跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.208) 您好!臺灣時間:2025/10/04 00:56
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:康宇堯
研究生(外文):Yu-Yao Kang
論文名稱:可撓式染料敏化太陽能電池與石墨烯超級電容之整合型元件
論文名稱(外文):Fabrication of integrated device with flexible dye-sensitized solar cell and graphene supercapacitor
指導教授:閔庭輝
指導教授(外文):MEEN, TEEN-HANG
口試委員:閔庭輝陳英忠朱聖緣水瑞鐏
口試委員(外文):MEEN, TEEN-HANGCHEN, YING-CHUNGCHU, SHENG-YUANSHUI, RUI-ZUN
口試日期:2019-07-27
學位類別:碩士
校院名稱:國立虎尾科技大學
系所名稱:電子工程系碩士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:60
中文關鍵詞:超級電容染料敏化太陽電池二氧化鈦活性碳
外文關鍵詞:SupercapacitorDSSCTiO2Activated carbon
相關次數:
  • 被引用被引用:0
  • 點閱點閱:192
  • 評分評分:
  • 下載下載:6
  • 收藏至我的研究室書目清單書目收藏:0
目前可彎曲表面在電子設備越來常見,在柔性基板上製造的電子設備被認為具有很大潛力,超級電容器具有良好的循環壽命,高功率密度,高靈活度和良好穩定性。本研究以木質活性碳摻雜石墨烯製備複合型可撓式超級電容與可撓式染料敏化太陽能電池進行整合,完成了能源轉換/儲存元件。
烘烤方式作出木質活性碳摻雜石墨烯碳粉,使用木質活性碳摻雜石墨烯醬料用旋塗方式製作出超級電容之電極。使用壓力機加壓轉移,使ITO/PEN塑膠基板的二氧化鈦薄膜可以將高溫退火過後的二氧化鈦薄膜從石英基板的轉印過來,完成了可撓式染料敏化太陽能電池。用循環伏安法(cyclic voltammetry)和電流充放電測試探討超級電容之性能;使用太陽光模擬器(Solar Simulator)測量染料敏化太陽能電池的光電流轉換效率。添加0.05wt%的石墨烯碳可製備出最佳比電容值,其比電容值為218 F/g,其充放電效率可達到85%,即使在彎曲,捲繞或扭曲的條件下,靈活的超級電容器也能很好地保持性能,染料敏化太陽能電池光電轉換效率2.5%,透過整合元件進行串並聯成功驅動LED。





Currently, flexible surfaces are becoming more common in electronic devices. Electronic devices fabricated on flexible substrates are considered to have potential. Flexible supercapacitors with long cycle life, high power density, stability and flexibility.In this study, a flexible supercapacitor was prepared activated carbon-doped graphene, and integrated a flexible dye-sensitized solar cell, completed energy conversion/storage components.Baking method for making activated carbon doped graphene carbon powder, carbon-doped graphene paste is used supercapacitor electrode by spin coating. Using a press machine to transfer, TiO2 film on the quartz substrate can transfer the TiO2 film on the ITO/PEN plastic substrate after high temperature sintering, Complete flexible dye-sensitized solar cell. The sample doped 0.05wt% graphene had the best capacitance value. The capacitance value of 218F/g,the charge and 85% of charge/discharge efficiency. The flexible supercapacitor maintained its supercapacitor performance well, even under twisted, bent, or rolled conditions. The flexible dye Sensitized solar cell photoelectric conversion efficiency of 2.5%, integrated components for serial and parallel connection to successfully illuminate the LED.
