跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.59) 您好!臺灣時間:2025/10/16 16:02
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林忻怡
研究生(外文):Hsin-ILin
論文名稱:數位口碑之研究-創造票房成功的幕後推手
論文名稱(外文):A Case Study of eWOM:The Invisible Hand to create Blockbuster Success
指導教授:李昇暾李昇暾引用關係
指導教授(外文):Sheng-Tun Li
學位類別:碩士
校院名稱:國立成功大學
系所名稱:經營管理碩士學位學程(AMBA)
學門:商業及管理學門
學類:企業管理學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:英文
論文頁數:36
中文關鍵詞:聲譽系統數位口碑文本分析線上聲譽階層
外文關鍵詞:reputation systemeWOMtext analysisreputation hierarchy
相關次數:
  • 被引用被引用:0
  • 點閱點閱:209
  • 評分評分:
  • 下載下載:2
  • 收藏至我的研究室書目清單書目收藏:0
數位口碑行銷,又稱病毒式行銷,是藉由帶起一波又一波具傳染力的討論熱潮引起潛在消費者的興趣。除了難以忽視的影響力,數位口碑更具有節省成本和消費者偕同製造商共創產品價值的效益。隨著網路科技的發達,由使用者自發性創造的數位口碑浪潮更是如火如茶地產出大量文字資料。如何在海量數據的時代裡有效率地檢閱資料,將需要借助線上聲譽系統的協助。
線上聲譽系統藉著紀錄使用者過去行為的歷史紀綠影響使用者間對未來的期待。若特定使用者的行為長期保持良好,將為他帶來長期的潛在利益。舉電子商務為例,有鑑於網路環境的匿名特性,買家會更樂於跟具良好聲譽的線上賣家進行互動,甚至付出更多財貨以交換其出售商品與服務。由此可知,線上聲譽系統可有效避免削價競爭,對買方或賣方都有難以言喻的好處。
數位口碑有以小成本創造大效益的特性,難免令人對它的關鍵成功因素感到好奇。取材自IMDb.com並整合所有評論者行為及文本相關特徵,以一個聲譽階層架構為基礎,透過階層性迴歸分三個層次去探討各大構面及子構面對電影票房營業總額的解釋力進而判斷各構面的重要性,並期許本研究為行銷從業人員在操作病毒式行銷時提供重要憑據。
This study aims at finding the hierarchical importance of all the factors correlated with eWOM in the purchasing process. So the significant variables related to the reputation system and text of movie reviews accompanied by the data of daily box office revenue are collected to examine the explanatory power by SPSS. Explanatory power from each of the dimensions on the three-layer reputation hierarchy can testify the importance respectively.
The top layer of our hierarchy is reputation followed by the sub-layer consisting of expertise and trustworthiness. The bottom layer underneath expertise is composed of knowledge embedded in each of the reviews and the competence contributed from each of the reviewer. Variables that belong to knowledge are mostly the text features and timeliness. Textual features are to represent the appropriate amount of knowledge in reviews. The reason why we place “timeliness” here is reviews from the public should be provided at least within the life cycle of movie. Additionally, to express competence, we implement the RFM model that is used to measure the influence of the reviewer. With regard to trustworthiness, whose attributes are consistent and reliable according to the Oxford English Dictionary, thus the sub-layer of trustworthiness is composed of quality of content and writing style whose factor attributes are deemed in accord with trustworthiness. The variables underneath quality of content are to some extent considered as the personality cue that are extracted from the perspectives of linguistics. As for writing style, we adopt the factors derived from LIWC factors and 4 crucial indicators of emotions.
Observing the statistics output by implementing SPSS, the empirical results of the hierarchical regression are quite intuitive. Coinciding with the online user behavior patterns, timely reviews of sufficient information and high rating elevate the box office revenue especially in the opening week in theaters. In the subsequent weeks, the reviews in the brief and easy expression can promote the box office. Paradoxically, consumers prefer diverse opinions in the comparatively objective expression while the rating are on the high side. Our decipherment of the statistics conform to the principle to manipulate the viral marketing that is to create the uninterrupted buzz online no matter it is positive or negative. Our study exhibits the importance to create the heat of online discussion and signals the marketers what is required to pay close attention.
Table of Contents
摘要 I
ABSTRACT II
誌謝 III
Table of Contents IV
List of Tables VI
List of Figures VII
CHAPTER 1 INTRODUCTION 1
CHAPTER 2 LITERATURE REVIEW 5
2.1. Concepts related to Reputation for traders, reviewers, or websites 5
2.2. Reputation Hierarchy 6
CHAPTER 3 METHODOLOGY AND ANALYSIS 9
3.1. Data preprocess 12
3.2. The factors of the bottom layer in Reputation hierarchy 15
3.3. Hierarchical Regression 22
CHAPTER 4 EXPERIMENT AND ANALYSIS 22
4.1. Experiment 22
4.2. Analysis 23
CHAPTER 5 CONCLUSION AND FUTURE WORK 31
5.1. Conclusion 31
5.2. Future Work 32
APPENDIX 33
REFERENCE 34
Aichner, T. (2012). The Zero Moment of Truth in Mass Customization. International Journal of Industrial Engineering and Management, 3(4), 173-178.
