跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.176) 您好!臺灣時間:2025/09/08 04:08
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林庭伊
研究生(外文):Ting-Yi Lin
論文名稱:PPARα在炸油極性化合物致畸胎性的角色
論文名稱(外文):The role of PPARα in the teratogenic effect of polar fraction in oxidized frying oil.
指導教授:趙蓓敏
指導教授(外文):Pei-Min Chao
學位類別:碩士
校院名稱:中國醫藥大學
系所名稱:營養學系碩士班
學門:醫藥衛生學門
學類:營養學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:89
中文關鍵詞:氧化炸油PPARα維生素A酸胚胎發育毒性
外文關鍵詞:oxidized frying oilperoxisome proliferator-activated receptors (PPARα)retinoic acid (RA)developmental toxicity
相關次數:
  • 被引用被引用:0
  • 點閱點閱:521
  • 評分評分:
  • 下載下載:8
  • 收藏至我的研究室書目清單書目收藏:0
油炸食品廣受歡迎,油炸過程油脂經由各種化學反應產生醇、醛、酮、酸、環狀單體或聚合物統稱為極性化合物(Polar compound;PO),是氧化炸油(oxidized frying oil; OFO)主要劣變成分。本實驗室先前利用動物實驗餵食懷孕母鼠PO飲食發現其子代有顯著較高比例畸胎,並證實PO飲食會干擾母體與胎鼠肝臟Retinoic acid(RA)代謝相關基因表現偏離正常。鑒於PO是OFO中主要的PPARα活化劑,且有文獻指出PPARα活化劑可影響部分RA代謝相關基因表現,因此本實驗假設:PO致畸胎性可能藉由活化PPARα進而干擾RA代謝。本論文包含兩部分:(1)動物實驗利用PPARα基因剔除鼠探討PO的致畸性與RA代謝干擾是否與PPARα 活化有關;(2)細胞實驗探討PO水解物在兩種肝癌細胞株(PPARα responsive and PPARα non-responsive)對RA代謝相關基因表現之影響。
實驗一將C57BL/6J wild type (WD)及PPARα knockout mice (KO)母鼠,各自與WD或KO公鼠交配,於懷孕第一天給予WD或KO母鼠含有10%新鮮油(SO)或PO飼料,並於懷孕第18天(Embryonic day 18;E18)犧牲,分析畸胎比及母親與胎鼠肝臟PPARα下游基因表現及RA代謝相關基因表現。結果不論WD與KO mice,PO組胎鼠外觀異常均顯著一致高於SO 組。分析母親與胎鼠肝臟PPARα下游基因acyl-CoA oxidase(ACO)與cytochrome P450 4A10(CYP4A10)表現證實,此二基因表現量因PO diet而增加,因PPARα剔除而降低,但PO diet誘發基因表現程度在WD大於KO。關於母親RA代謝,RDH10、CYP2C39、CYP26A1 與CYP26C1基因表現在WD受PO diet輕微抑制或無影響,在KO,PO diet卻大幅促進 (diet?egene: P<0.05)。PO diet促進Raldh1a1、但抑制Raldh1a2基因表現;PPARα剔除反而增加Raldh1a2表現。胎鼠部分,PO diet邊緣性抑制Raldh1a2基因表現(diet: P=0.06),對於CYP26B1的促進作用僅見於WD (diet?egene: P=0.059);PPARα剔除降低RRD、但增加CYP26C1基因表現。
實驗二將H4ⅡEC3與FL83B兩種肝細胞分別處理SO、OFO和PO水解物24及48 hr,探討PPARα活化反應與RA代謝基因表現之影響。利用已知PPARα活化劑clofibrate證實H4ⅡEC3為PPARα responsive而FL83B為PPARα non- responsive細胞株。在H4ⅡEC3測定RDH10、ADH1、RRD、Raldh1a1與CYP26A1 mRNA levels,相較vehicle,處理來自SO脂肪酸(100 ?嵱)顯著增加RRD、Raldh1a1與CYP26A1基因表現,但氧化脂肪酸(尤其PO組)顯著降低CYP26A1之誘發,也有降低RDH10與ADH1趨勢;24 hr與48hr變化一致。在FL83B測定RDH10、RRD、Raldh1a1、Raldh1a2、CYP26A1、CYP26B1、CYP26C1與CYP2C39 mRNA levels,在24hr,脂肪酸誘發的RDH10與RRD表現隨脂肪酸氧化程度而下降;在48hr脂肪酸誘發的CYP2C39表現隨脂肪酸氧化程度而下降,脂肪酸誘發的Raldh1a1與CYP26B1表現與脂肪酸氧化程度無關。
結論:氧化炸油PO之畸胎性與活化PPARα無關,PO干擾RA代謝應涉及PPAR?悀峔銗戎憚壇鉯?因子的交互作用,懷孕複雜的生理變化使得細胞實驗難以再現動物實驗結果。


Deep-fried food is very popular, but the safety of oxidized frying oil (OFO) is a concern. During the deep frying process, a series of reactions occur in the frying oil, which produce the hydrolytic products and of altered TG with at least one oxygenated functional group, such as epoxides, ketones, or alcohols, on the esterified fatty acids, totally named polar (PO) fraction. PO fraction is regarded as the major deteriorate components in used oils. We have previously shown that dietary OFO, specifically the PO fraction, is teratogenic, which is attributable to an altered retinoic acid (RA) metabolism in the liver of dams and fetus. Considering PO as a potent peroxisome proliferator-activated receptorα (PPARα) activator, and it has been reported that the expression of some genes participating in RA metabolism were changed by PPARα agonists, therefore, we hypothesized that the