跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.14) 您好!臺灣時間:2025/12/27 11:47
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:劉展銓
研究生(外文):LIU,CHAN-CHUAN
論文名稱:使用改良式微分進化演算法設計具低軌跡靈敏度不確定TS模糊系統之強健-最佳靜態回授控制器
論文名稱(外文):Design of Robust-Optimal Static Output Feedback Controllers with Low Trajectory Sensitivity for Uncertain TS Fuzzy Systems Using Improved Differential Evolution Algorithm
指導教授:陳信宏陳信宏引用關係
指導教授(外文):CHEN, SHINN-HORNG
口試委員:陳正義鄭良安陳信宏
口試委員(外文):CHEN, CHENG-YIZHENG, LIANG-ANCHEN, SHINN-HORNG
口試日期:2017-07-20
學位類別:碩士
校院名稱:國立高雄應用科技大學
系所名稱:機械工程系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:49
中文關鍵詞:強健穩定性二次有限範圍最佳控制靜態輸出回授控制元素參數不確定量
外文關鍵詞:Robust StableQuadratic-Finite-Horizon-Optimal ControlStatic Output Feedback ControlElemental Parametric Uncertainties
相關次數:
  • 被引用被引用:0
  • 點閱點閱:196
  • 評分評分:
  • 下載下載:8
  • 收藏至我的研究室書目清單書目收藏:0
本篇論文結合強健穩定條件,正交函數法(OFA),田口滑動微分進化演算法(TSBDEA),使得設計具低軌跡靈敏度強健穩定二次最佳有限範圍靜態輸出回授平行分散補償(PDC)控制器,例如(i) 例如 Takagi-Sugeno (TS)模糊模型系統在參數不確定性影響下的強健穩定,以及(ii)二次有限時間積分性能指標能為最小值。本論文中提出線性矩陣不等式(LMIs)做為強健穩定性分析條件。使用正交函數法及強健穩定條件,TS模糊動態系統之強健穩定二次最佳有限範圍靜態輸出回授平行分散補償控制器設計問題可以轉換成以代數型式方程式的限制條件的靜態最佳化問題。對於靜態最佳化設計的計算問題,利用田口滑動微分進化演算法(TSBDEA)來搜尋在模糊模型系統在參數不確定性影響下具低軌跡靈敏度之強健穩定二次有限範圍最佳靜態輸出回授平行分散補償控制器。最後,用一個例子具低軌跡靈敏度非線性不確定周式電路之強健二次有限範圍最佳靜態輸出回授平行分散補償控制器來說明提出整合方法的應用性。
In this paper, an integrative method, which combines the robust stabilizability condition, the orthogonal-functions approach (OFA), and the Taguchi-sliding-based differential evolution algorithm (TSBDEA), is presented to design the robust-stable and quadratic-finite-horizon-optimal static output feedback parallel-distributed- compensation (PDC) controller with low trajectory sensitivity such that (i) the Takagi-Sugeno (TS) fuzzy control system with elemental parametric uncertainties can be robustly stabilized, and (ii) a quadratic finite-time integral performance index including a quadratic sensitivity term for nominal TS fuzzy control system can be minimized. The robust stabilizability condition is proposed in terms of linear matrix inequalities (LMIs). By using the OFA and the robust stabilizability condition, the robust-stable and quadratic-finite-horizon-optimal static output feedback PDC control problem for the TS fuzzy dynamic systems is transformed into a static constrained-optimization problem represented by the algebraic equations with constraint of LMI-based robust stabilizability condition; thus greatly simplifying the optimal static output feedback PDC controller design problem. Then, for the static constrained-optimization problem, the TSBDEA is applied to find the robust-stable and quadratic-finite-horizon-optimal static output feedback PDC controllers with low trajectory sensitivity of the TS fuzzy control systems with elemental parametric uncertainties. A design example of robust-stable and quadratic-finite-horizon-optimal static output feedback PDC controllers with low trajectory sensitivity for uncertain nonlinear Chua circuit is given to demonstrate the applicability of the proposed integrative approach.
