跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.182) 您好!臺灣時間:2025/10/11 03:34
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:謝孟庭
研究生(外文):Meng-TingHsieh
論文名稱:橋軌互制有限元素分析與規範探討
論文名稱(外文):Specification Study and Finite Element Analysis of Track-Bridge Interaction
指導教授:郭振銘
指導教授(外文):CHEN-MING KUO
學位類別:碩士
校院名稱:國立成功大學
系所名稱:土木工程學系
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:137
中文關鍵詞:橋軌互制鐵路橋梁鋼軌縱向力長焊鋼軌SAP2000有限元素分析
外文關鍵詞:Track-bridge interactionFinite element analysisContinuous welded railViaduct railwayLongitudinal forceSAP2000UIC774-3R
相關次數:
  • 被引用被引用:0
  • 點閱點閱:376
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
目前國內鐵路橋梁設計、長軌所引起的橋軌互制效應分析與檢核,主要參考歐洲規範UIC774-3R(捷運、高鐵)及日本規範(臺鐵)。本論文先透過文獻回顧歸納長焊鋼軌及橋軌互制相關理論,彙整引致橋軌互制效應的成因及相關參數,並介紹兩套規範的主要內容,討論其差異性及原因。
再者,說明橋軌互制模型的元素與結構,並根據UIC774-3R提供之相關參數,以結構分析軟體SAP2000建立高架橋軌道模型,將各種荷載引致之橋軌互制的分析結果與文獻作比對,驗證模型正確性,再使用此模型探討不同參數對橋軌互制效應的敏感度。
最後用SAP2000建立台東多良改線段鐵路橋梁分析模型,藉由案例分析比較兩種規範的計算程序及檢核項目,探討扣件扣夾力對整體橋軌互制效應的影響。並建立橋軌互制簡易模型,以水平彈簧代替高架橋橋墩及基礎等下部結構,再以連續彈性邊界彈簧模擬兩端路堤上之鋼軌,將分析結果與原模型作比較,確認簡易模型之可用性。並討論兩種橋軌互制計算方法(完整分析之逐步計算法、單獨分析之線性疊加法)的差異。
藉由調整不同的橋軌系統參數並觀察其分析結果,可歸納出溫度荷載為橋軌互制最主要的成因,扣件/道碴所提供的縱向阻力則為鋼軌產生軸向應力的主因,對橋軌互制效應有很大的影響。此外,鐵路橋梁於不同荷載的作用下,主要影響互制作用的因素也有所不同。透過規範探討及案例分析結果可推估日本規範應較適合臺灣使用。而簡易模型與原模型的分析結果趨勢一致,鋼軌應力(及軸力)誤差皆小於10 %,規範檢核結果也相同,日後可以簡易模型橋軌互制進行分析,作為快速檢核之方法
At present, analysis and verification of track-bridge interaction (TBI) induced by continuous welded rail (CWR) in Taiwan mainly refer to UIC774-3R (MRT, High-Speed Rail) and Japanese specification (TRA). For the purposes of discussing the differences of two target specification and TBI phenomenon, comprehensive simulation methods were established in this thesis.
Firstly, the introduction of CWR, the mechanism of TBI, the main contents and differences of two target specifications were summarized through literature review. Secondly, SAP2000 is used to establish a TBI model according to the relevant parameters provided by UIC774-3R. The analysis results were compared with those in literature to verify the correctness of this TBI model and then explored the sensitivity of different parameters to TBI effect. Thirdly, Taidong Duoliang rerouting section was built in SAP2000. The calculation procedures and inspection items of two specifications and then the influences of fasteners clamping force on TBI were discussed in this part. Finally, instead of the complex bridge foundations, a simplified model was established to decrease the calculation time. The results of it were compared with the original model and discussed the difference between two methods of TBI analysis (linear superposition and step-by-step method).
By adjusting the relevant parameters, it can be concluded that the longitudinal resistance provided by the fasteners/ballast is the most important cause of TBI under thermal variation. Furthermore, according to the analysis results of case study, it can be estimated that the Japanese norms should be more suitable in Taiwan because of the similar geographical environments. Lastly, the results of simplified model are consistent with the original model in rail stress (error less than 10%). In the future, the simplified model is useful to initial inspection of TBI problems.