teratogenic effect of PO might be associated with PPARα activation, thus resulting in a perturbed RA metabolism. To test this hypothesis, two experiments were conducted. In Expt. 1, PPARα knockout mice were used in this in vivo study to investigate whether PPARα activation is required for the PO-mediated teratogenesis and RA metabolic disturbance. In Expt. 2, two hepatoma cell lines (PPARα responsive and PPARα non-responsive) were used to treat with PO hydrolysates, and the expression levels of gene participating in RA metabolism were measured.
In Exp1, Female C57BL/6J wild type (WD) and PPARα knockout mice (KO) mated with male WD and KO, respectively. The pregnant females were fed a diet containing 10% fresh soybean oil (SO) or the PO fraction (PO) from d1 to d18, and killed at d18. The gross external morphology of fetus and the expression levels of PPARα target genes and genes participating in RA metabolism were analyzed. Results showed that, regardless of genotype, maternal PO diet significantly and equally increased the frequency of externally congenital anormalies relative to their SO counterpart. In both mothers and fetuses, hepatic mRNA levels of two PPARα target genes, i.e. acyl-CoA oxidase (ACO) and cytochrome P450 4A10 (CYP4A10) were significantly increased by PO diet, reduced by PPARα deficiency, and the induction was more prominent in WD compared to KO mice. In WD mothers, hepatic mRNA levels for RDH10, CYP2C39, CYP26A1 and CYP26C1 were slightly or not affected by PO diet, while significant increases were seen in KO mothers (diet?egene: P<0.05). PO diet significantly increased mRNA levels of Raldh1a1, reduced Raldh1a2, and the latter was significantly increased by PPARα elimination. In fetuses, PO diet marginally inhibited Raldh1a2 expression (diet: P=0.06) regardless of genotype, while its enhancing effect on CYP26B1 expression was only seen in WD (diet?egene: P=0.059). PPARα deficiency reduced RRD, but increased CYP26C1 expression
In Expt. 2, H4ⅡEC3 and FL83B cell lines were treated with SO, OFO and PO hydrolysates for 24 and 48 hr, and the expression levels of PPARα target genes and RA metabolic genes were analyzed. Testing with clofibrate, a well-known PPARα activator, we showed H4ⅡEC3 is PPARα responsive, while FL83B is PPARα non- responsive. In H4ⅡEC3 cells, mRNA levels of RDH10, ADH1, RRD, Raldh1a1 and CYP26A1 were determined. Compared to vehicle, free fatty acid from SO resulted in significantly increased RRD, Raldh1a1 and CYP26A1 mRNA levels. However, oxidative fatty acids (from PO fraction) significantly reduced CYP26A1, and tend to reduced RDH10 and ADH1 mRNA levels. The changes observed at 24 hr and 48 hr were paralleled. In FL83B, RDH10, RRD, Raldh1a1, Raldh1a2, CYP26A1, CYP26B1, CYP26C1 and CYP2C39 mRNA levels were determined. At 24hr, free fatty acid-increased RDH10 and RRD mRNA levels decreased with the extent of fatty acids oxidation. At 48hr, free fatty acid-increased CYP2C39 mRNA levels decreased with the extent of fatty acid oxidation. Free fatty acid-increased Raldh1a1 and CYP26B1 mRNA levels was not related to the extent of fatty acid oxidation.