中文摘要…………………………………………………………………………………I
英文摘要…………………………………………………………………………………II
誌謝…………………………………………………………………………………………III
目錄…………………………………………………………………………………………IV
圖目錄………………………………………………………………………………………VI
表目錄………………………………………………………………………………………VII

第一章 緒論 1
1.1 研究動機與文獻 1
1.2 論文架構 3
第二章 強健穩定性分析 5
2.1 前言 5
2.2 強健穩定條件推導 5
2.3 強健穩定定理 9
第三章 強健最佳控制器設計 13
3.1 前言 13
3.2 具軌跡靈敏度之T-S模糊模型為基礎的動態系統 13
3.3 二次有限時間積分性能指標 14
3.4 強健最佳回授控制器設計(OFA) 15
第四章 田口滑動微分進化演算法 19
4.1 前言 19
4.2 田口實驗設計方法基本概念 19
4.3 微分進化演算法 24
4.4 田口滑動微分進化演算法(TSBEDA) 27
第五章 案例模擬結果與分析 31
5.1 前言 31
第六章 結論 42
6.1 總結 42
6.2 未來展望 43


[1] Tanaka, K. and M. Sugeno,, 1992, “Stability Analysis and Design of fuzzy
Control Systems”, Fuzzy Sets and Systems, Vol. 45, pp. 135–156.
[2] Babuska, R., 1998, Fuzzy Modeling for Control, Kluwer, Boston.
[3] Farinwata, S. S., D. Filev and R. Langari, 2000, Fuzzy Control: Synthesis
and Analysis, John Wiley and Sons, Chichester.
[4] Tanaka, K. and H. O. Wang, 2001, Fuzzy Control Systems Design and
Analysis: A Linear Matrix Inequality Approach, John Wiley and Sons, New
York.
[5] Tong, S. C., T. Wang, Y. P. Wang and J. T. Tang, 2004, Design and Stability
Analysis of Fuzzy Control Systems, Science Press, Beijing.
[6] Chen, S. S., Y. C. Chang, S. F. Su, S. L. Chung, and T. T. Lee, 2005,
“Robust Static Output-Feedback Stabilization for Nonlinear Discrete-Time
Systems with Time Delay Via Fuzzy Control Approach”, IEEE Trans. on
Fuzzy Systems, Vol. 13, pp. 263-272.
[7] Xiu, Z. H. and G. Ren, 2005, ‘Stability Analysis and Systematic Design of
Takagi-Sugeno Fuzzy Control Systems”, Fuzzy Sets and Systems, Vol. 151,
pp. 119-138.
[8] Fang, C. H., Y. S. Liu, S. W. Kau,L. Hong and C. H. Lee, 2006, “A New
LMI-Based Approach to Relaxed Quadratic Stabilization of T-S Fuzzy
Control Systems”, IEEE Trans. on Fuzzy Systems, Vol. 14, pp. 386-397.
[9] Lian, K. Y., J. J. Liou, and C. Y. Huang, 2006, “LMI-Based Integral Fuzzy
Control of DC-DC Converters”, IEEE Trans. on Fuzzy Systems, Vol. 14,
pp. 71-80.
[10]Rhee, B. J. and S. Won, 2006, “A New Fuzzy Lyapunov Function
Approach for a Takagi–Sugeno Fuzzy Control System Design”, Fuzzy
Sets and Systems, Vol. 157, pp. 1211-1228.
[11]Ho, W. H., J. T. Tsai and J. H. Chou, 2007, “Robust-Stable and
Quadratic-Optimal Control for TS-Fuzzy-Model-Based Control Systems
with Elemental Parametric Uncertainties”, IET Control Theory and
Applications, Vol. 1, pp. 731-742.
[12]Huang, D. and S. K. Nguang, 2006, “Robust Static Output Feedback
Control of Fuzzy Systems: an ILMI Approach”, IEEE Trans. on Systems,
Man, and Cybernetics, Part B, Vol. 36, pp. 216-222.