目錄
摘要 I
EXTENDED ABSTRACT II
致謝 XI
目錄 XII
圖目錄 XV
表目錄 XX
第1章 緒論 1
1.1 前言 1
1.2 動機與目的 2
1.3 研究流程 5
第2章 文獻回顧 6
2.1 長焊鋼軌理論及相關規定 6
2.1.1 長焊鋼軌特性 7
2.1.2 長軌舖定溫度 11
2.1.3 鋼軌伸縮接頭設置考量 13
2.2 橋軌互制效應(Track-Bridge Interaction, TBI) 14
2.2.1 橋軌互制成因 15
2.2.2 軌道及橋梁參數 18
2.2.3 橋上軌道之縱向阻力 22
2.2.4 橋上長軌受溫差引致之軸力 24
2.3 橋軌互制規範 27
2.3.1 日本規範 27
2.3.2 UIC774 - 3R 規範 28
2.3.3 規範比較 30
2.4 橋上長軌設計及伸縮接頭配置 31

第3章 有限元素模型建立與驗證 33
3.1 模型建立與分析 33
3.1.1 模型元素與結構 34
3.1.2 扣件/道碴阻力之設定 38
3.1.3 簡易模型結構 39
3.2 橋軌互制效應計算方法 40
3.3 作用力加載結果驗證 43
3.3.1 趨勢驗證 46
3.3.2 數值驗證 50
第4章 橋軌互制變因與影響探討 53
4.1 橋版伸縮長度 54
4.2 橋梁跨度及配置情況 56
4.3 橋梁支承配置 61
4.4 扣件/道碴所提供的縱向阻力 63
4.5 橋梁支承勁度 65
4.6 橋版斷面與材料特性(橋版彎曲勁度及中性軸位置) 66
4.7 設置伸縮接頭 68
4.8 小結 70
第5章 案例分析 72
5.1 案例背景說明 72
5.1.1 分析參數 72
5.1.2 分析流程 78
5.1.3 分析模型 80
5.2 分析結果 81
5.2.1 UIC774-3R之分析結果 81
5.2.2 日本規範之分析結果 90
5.2.3 簡易模型驗證 94
5.2.4 計算方法比較 103
第6章 結論與建議 104
6.1 結論 104
6.2 建議 106
參考文獻 107
附錄 i
[1] 黃民仁 & 張欽亮, 新世紀鐵路工程學, 文笙書局, 2007
[2] UIC leaflet 774-3R, In Track/bridge Interaction Recommendations for calculations.Paris,France: International Union of Railways (UIC), 2001
[3] 楊漢生 & 張正欣, 長焊鋼軌與鐵路橋梁, 中華技術(第64期), 2004年10月
[4] 邱宇彰, 張正欣, & 歐文爵, 彈性PC軌枕防振直結軌道設計理論與案例, 中華技術(第67期), 2005
[5] 羅坤龍, 王炤烈, 張正欣, & 林旭翎, 員林高架鐵路之長焊鋼軌應力研究, 第十屆中華民國結構工程研討會, 2010
[6] 1067公厘軌距鐵路長焊鋼軌舖設及養護規範, 交通部, 2003
[7] Ramondenc, P., Martin, D., & Schmitt, P., Track–bridge interaction – the SNCF experience. In R. Calcada, Track-Bridge Interaction On High-Speed Railways. SNCF Engineering Direction, Bridge Department, Paris, France.
[8] Reis, A. J., Lopes, N. T., & Ribeiro, D., Track-structure interaction in long railway bridges. Track-Bridge Interaction On High-Speed Railways. Technical University of Lisbon & GRID SA, Lisbon, Portugal.