We conclude that the teratogenic effect of PO is PPARα independent, and the PO-mediated perturbation in RA metabolism might be associated with interactions of PPAR?? and other unknown transcription factors. Since physical changes happened at pregnancy are complex, results observed in vivo is difficult to be recaptured in in vitro study.


目錄 i
圖目錄 iv
表目錄 vi
中文摘要 vii
Abstract ix
第一章 前言 1
第二章 文獻回顧 3
一、發育毒理(Developmental toxicology) 3
(一)歷史背景 3
(二)孕期因營養素缺乏致畸胎 4
(三)維生素A與致畸胎 5
二、氧化炸油(Oxidized frying oil, OFO) 11
(一)炸油之化學組成 11
(二)炸油對動物生理影響 12
(三)炸油與脂質代謝 13
(四)炸油與維生素A 14
(五)炸油與畸胎 15
三、環境汙染物的發育毒性與PPARα活化關係 16
(一)塑化劑di(2-ethylhexyl)phthalate(DEHP) 16
(二)鐵弗龍成分全氟辛酸perfluorooctanoic acid(PFOA) 17
第三章 材料與方法 18
一、實驗設計與假說 18
二、氧化炸油製備 20
三、分離炸油極性區分物 20
四、薄片層析法TLC 22
五、試驗飼料配製 23
六、動物飼養 23
七、檢體收集 24
八、抽取RNA及cDNA的製備 26
九、Real time polymerase chain reaction(同步定量PCR;qRT-PCR) 32
十、細胞培養 36
十一、MTT assay 37
十二、ACO活性分析 39
十三、統計分析 45
第四章 結果 46
一、動物實驗: PPARα基因剔除對PO的致畸性與RA代謝基因表現干擾之影響 46
(一)油脂品質 46
(二) PPARα KO基因鑑定 46
(三) 懷孕期間體重變化與飼料攝取量 46
(四) 炸油極性區分物之胎鼠毒性 47
(五) 炸油極性區分物對母親生殖性狀之影響 47
(六)炸油極性區分物對胎鼠存活率與外觀異常之影響 48
(七) 炸油極性區分物對母親與胎鼠肝臟PPARα活化效應 48
(八) 炸油極性區分物對母親與胎鼠肝臟維生素A酸代謝 49
二、細胞實驗: PO水解物處理兩種肝癌細胞株對維生素A酸代謝相關基因表現
之影響 61
(一) 檢測H4ⅡEC3細胞株是否PPARα responsive 61
(二) SO、OFO和PO水解物對H4ⅡEC3細胞維生素A酸代謝基因表現 61
(三) 檢測FL83B細胞株是否PPARα responsive 62
(四) SO、OFO和PO水解物對FL83B細胞維生素A酸代謝基因表現 62
第五章 討論 68
第六章 結論 78
第七章 參考文獻 79


1Artman, N.R. (1969) The chemical and biological properties of heated and oxidized fats. Adv. Lipid Res. 7: 245-330
2Andreola F, Hayhurst GP, Luo G, Ferguson SS, Gonzalez FJ, Goldstein JA, De Luca LM. (2004). Mouse liver CYP2C39 is a novel retinoic acid 4-hydroxylase. Its down-regulation offers a molecular basis for liver retinoid accumulation and fibrosis in aryl hydrocarbon receptor-null mice. J Biol Chem.279(5):3434-8. .
3Abbott BD, Wolf CJ, Schmid JE, Das KP, Zehr RD, Helfant L, Nakayama S, Lindstrom AB, Strynar MJ, Lau C. (2007). Perfluorooctanoic acid induced developmental toxicity in the mouse is dependent on expression of peroxisome proliferator activated receptor-alpha. Toxicol Sci. 98: 571-581.
4Alnouti Y, Klaassen CD (2008). Tissue distribution, ontogeny, and regulation of aldehyde dehydrogenase (Aldh) enzymes mRNA by prototypical microsomal enzyme inducers in mice. Toxicol Sci.101(1):51-64.