[13]Soliman, M., A. L. Elshafei, F. Bendary and W. Mansour, 2009, “LMI
Static Output-Feedback Design of Fuzzy Power System Stabilizers”,
Expert Systems with Applications, Vol. 36, pp. 6817-6825.
[14]Du, H. and N. Zhang, 2009, “Static Output Feedback Control for
Electrohydraulic Active Suspensions Via T-S Fuzzy Model Approach”,
ASME J. of Dynamic Systems, Measurement and Control, Vol. 131, pp.
1-11.
[15]Lee, H. J. and D. W. Kim, 2009, “Fuzzy Static Output Feedback may be
possible in LMI Framework”, IEEE Trans. on Fuzzy Systems, Vol. 17, pp.
1229-1230.
[16]Friedland, B., 1986, Control System Design: An Introduction to
State-Space Methods, McGraw-Hill, New York.
[17]Goodwin, G. C., S. F. Graebe and M. E. Salgado, 2001, Control System
Design, Prentice-Hall, New Jersey.
[18]Wu, H. N., 2008, “An ILMI Approach to Robust H2 Static Output
Feedback
Fuzzy Control for Uncertain Discrete-Time Nonlinear Systems”,
Automatica, Vol. 44, pp. 2333-2339.
[19]Ho, W. H., S. H. Chen, I. T. Chen. J. H. Chou, and C. C. Shu, 2012,
“Design of Stable and Quadratic-Optimal Static Output Feedback
Controllers for TS-Fuzzy-Model-Based Control Systems: An Integrative
Computational Approach”, International Journal of Innovative Computing,
Information and Control, Vol.8, pp.403-418.
[20]Gopal, M., 1987, Modern Control System Theory, John Wiley and Sons,
Singapore.
[21]Eslami, M., 1994, Theory of Sensitivity in Dynamic Systems,
Springer-Verlag, New York.
[22]Hiskens, I. A. and M. A. Pai, 2000, “Trajectory Sensitivity Analysis of
Hybrid Systems”, IEEE Trans. on Circuits and Systems — Part I:
Fundamental Theory and Applications, Vol. 47, pp. 204-220.
[23]Tsai, J. T., W. H. Ho, J. H. Chou and C. Y. Guo, 2010, “Optimal
Approximation of Linear Systems Using Taguchi-Sliding-Based
Differential Evolution Algorithm”, Applied Soft Computing .
[24]Zhou, K. and P. P. Khargonekar, 1987, “Stability Robustness for Linear
State-Space Models with Structured Uncertainty,” IEEE Trans. on
Automatic Control, Vol. AC-32, pp. 621-623.
[25]Chen, J. and Z. Ren, 2001, “A Comparison of Small Gain Versus
Lyapunov Type Robust Stability Bounds,” Int. J. Robust Nonlinear
Control, Vol. 11,pp. 1407-1414.
[26]Hsieh, C. H. and J. H. Chou, 2004, “Robust Stability Analysis of
TS-Fuzzy-Model-Based Control Systems with Both Elemental Parametric
Uncertainties and Norm-Bounded Approximation Error”, JSME Int.
Journal, Series C, Vol. 47, pp. 686-693.
[27]Sinha, A., 2007, Linear Systems: Optimal and Robust Control, CRC Press,
London.
[28]Ho, W. H., J. T. Tsai and J. H. Chou, 2009, “Robust Quadratic-Optimal
Control of TS-Fuzzy-Model-Based Dynamic Systems with Both
Elemental Parametric Uncertainties and Norm-Bounded Approximation
Error”, IEEE Trans. on Fuzzy Systems, Vol. 17, pp. 518-531.
[29]Desoer, C. A. and M. Vidyasagar, 1975, “Feedback Systems: Input-Output
Properties”, Academic Press, New York.
[30]Chen, S. H. and J. H. Chou, 2003, ”Robust Stability of Linear
Continuous/Discrete-Time Output Feedback Systems with Both Time-Varying
Structured and Unstructured Uncertainties”, JSME International Journal, Series
C, Vol.46, pp.705-712.