中文摘要........ i
Abstract....... ii
誌謝........... iii
目錄........... iv
表目錄......... vi
圖目錄......... vii
第一章 緒論.... 1
1.1前言....... 1
1.2研究動機.... 1
第二章 理論原理與文獻探討..... 3
2.1 文獻探討................. 3
2.1.1超級電容文獻探討與簡介.... 3
2.1.2染料敏化太陽能電池文獻探討與簡介.... 4
2.2 石墨烯介紹......................... 4
2.3 塑膠基板介紹....................... 5
2.4 石英基板介紹....................... 7
2.5 二氧化鈦簡介....................... 8
2.6染料敏化太陽能電池結構.............. 9
2.6.1染料/敏化劑 Sensitizers or Dye 9
2.6.2 電解液 Electrolyte.......... 10
2.6.3工作電極Working Electrode.......... 11
2.6.4背電極Counter Electrodes.......... 12
2.7 染料敏化太陽能電池的工作原理..........13
2.8染料敏化太陽能電池的光伏特性.......... 16
2.9超級電容介紹.................... 17
2.9.1超級電容分類.................... 17
2.9.2超級電容原理.................... 18
2.9.3超級電容結構.................... 21
第三章 實驗步驟與設備................... 22
3.1實驗藥品與儀器設備................... 23
3.1.1 實驗藥品.................... 23
3.1.2 實驗儀器設備.................... 24
3.2染料敏化太陽能電池之製備.......... 25
3.2.1基板清洗.................... 25
3.2.2二氧化鈦光陽極的製備.......... 25
3.2.3染料與電解液之製備.......... 25
3.3.3白金背電極之製備....................26
3.3.4 元件封裝.................... 26
3.3超級電容之製備.................... 27
3.3.1基板清洗.................... 27
3.3.2石墨烯碳膏調配.................... 27
3.3.3 製備碳電極.................... 28
3.3.4超級電容元件封裝................... 29
3.4料敏化太陽能電池與超級電容之整合型元件封裝......30
3.5分析儀器應用原理.................... 32
3.5.1電子顯微鏡分析.................... 32
3.5.2太陽能電池元件量測.......... 33
3.5.3 紫外光―可見光吸收光譜儀(UV - Vis)...... 34
3.5.4光電轉換效率量測(Incident Photon Conversion Efficiency, IPCE).... 34
3.6 電化學特性分析.................... 34
3.6.1 循環伏安分析.................... 34
3.6.2 充放電效率分析.................... 35
第四章 結果與討論.................... 36
4.1染料敏化太陽能電池分析.......... 36
4.1.1 二氧化鈦薄膜FE-SEM分析.......... 36
4.1.2 染料敏化太陽能電池IPCE之分析... 37
4.1.3 染料敏化太陽能電池UV吸收光譜之分析. 38
4.1.4 染料敏化太陽能電池效率之分析..... 39
4.2石墨烯超級電容與氧化鋅超級電容比較分析. 40
4.3改變石墨烯濃度對超級電容之分析...... 43
4.4 改變彎曲度對超級電容之分析........ 47
4.5整合元件分析與測試應用............. 50
第五章 結論.......................... 52
參考文獻.................................53
Extended Abstract.......................57


[1] Kaempgen, M., Chan, C. K., Ma, J., Cui, Y., & Gruner, G. (2009). Printable thin film supercapacitors using single-walled carbon nanotubes. Nano letters, 9(5), 1872-1876.
[2]Rogers, J. A., & Huang, Y. (2009). A curvy, stretchy future for electronics. Proceedings of the National Academy of Sciences, 106(27), 10875-10876.
[3]Nishide, H., & Oyaizu, K. (2008). Toward flexible batteries. Science, 319(5864), 737-738.
[4] Lu, X., & Xia, Y. (2006). Electronic materials: buckling down for flexible electronics. Nature Nanotechnology, 1(3), 163.
[5] Becker, Howard I, 1957, "Low voltage electrolytic capacitor." U.S. Patent No. 2,800,616. 23。
[6] Winter, M., & Brodd, R. J. (2004). What are batteries, fuel cells, and supercapacitors?.
[7] O'regan, B., & Grätzel, M. (1991). A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. nature, 353(6346), 737.
[8] Tan, Y. B., & Lee, J. M. (2013). Graphene for supercapacitor applications. Journal of Materials Chemistry A, 1(47), 14814-14843.