5Braissant O, Foufelle F, Scotto C, Dauca M, Wahli W. (1995). Differential expression of peroxisome proliferator-activated receptors (PPARs): tissue distribution of PPAR-alpha, -beta, and -gamma in the adult rat.Endocrinology. 137 (1): 354–66.
6Burgoon JM, Selhub J, Nadeau M, Sadler TW (2002). Investigation of the effects of folate deficiency on embryonic development through the establishment of a folate deficient mouse model. Teratology 65: 219-227.
7Brandsch, C. and Eder, K. (2004) Effects of peroxidation products in thermoxidised dietary oil in female rats during rearing, pregnancy and lactation on their reproductive performance and the antioxidative status of their offspring. Br. J. Nutr. 92: 267-275
8Boucheron-Houston C, Canterel-Thouennon L, Lee TL, Baxendale V, Nagrani S, Chan WY, Rennert OM. (2013). Long-term vitamin A deficiency induces alteration of adult mouse spermatogenesis and spermatogonial differentiation: direct effect on spermatogonial gene expression and indirect effects via somatic cells. J Nutr Biochem. 24: 1123-1135.
9Crampton, J.M. and Voss, E. (1952) An investigation of the chronic toxicity and acceptability of Castrix. J Am Pharm Assoc Am Pharm Assoc 41: 135-138
10Cheng, D.W. and Thomas, B.H. (1953) Relationship of time of therapy to teratogeny in maternal avitaminosis E. Proc. Iowa Acad. Sc 60: 290-299
11Cohlan, S.Q. (1954) Congenital anomalies in the rat produced by excessive intake of vitamin A during pregnancy. Pediatrics 13: 556-567
12Chang, S.S., Peterson, R.J., and Ho, C.T. (1978) Chemical reactions involved in the deep-fat frying of foods. J. Am. Oil Chem. Soc. 55: 718-727
13Combe, N., Constantin, M.J., and Entressangles, B. (1981) Lymphatic absorption of nonvolatile oxidation products of heated oils in the rat. Lipids 16: 8-14
14Costet P, Legendre C, More J, Edgar A, Galtier P, Pineau T (1998). Peroxisome Proliferator-activated Receptor-Isoform Deficiency Leads to Progressive Dyslipidemia with Sexually Dimorphic Obesity and Steatosis. J Biol Chem 273(45):29577-85.
15Chaput E, Saladin R, Silvestre M, Edgar AD (2000). Fenofibrate and rosiglitazone lower serum triglycerides with opposing effects on body weight. Biochemical and biophysical research communications 271: 445-450.
16Chao PM, Chao CY, Lin FJ, Huang C.(2001) Oxidized frying oil up-regulates hepatic acyl-CoA oxidase and cytochrome P450 4 A1 genes in rats and activates PPARalpha. J Nutr. 131(12): 3166-74.
17Chao, P.M., Hsu, S.C., Lin, F.J., Li, Y.J., and Huang, C.J. (2004) The up-regulation of hepatic acyl-CoA oxidase and cytochrome P450 4A1 mRNA expression by dietary oxidized frying oil is comparable between male and female rats. Lipids 39: 233-238
18Chao, P.M., Yang, M.F., Tseng, Y.N., Chang, K.M., Lu, K.S., and Huang, C.J. (2005) Peroxisome proliferation in liver of rats fed oxidized frying oil. J. Nutr. Sci. Vitaminol. (Tokyo). 51: 361-368
19Chao PM, Huang HL, Liao CH, Huang ST, Huang CJ (2007). A high oxidised frying oil content diet is less adipogenic, but induces glucose intolerance in rodents. The British journal of nutrition 98: 63-71.
20Chiang, Y.F., Shaw, H.M., Yang, M.F., Huang, C.Y., Hsieh, C.H., and Chao, P.M. (2011) Dietary oxidised frying oil causes oxidative damage of pancreatic islets and impairment of insulin secretion, effects associated with vitamin E deficiency. Br. J. Nutr. 105: 1311-1319
21Corsello G, Giuffre M (2012). Congenital malformations. The journal of maternal-fetal & neonatal medicine : the official journal of the European Association of Perinatal Medicine, the Federation of Asia and Oceania Perinatal Societies, the International Society of Perinatal Obstet 25 Suppl 1: 25-29.
22Denison MS, Nagy SR (2003). Activation of the aryl hydrocarbon receptor by structurally diverse exogenous and endogenous chemicals. Annual review of pharmacology and toxicology 43:309-34.: 309-334.