[31]Roberts, A. W. and D. E. Varberg, 1973, “Convex Functions”, New York:
Academic Press.
[32]Chou, J. H. and I. R. Horng, 1986, “State Estimation Using Continuous
Orthogonal Functions”, International Journal of Systems Science, Vol.17,
pp.1261-1267.
[33]Datta, K. B. and B. M. Mohan, 1995, Orthogonal Functions in Systems and
Control, World Scientific, Singapore.
[34]Lewis, F. L. and B. G. Mertrios,1987, “Analysis of Singular Systems Using
Orthogonal Functions”, IEEE Trans. on Automatic Control, Vol.32, pp.527-530.
[35]Patra A and G. R. Rao, 1996, General Hybrid Orthogonal Functions and Their
Applications in Systems and Control, Springer-Verlag, Berlin.
[36]Pacheco, P. P. 2002, “Using Orthogonal Functions for Identification and
Sensitivity Analysis of Mechanical Systems”, Journal of Vibration and Control,
Vol.8, pp.993-1021.
[37]Barnet, S., 1979, Matrix Methods for Engineers and Scientists, McGraw-Hill,
New York.
[38]Holland, J. H., 1975, Adaptation in Natural and Artificial Systems, Ann Arbor,
MI:The University of Michigan Press.
[39]Back, T. and H. P. Schwefel,1993, An Overview of Evolutionary Algorithms
for Parameter Optimization. Evolutionary Computation, Vol.1, pp.1-23.
[40]Sun, C. C., H. Y. Chung, and W. J. Chang, 2003, “GA-Based Robust H2
Controller Design Approach for Active Suspension Systems”, Proc. of the 2003
IEEE International Conference on Robotics and Automation, Taiwan,
pp.2330-2335.
[41]Chou, J. H., W. H. Liao, andJ. J. Li, 1998, “Application of Taguchi-Genetic
Method to Design Optimal Grey-Fuzzy Controller of A Constant Turning Force
System”, Proc. of the 15th CSME Annual Conference, Taiwan, pp.31-38.
[42]Tsai, J. T., T. K. Liu, and J. H. Chou, 2004, “Hybrid Taguchi-Genetic Algorithm
for Global Numerical Optimization”, IEEE Transactions on Evolutionary
Computation, Vol.8, pp.365-377.
[43]Storn R. and K.Price,1995, “Differential Evolution: A Simple and Efficient
Adaptive Scheme for Global Optimization over Continuous Spaces”, Technical
Report TR-95-012, International Computer Science Institute, Berkeley, USA,
1995.
[44]Cheng S. W., C. F. J. Wu and L. Huwang, 2006, “Statistical Modeling for
Experiments with Sliding Levels”, IMS Lecture Notes–Monograph Series Time
Series and Related Topics Vol. 52, pp. 245–256.
[45]Chen, S. H., W. H. Ho, J. H. Chou and L. A. Zheng, 2011, “Robust-Optimal
Active Vibration Controllers Design of Flexible Mechanical Systems Via
Orthogonal Function Approach and Genetic Algorithm”, Journal of Vibration and
Control, Vol,17, pp.223-234.
[46]Chen, S. H., W. H. Ho, J. H. Chou and F. Lu, 2012, “Design of Robust-Stable
and Quadratic Finite-Horizon Optimal Active Vibration Controllers with Low
Trajectory Sensitivity for The Uncertain Flexible Rotor Systems Via the
Orthogonal-Functions approach and the hybrid taguchi-genetic algorithm”,
Journal of Vibration and Control, Vol.18, pp.924-940.
[47]Tsai, J. T., W. H. Ho, J. H. Chou and C. Y. Guo, 2010, “Optimal Approximation
of Linear Systems Using Taguchi-Sliding-Based Differential Evolution Algorithm”, Applied Soft Computing, Vol.
11, pp.2007-2016.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top