Li, R. S. H. Istepanian, and J. Chu, “An improved closed-loop stability related measure for finite-precision digital controller realizations.,” IEEE Trans. Automat. Contr., vol. 46, no. 7, pp. 1162–1166, Jul.2001. [27]Jun Wu, S. Chen, J. F. Whidborne, and J. Chu, “A unified closed-loop stability measure for finite-precision digital controller realizations implemented in different representation schemes,” IEEE Trans. Automat. Contr., vol. 48, no. 5, pp. 816–822, May2003. [28]J. Wu, J. Chu, G. Li, and S. Chen, “Constructing sparse realisations of finite-precision digital controllers based on a closed-loop stability related measure.,” IEE Proc. - Control Theory Appl., vol. 150, no. 1, pp. 61–68, Jan.2003. [29]H.-J. Ko and W.-S. Yu, “Guaranteed Robust Stability of the Closed-Loop Systems for Digital Controller Implementations via Orthogonal Hermitian Transform,” IEEE Trans. Syst. Man Cybern. Part B, vol. 34, no. 4, pp. 1923–1932, Aug.2004. [30]H.-J. Ko and W.-S. Yu, “Improved eigenvalue sensitivity for finite-precision digital controller realisations via orthogonal Hermitian transform,” IEE Proc. - Control Theory Appl., vol. 150, no. 4, pp. 365–375, Jul.2003. [31]H.-J. Ko, “Stability analysis of digital filters under finite word length effects via normal-form transformation.,” Asian J. Heal. Inf. Sci., vol. 1, no. 1, pp. 112–121, 2006. [32]H.-J. Ko and W.-S.Yu, “A novel approach to stability analysis of fixed-point digital filters under finite word length effects,” in 2008 SICE Annual Conference, 2008, pp. 2388–2392. [33]H.-J. Ko, “The sparse normal-form realization with minimal zero sensitivity measure for finite word-length IIR digital filter implementations,” Submitt. to IEEE Trans. Signal Process., 2015. [34]T. Hinamoto, A. Doi, and W.-S. Lu, “Minimization of Weighted Pole and Zero Sensitivity for State-Space Digital Filters,” IEEE Trans. Circuits Syst. I Regul. Pap., vol. 63, no. 1, pp. 103–113, Jan.2016. [35]G. Amit and U. Shaked, “Small roundoff noise realization of fixed-point digital filters and controllers.,” IEEE Trans. Acoust., vol. 36, no. 6, pp. 880–891, Jun.1988. [36]C. Barnes and A. Fam, “Minimum norm recursive digital filters that are free of overflow limit cycles,” IEEE Trans. Circuits Syst., vol. 24, no. 10, pp. 569–574, Oct.1977. [37]X. He, G. Li, C. Wan, and T. Wu, “On normal realizations of digital filters with minimum roundoff noise gain,” Signal Processing, vol. 89, no. 2, pp. 226–231, Feb.2009. [38]G. Li, L. Meng, Z. Xu, and J. Hua, “A novel digital filter structure with minimum roundoff noise.,” Digit. Signal Process., vol. 20, no. 4, pp. 1000–1009, Jul.2010. [39]R. E. SKELTON and D. A. WAGIE, “Minimal root sensitivity in linear systems,” J. Guid. Control. Dyn., vol. 7, no. 5, pp. 570–574, Sep.1984. [40]D. Williamson, “Roundoff noise minimization and pole-zero sensitivity in fixed-point digital filters using residue feedback,” IEEE Trans. Acoust., vol. 34, no. 5, pp. 1210–1220, Oct.1986. [41]B.-S. Chen, H.-C. Lee, and C.-F. Wu, “Pareto Optimal Filter Design for Nonlinear Stochastic Fuzzy Systems via Multiobjective $H_2/H_\infty$ Otimization,” IEEE Trans. Fuzzy Syst., vol. 23, no. 2, pp. 387–399, Apr.2015.
|