23Dobrzyńska MM TE, Derezińska E, Pachocki KA, Ludwicki JK. (2012). Two generation reproductive and developmental toxicity following subchronic exposure of pubescent male mice todi(2-ethylhexyl)phthalate.pdf. Ann Agric Environ Med 23;19(1):31-7.
24Firestone D. Regulation of frying fat and oil. In: Erickson MD, editor. Deep frying:chemistry, nutrition and practical applications. Champaign: AOCS Press; 2007p. 373–85.
25Fernandes de Abreu DA, Nivet E, Baril N, Khrestchatisky M, Roman F, Feron F (2010). Developmental vitamin D deficiency alters learning in C57Bl/6J mice. Behavioural brain research 208: 603-608.
26Guerre-Millo M GP, Raspe E, Madsen L, Poulain P, Derudas B, Herbert JM, Winegar DA, Willson TM, Fruchart JC, Berge RK, Staels B. (2000 ). Peroxisome proliferator-activated receptor alpha activators improve insulin sensitivity and reduce adiposity. J Biol Chem 275(22):16638-42.
27Gagne, A., Wei, S.Q., Fraser, W.D., and Julien, P. (2009) Absorption, transport, and bioavailability of vitamin e and its role in pregnant women. J Obstet Gynaecol Can 31: 210-217
28Hale, F. (1935) Pigs born without eyeballs. J Hered 27: 105-106
29Huang, C.J., Cheung, N. S., and Lu, V. R. (1988) Effects of deteriorated frying oil and dietary protein levels on liver microsomal enzymes in rats. Journal of the American Oil Chemists'' Society 65: 1796-1803
30Liu JF and Huang CJ (1995). Tissue alpha-tocopherol retention in male rats is compromised by feeding diets containing oxidized frying oil. J Nutr 125(12):3071-80.
31Hein M HH, Isengard HD. (1998). Determination of total polar parts with new methods for the quality survey of frying fats and oils. Talanta 47(2):447-54.
32Hozyasz, K., Mazur, J., and Chelchowska, M. (2006) Alpha-tocopherol levels in mothers of children with cleft lip or with cleft lip and palate. Ginekol. Pol. 77: 255-262
33Hayashi Y, Ito Y, Yamagishi N, Yanagiba Y, Tamada H, Wang D, Ramdhan DH, Naito H, Harada Y, Kamijima M, Gonzales FJ, Nakajima T. (2011). Hepatic peroxisome proliferator-activated receptor alpha may have an important role in the toxic effects of di(2-ethylhexyl)phthalate on offspring of mice. Toxicology 289: 1-10.
34Hovdenak N, Haram K (2012). Influence of mineral and vitamin supplements on pregnancy outcome. Eur J Obstet Gynecol Reprod Biol. 164: 127-132.
35Huang CF, Lin YS, Chiang ZC, Lu SY, Kuo YH, Chang SL, Chao PM. (2014). Oxidized frying oil and its polar fraction fed to pregnant mice are teratogenic and alter mRNA expressions of vitamin A metabolism genes in the liver of dams and their fetuses. J Nutr Biochem. 25: 549-556.
36Issemann, I. and S. Green, (1990)Activation of a member of the steroid hormone receptor superfamily by peroxisome proliferators. Nature 347(6294): 645-50.
37Johnson EF, Hsu MH, Savas U, Griffin KJ (2002) Regulation of P450 4A expression by peroxisome proliferator activated receptors. Toxicology 181–182, 203–206
38Kochhar, D.M. (1967) Teratogenic activity of retinoic acid. Acta Pathol Microbiol Immuno Scand 70: 398-404
39Kenneth J. Rothman DPH, Lynn L. Moore, D.Sc., Martha R. Singer, M.P.H., R.D., Uyen-Sa D.T. Nguyen, M.P.H., Salvatore Mannino, M.D., M.P.H., and Aubrey Milunsky, M.B., B.Ch., D.Sc. (1995). TERATOGENICITY OF HIGH VITAMIN A INTAKE. N Engl J Med 333:1369-1373.
40Konig B, Eder K (2006). Differential action of 13-HPODE on PPARalpha downstream genes in rat Fao and human HepG2 hepatoma cell lines. The Journal of nutritional biochemistry 17: 410-418.