[9] 日本Peccell公司 http://www.peccell.com/products/PECF/
[10]Das, P., Sengupta, D., Mondal, B., & Mukherjee, K. (2015). A review on metallic ion and non-metal doped titania and zinc oxide photo-anodes for dye sensitized solar cells. Reviews in Advanced Sciences and Engineering, 4(4), 271-290.
[11] Liu, X., Fang, J., Liu, Y., & Lin, T. (2016). Progress in nanostructured photoanodes for dye-sensitized solar cells. Frontiers of materials science, 10(3), 225-237.
[12] Chen, X., & Mao, S. S.(2007). Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. Chemical reviews, 107(7), 2891-2959.
[13] Shen, L., Bao, N., Zheng, Y., Gupta, A., An, T., & Yanagisawa, K. (2008). Hydrothermal splitting of titanate fibers to single-crystalline TiO2 nanostructures with controllable crystalline phase, morphology, microstructure, and photocatalytic activity. The Journal of Physical Chemistry C, 112(24), 8809-8818.
[14] Serikov, T. M., Ibrayev, N. K., Smagulov, Z. K., & Kuterbekov, К. А. (2017, January). Influence of annealing on optical and photovoltaic properties of nanostructured TiO2 films. In IOP Conference Series: Materials Science and Engineering (Vol. 168, No. 1, p. 012054). IOP Publishing.
[15] Bianchi, C. L., Pirola, C., Stucchi, M., Sacchi, B., Cerrato, G., Morandi, S., ... & Capucci, V. (2016). A new frontier of photocatalysis employing micro-sized TiO2: air/water pollution abatement and self-cleaning/antibacterial applications.
[16] Landmann, M., Rauls, E., & Schmidt, W. G. (2012). The electronic structure and optical response of rutile, anatase and brookite TiO2. Journal of physics: condensed matter, 24(19), 195503.
[17] Dambournet, D., Belharouak, I., & Amine, K. (2009). Tailored preparation methods of TiO2 anatase, rutile, brookite: mechanism of formation and electrochemical properties. Chemistry of materials, 22(3), 1173-1179.
[18] Anh, L. T., Rai, A. K., Thi, T. V., Gim, J., Kim, S., Shin, E. C., ... & Kim, J. (2013). Improving the electrochemical performance of anatase titanium dioxide by vanadium doping as an anode material for lithium-ion batteries. Journal of Power Sources, 243, 891-898.
[19] Ludin, N. A., Mahmoud, A. A. A., Mohamad, A. B., Kadhum, A. A. H., Sopian, K., & Karim, N. S. A. (2014). Review on the development of natural dye photosensitizer for dye-sensitized solar cells. Renewable and Sustainable Energy Reviews, 31, 386-396.
[20] Kong, F. T., Dai, S. Y., & Wang, K. J. (2007). Review of recent progress in dye-sensitized solar cells. Advances in OptoElectronics, 2007.
[21] Wu, J., Lan, Z., Lin, J., Huang, M., Huang, Y., Fan, L., & Luo, G. (2015). Electrolytes in dye-sensitized solar cells. Chemical reviews, 115(5), 2136-2173.
[22] Serikov TM, Ibrayev NK, Smagulov ZK, Kuterbekov К. Influence of annealing on optical and photovoltaic properties of nanostructured TiO2 films. IOP Conference Series: Materials Science and Engineering 2017; 168(1):1–6.
[23] Zhang, J., Zhou, P., Liu, J., & Yu, J. (2014). New understanding of the difference of photocatalytic activity among anatase, rutile and brookite TiO2. Physical Chemistry Chemical Physics, 16(38), 20382-20386.
[24] Sengupta, D., Das, P., Mondal, B., & Mukherjee, K. (2016). Effects of doping, morphology and film-thickness of photo-anode materials for dye sensitized solar cell application–A review. Renewable and Sustainable Energy Reviews, 60, 356-376.
[25] Kim, S. H., & Park, C. W. (2013). Novel application of platinum ink for counter electrode preparation in dye sensitized solar cells. Bulletin of the Korean Chemical Society, 34(3), 831-836.