[9] 許維倫, 陳則銘, & 許書銘, 鐵路橋橋軌互制案例分析及規範探討, 中興工程, 2013
[10]林志豪, 許維倫, & 鄭書恒, 橋軌互制作用規範與鐵路橋梁配置之探討, 第十屆中華民國結構工程研討會, 2010
[11]Track-Bridge Interaction On High-Speed Railways., In R. Calcada, R. Delgado, A. Matos, J. M. Goicolea, & F. Gabaldon (Eds.), 2008
[12]蒋金洲, 桥上无缝线路钢轨附加纵向力及其对桥梁墩台的传递, 中国铁道科学, 19(2), 1998
[13]鐵路橋梁設計規範, 交通部, 2004
[14]Asif.K, A.1 A., Dr.Raneesh.K.Y, & Mr.Sisir.P., Strength Problems Associated With Track , International journal of research Science& Management, 3(8), 2016
[15]Backer, H. D., Mys, J., & Schotte, K., Continuously welded rails on temporary bridge decks , 39th IABSE Symposium-Engunneering Future, 2017
[16]DANDOTIYA, T., Numerical Studies On Track-Bridge Interaction Phenomenon, 2006
[17]EN 1991-2, In Eurocode 1: Actions on structures - Part 2: Traffic loads on bridges : European Committee for Standardization (CEN), 2003
[18]Esveld, C., Modern Railway Track, 2017
[19]J.Zhang, Wu, D. J., & Q.Li., Loading-history-based track–bridge interaction analysis with experimental fastener resistance, Engineering Structures, 83, 62-73, 2015
[20]Kumar, R., & Upadhyay, A., Effect of Thermal gradient on track-bridge interaction ,Interaction and Multiscale Mechanics, 5(1), 2012
[21]LUSAS. Rail Track Analysis User Manual (Version 15.0)
[22]MIDAS. Rail-Structure interaction in accordance with UIC774-3 (Version Civil 2013)
[23]Mishra, S., & Murthy, S., RDSO Guidelines For Carrying Out Rail-Structure Interaction Studies On Metro Systems : Research designs and standards organisation.
[24]NARENDRA, A. M., Railway Track-Bridge Structure Interaction, 2011
[25]Ruge, P., & Birk, C., Longitudinal forces in continuously welded rails on bridgedecks due to nonlinear track–bridge interaction. Computers & Structures, 85(7-8), 458-475, 2007
[26]Ruge, P., Widarda, D. R., & Birk, C., Longitudinal track-bridge interaction for load-sequences, Track-Bridge Interaction On High-Speed Railways. Lehrstuhl Dynamik derTragwerke, Fakultät Bauingenieurwesen, TUD resden, Germany.
[27]Saha, S. S. K., Effect of Thermal Gradiend on Highspeed track with Track-Bridge Interaction.
[28]Sanguino, M. C., & Requejo, P. G., Numerical methods for the analysis of longitudinal interaction between track and structure, Track-Bridge Interaction On High-Speed Railways. Fundación Caminos de Hierro, Madrid, Spain.
[29]Sanguino, M. C., Requejo, P. G., & Baur, D. L., New considerations on track-structure interaction in railway bridges. 404-404, 2010
[30]Simões, R., Calçada, R., & Delgado, R., Track-bridge interaction in railway lines: Application to the study of the bridge over the River Moros, Track-Bridge Interaction On High-Speed Railways. Faculty of Engineering ofthe University of Porto, Portugal.
[31]Sobrino, J. A., & Murcia, J., Structural analysis of high speed rail bridge substructures.Application to three Spanish case studies, Track-Bridge Interaction On High-Speed Railways. Pedelta & University of Catalonia, Barcelona, Spain.
[32]Srewil, Y., The Track bridge-interaction due to longitudinal loads, 2007
[33]Strauss, A., Karimi, S., Šomodíková, M., Lehký, D., Novák, D., Frangopol, D. M., &Bergmeister, K., Monitoring based nonlinear system modeling of bridge – continuous welded rail interaction. Engineering Structures, 155, 25-35, 2018
[34]Widarda, D. R., P.Ruge, & C.Birk., Longitudinal track-bridge interaction due to loading sequences. Pamm, 8(1), 10355-10356, 2008
[35]Yan, B., Dai, G.-l., & Zhang, H.-p., Beam-track interaction of high-speed railway bridge with ballast track. Journal of Central South University, 19(5), 1447-1453, 2012
[36]鐵道構造物等設計標準‧同解說,軌道構造[有道床軌道], 日本鐵道總合技術研究所, 2004
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top