41Koch A KB, Spielmann J, Leitner A, Stangl GI, Eder K. (2007). Thermally Oxidized Oil Increases the Expression of Insulin-Induced Genes and Inhibits Activation of Sterol Regulatory Element-Binding Protein-2 in Rat Liver. J Nutr 137(9):2018-23.
42Lee SS PT, Drago J, Lee EJ, Owens JW, Kroetz DL, Fernandez-Salguero PM, Westphal H, Gonzalez FJ. (1995). Targeted Disruption of the Isoform of the Peroxisome Proliferator-Activated Receptor Gene in Mice Results in Abolishment of the Pleiotropic Effects of Peroxisome Proliferators. Mol Cell Biol 15(6):3012-22.
43Liu, J.F. and Huang, C.J. (1995) Tissue alpha-tocopherol retention in male rats is compromised by feeding diets containing oxidized frying oil. J. Nutr. 125: 3071-3080
44Lei Z CW, Zhang M, Napoli. (2003). Reduction of all-trans-retinal in the mouse liver peroxisome fraction by the short-chain dehydrogenase reductase RRD induction by the PPARa ligand clofibrate. Biochemistry 15;42(14):4190-6.
45Lei Z CW, Zhang M, Napoli JL. (2003). Reduction of all-trans-retinal in the mouse liver peroxisome fraction by the short-chain dehydrogenase/reductase RRD: induction by the PPAR alpha ligand clofibrate. Biochemistry 42(14):4190-6.
46Liao CH, Shaw HM, Chao PM (2008). Impairment of glucose metabolism in mice induced by dietary oxidized frying oil is different from that induced by conjugated linoleic acid. Nutrition 24: 744-752.
47Muindi, J.F. and Young, C.W. (1993) Lipid hydroperoxides greatly increase the rate of oxidative catabolism of all-trans-retinoic acid by human cell culture microsomes genetically enriched in specified cytochrome P-450 isoforms. Cancer Res. 53: 1226-1229
48Mancini FP LA, Sabatino L, Moreno M, Giannino A, Contaldo F, Colantuoni V, Goglia F. (2001). Fenofibrate prevents and reduces body weight gain and adiposity in diet-induced obese rats. FEBS Lett 491(1-2):154-8.
49Molotkov A, Molotkova N, Duester G (2005). Retinoic acid generated by Raldh2 in mesoderm is required for mouse dorsal endodermal pancreas development. Dev Dyn 232: 950-957.
50Molotkov A, Molotkova N, Duester G (2006). Retinoic acid guides eye morphogenetic movements via paracrine signaling but is unnecessary for retinal dorsoventral patterning. Development 133: 1901-1910.
51Nagy L TP, Alvarez JG, Chen H, Evans RM. (1998). Oxidized LDL regulates macrophage gene expression through ligand activation of PPARgamma. Cell 17;93(2):229-40.
52Napoli JL (2012). Physiological insights into all-trans-retinoic acid biosynthesis. Biochimica et biophysica acta 1821: 152-167.
53Peraza MA, Burdick AD, Marin HE, Gonzalez FJ, Peters JM (2006). The toxicology of ligands for peroxisome proliferator-activated receptors (PPAR). Toxicol Sci.90: 269-295.
54Palkar PS, Anderson CR, Ferry CH, Gonzalez FJ, Peters JM (2010). Effect of prenatal peroxisome proliferator-activated receptor alpha (PPARalpha) agonism on postnatal development. Toxicology 276(1):79-84.
55Rakhshandehroo M, Knoch B, Muller M, Kersten S. (2010). Peroxisome proliferator-activated receptor alpha target genes. PPAR Research 2010: 612089.
56Rhinn M, Dolle P (2012). Retinoic acid signalling during development. Development 139: 843-858.
57Shenefelt, R.E. (1972) Morphogenesis of malformations in hamsters caused by retinoic acid: Relation to dose and stage of treatment Teratology 5: 103-118
58Siu, G.M. and Draper, H.H. (1982) Metabolism of malonaldehyde in vivo and in vitro. Lipids 17: 349-355
59Schardein, J.L. and Keller, K.a. (1989) Potential human developmental toxicants and the role of animal testing in their identification and chacterization. CRC Crit. Rev. Toxicol. 19: 251-339
60Staprans I, Rapp JH, Pan XM, Kim KY, Feingold KR (1994). Oxidized lipids in the diet are a source of oxidized lipid in chylomicrons of human serum. ATVB 14: 1900-1905.