[26] Gong, J., Liang, J., & Sumathy, K. (2012). Review on dye-sensitized solar cells (DSSCs): fundamental concepts and novel materials. Renewable and Sustainable Energy Reviews, 16(8), 5848-5860.
[27] Yum, J. H., Baranoff, E., Wenger, S., Nazeeruddin, M. K., & Grätzel, M. (2011). Panchromatic engineering for dye-sensitized solar cells. Energy & Environmental Science, 4(3), 842-857.
[28] Hagfeldt, A., Boschloo, G., Sun, L., Kloo, L., & Pettersson, H. (2010). Dye-sensitized solar cells. Chemical reviews, 110(11), 6595-6663.
[29] Soedergren, S., Hagfeldt, A., Olsson, J., & Lindquist, S. E. (1994). Theoretical models for the action spectrum and the current-voltage characteristics of microporous semiconductor films in photoelectrochemical cells. The Journal of Physical Chemistry, 98(21), 5552-5556.
[30] Solbrand, A., Lindström, H., Rensmo, H., Hagfeldt, A., Lindquist, S. E., & Södergren, S. (1997). Electron transport in the nanostructured TiO2− electrolyte system studied with time-resolved photocurrents. The Journal of Physical Chemistry B, 101(14), 2514-2518.
[31] Nelson, J., & Chandler, R. E. (2004). Random walk models of charge transfer and transport in dye sensitized systems. Coordination Chemistry Reviews, 248(13-14), 1181-1194.
[32] Beley, M., Chartier, P., & Ern, V. (1981). Dye sensitization of ceramic semiconducting electrodes for photoelectrochemical conversion. Revue de Physique Appliquée, 16(1), 5-10.
[33] Vangari, M., Pryor, T., & Jiang, L. (2012). Supercapacitors: review of materials and fabrication methods. Journal of Energy Engineering, 139(2), 72-79.
[34] Jänes, A., Kurig, H., & Lust, E. (2007). Characterisation of activated nanoporous carbon for supercapacitor electrode materials. Carbon, 45(6), 1226-1233.
[35] Yan, J., Wei, T., Qiao, W., Fan, Z., Zhang, L., Li, T., & Zhao, Q. (2010). A high-performance carbon derived from polyaniline for supercapacitors. Electrochemistry communications, 12(10), 1279-1282.
[36] Liu, T., Pell, W. G., & Conway, B. E. (1997). Self-discharge and potential recovery phenomena at thermally and electrochemically prepared RuO2 supercapacitor electrodes. Electrochimica Acta, 42(23-24), 3541-3552.
[37] Chen, S. M., Ramachandran, R., Mani, V., & Saraswathi, R. (2014). Recent advancements in electrode materials for the high-performance electrochemical supercapacitors: a review. Int. J. Electrochem. Sci, 9(8), 4072-4085.
[38] Winter, M., & Brodd, R. J. (2004). What are batteries, fuel cells, and supercapacitors?.
[39] González, A., Goikolea, E., Barrena, J. A., & Mysyk, R. (2016). Review on supercapacitors: technologies and materials. Renewable and Sustainable Energy Reviews, 58, 1189-1206.
[40] Callahan, P. G., Stinville, J. C., Yao, E. R., Echlin, M. P., Titus, M. S., De Graef, M., ... & Pollock, T. M. (2018). Transmission scanning electron microscopy: Defect observations and image simulations. Ultramicroscopy, 186, 49-61.
[41]Al-Alwani, M. A., Mohamad, A. B., Ludin, N. A., Kadhum, A. A. H., & Sopian, K. (2016). Dye-sensitised solar cells: development, structure, operation principles, electron kinetics, characterisation, synthesis materials and natural photosensitisers. Renewable and Sustainable Energy Reviews, 65, 183-213.
[42] Kim, B. K., Sy, S., Yu, A., & Zhang, J. (2015). Electrochemical supercapacitors for energy storage and conversion. Handbook of Clean Energy Systems, 1-25.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