Argus Associates. (2001). The Argus clearinghouse. Available: http://www.clearinghouse.net.
Bradley, M. M., & Lang, P. J. (1999). Affective norms for English words (ANEW): Instruction manual and affective ratings: Technical Report C-1, The Center for Research in Psychophysiology, University of Florida.
Calvo, R. A., & Mac Kim, S. (2012). Emotions in text: dimensional and categorical models. Computational Intelligence.
Chen, C. C., & Tseng, Y. D. (2011). Quality evaluation of product reviews using an information quality framework. Decision Support Systems, 50(4), 755-768. doi: DOI 10.1016/j.dss.2010.08.023
Chu, W., & Chu, W. (1994). Signaling quality by selling through a reputable retailer: An example of renting the reputation of another agent. Marketing Science, 13(2), 177-189.
Fogg, B., Marshall, J., Laraki, O., Osipovich, A., Varma, C., Fang, N., . . . Swani, P. (2001). What makes Web sites credible?: a report on a large quantitative study. Paper presented at the Proceedings of the SIGCHI conference on Human factors in computing systems.
Fogg, B., & Tseng, H. (1999). The elements of computer credibility. Paper presented at the Proceedings of the SIGCHI conference on Human factors in computing systems: the CHI is the limit.
Gelman, A. (2007). Data analysis using regression and multilevel/hierarchical models: Cambridge University Press.
Ghose, A., & Ipeirotis, P. G. (2008). Estimating the Socio-Economic Impact of Product Reviews-mining text and reviewer characteristics. NYU Stern Research Working Paper.
Goodman, K. S. (1967). Reading: A psycholinguistic guessing game. Literacy Research and Instruction, 6(4), 126-135.
Henderson, B. D. (1979). The product portfolio: growth share matrix of the Boston Consulting Group. The strategy process: Concepts, contexts, cases, 678-680.
Hovland, C. I., Janis, I. L., & Kelley, H. H. (1953). Communication and persuasion; psychological studies of opinion change.
IMDb.com. Top 250. Available: http://www.imdb.com/chart/top?s=ur
Jarvenpaa, S. L., Tractinsky, N., & Saarinen, L. (1999). Consumer Trust in an Internet Store: A Cross‐Cultural Validation. Journal of Computer‐Mediated Communication, 5(2), 0-0.
Jiao, H., Liu, J., Li, J., & Liu, C. (2013). A Paradox for Trust and Reputation In the E-commerce World.
Jindal, N., & Liu, B. (2008). Opinion spam and analysis. Paper presented at the Proceedings of the international conference on Web search and web data mining.
Jurvetson, S., & Draper, T. (1997). Viral marketing. Netscape M-Files, 1.
King, L. A., & Pennebaker, J. W. (1999). Linguistic styles: Language use as an individual difference. Journal of Personality and Social Psychology, 77(6), 1296-1312.
Ku, Y.-C., Wei, C.-P., & Hsiao, H.-W. (2012). To whom should I listen? Finding reputable reviewers in opinion-sharing communities. Decision Support Systems, 53(3), 534-542. doi: 10.1016/j.dss.2012.03.003
Li, Y. M., Lin, C. H., & Lai, C. Y. (2010). Identifying influential reviewers for word-of-mouth marketing. Electronic Commerce Research and Applications, 9(4), 294-304. doi: DOI 10.1016/j.elerap.2010.02.004
Liu, Y. (2006). Word of mouth for movies: Its dynamics and impact on box office revenue. Journal of marketing, 74-89.
Pennebaker, J. W., Francis, M. E., & Booth, R. J. (2001). Linguistic inquiry and word count: LIWC 2001. Mahway: Lawrence Erlbaum Associates, 71.
Resnick, P., Zeckhauser, R., Friedman, E., & Kuwabara, K. (2000). Reputation systems. Communications of the ACM, 43(12), 45-48. doi: Doi 10.1145/355112.355122
Rieh, S. Y., & Belkin, N. J. (1998). Understanding judgment of information quality and cognitive authority in the WWW. Paper presented at the Proceedings of the 61st annual meeting of the american society for information science.
Rubin, V. L., & Liddy, E. D. (2006). Assessing Credibility of Weblogs.
Science Academy. (2001). How to find information on the Web. Available: http://www.scienceacademy.com/find.html
Simpson, J. A., & Weiner, E. S. (1989). The Oxford english dictionary (Vol. 2): Clarendon Press Oxford.
Su, Q., Huang, C.-R., & Chen, H. K.-Y. (2010). Evidentiality for Text Trustworthiness Detection. Proceedings of the 2010 Workshop on NLP and Linguistics: Finding the Common Ground, 10-17.
Toms, E. G., & Taves, A. R. (2004). Measuring user perceptions of Web site reputation. Information Processing & Management, 40(2), 291-317. doi: DOI 10.1016/j.ipm.2003.08.007
Weigelt, K., & Camerer, C. (1988). Reputation and corporate strategy: A review of recent theory and applications. Strategic Management Journal, 9(5), 443-454.
Whitmeyer, J. M. (2000). Effects of positive reputation systems. Social Science Research, 29(2), 188-207.
Wilson, P. (1983). Second-hand knowledge: An inquiry into cognitive authority: Greenwood Press Westport, CT.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top