61Staprans I1 RJ, Pan XM, Feingold KR. (1996). Oxidized lipids in the diet are incorporated by the liver into very low density lipoprotein in rats. J Lipid Res 37(2):420-30.
62Shaban Z, El-Shazly S, Ishizuka M, Kimura K, Kazusaka A, Fujita S (2004). PPARalpha-dependent modulation of hepatic CYP1A by clofibric acid in rats. Archives of toxicology 78(9):496-507.
63Sirbu IO, Gresh L, Barra J, Duester G (2005). Shifting boundaries of retinoic acid activity control hindbrain segmental gene expression. Development 132: 2611-2622.
64Sandell LL, Sanderson BW, Moiseyev G, Johnson T, Mushegian A, Young K et al (2007). RDH10 is essential for synthesis of embryonic retinoic acid and is required for limb, craniofacial, and organ development. Genes & development 21: 1113-1124.
65See AW, Kaiser ME, White JC, Clagett-Dame M (2008). A nutritional model of late embryonic vitamin A deficiency produces defects in organogenesis at a high penetrance and reveals new roles for the vitamin in skeletal development. Developmental biology 316: 171-190.
66Tay S, Dickmann L, Dixit V, Isoherranen N (2010). A comparison of the roles of peroxisome proliferator-activated receptor and retinoic acid receptor on CYP26 regulation. Molecular pharmacology 77: 218-227.
67Tay S, Dickmann L, Dixit V, Isoherranen N (2010). A comparison of the roles of peroxisome proliferator-activated receptor and retinoic acid receptor on CYP26 regulation. Molecular pharmacology 77(2):218-27.
68Tse HK LM, Woolf AS, Menke AL, Hastie ND, Gosling JA, Pang CP, Shum AS. ( 2005). Implication of Wt1 in the pathogenesis of nephrogenic failure in a mouse model of retinoic acid-induced caudal regression syndrome. Am J Pathol 166(5):1295-307.
69Warkany, J. and Nelson, R.C. (1940) Appearance of skeletal abnormalities in offspring of rats reared on deficient diet. Science 92: 383-384
70Warkany, J. and Nelson, R.C. (1942) Skeletal abnormalities induced in rats by maternal nutritional deficiency: histological studies. Arch. Path. 34: 375-384
71Warkany, J. and Schraffenberger, E. (1944) Congenital malformations induced in rats by maternal nutritional deficiency:VI. preventive factor. J. Nutr. 27: 477-484
72Warkany, J. (1945) Manifestations of Prenatal Nutritional Deficiency. Vitam. Horm. 3: 73-103
73Warkany, J. and Kalter, H. (1961) Congenital malformations. N. Engl. J. Med. 265: 265-993
74Wilson, J.G. (1973) Evironment and birth defects. New York: Academic Press
75Zhengzheng Wei LS, Jie Wei, Tian Chen, Jun Chen, Yi Lin, Wei Xia, Bing Xu,, Xuguang Li XC, Yuanyuan Li, Shunqing Xu (2012). Maternal exposure to di-(2-ethylhexyl)phthalate alters kidney development through the renin-angiotensin system in offspring. Toxicology letters 212(2):212-21.
76Muindi JF YC (1993 ). Lipid hydroperoxides greatly increase the rate of oxidative catabolism of all-trans-retinoic acid by human cell culture microsomes genetically enriched in specified cytochrome P-450 isoforms. Cancer Res 53(6):1226-9.
77Zhang Q, Saleh AS, Chen J, Shen Q (2012). Chemical alterations taken place during deep-fat frying based on certain reaction products: a review. Chem Phys Lipids.165: 662-681.
78Zhao Y, Tan YS, Strynar MJ, Perez G, Haslam SZ, Yang C (2012). Perfluorooctanoic acid effects on ovaries mediate its inhibition of peripubertal mammary gland development in Balb/c and C57Bl/6 mice. Reprod Toxicol 33: 563-576.
79趙蓓敏, 氧化炸油活化PPARα之探討. 國立台灣大學農業化學研究所博士論文, 2002.
80江宗謙, 炸油飲食干擾維生素A代謝並導致胚胎畸形.中國醫藥大學營養學系碩士班碩士論文, 2013
81湯雅理,黃青真。炸油飲食降低血漿與肝臟維生素A含量。中華營誌,1988; 23: 265-79


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top