跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.110) 您好!臺灣時間:2025/09/26 19:33
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:張恒銓
研究生(外文):Heng-Cyuan Jhang
論文名稱:低溫型三元系熔融鹽電解沉積鍍鉬之研究
論文名稱(外文):The Study of Electrodeposited Molybdenum From Low Temperature Molten of Urea-Acetamide-MoCl5
指導教授:楊肇政楊肇政引用關係
指導教授(外文):Chao-Chen Yang
口試委員:許信儀張錦泉楊肇政
口試委員(外文):Hsin-Yi HsuChao-Chen Yang
口試日期:2014-07-27
學位類別:碩士
校院名稱:國立雲林科技大學
系所名稱:化學工程與材料工程系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:91
中文關鍵詞:熔融鹽電解沉積尿素
外文關鍵詞:Molten saltElectrodepositedMolybdenumUrea
相關次數:
  • 被引用被引用:0
  • 點閱點閱:348
  • 評分評分:
  • 下載下載:2
  • 收藏至我的研究室書目清單書目收藏:0
本研究係以二元系尿素(Urea)為溶媒、MoCl5為溶質及三元系尿素(Urea)、乙醯胺(Acetamide)為溶媒、MoCl5為溶質之熔融鹽探討於添加微量溶質組成之輸送現象及改變各種電解型式對與鍍層鉬含量與表面型態之影響。
依實驗結果顯示,密度隨溫度下降及MoCl5增加而下降,導電度則隨溫度上升而上升,並隨MoCl5增加而有先增後降之趨勢。依Raman光譜結果顯示,隨MoCl5增加使得溶劑之3000~3500cm-1NH2對稱伸縮振動(symmetric stretching)消失及1300~1800cm-1 C=O伸縮振動(Stretching)消失並於700~850cm-1有Mo-O伸縮振動(Stretching)形成,且顯示Urea與MoCl5間所產生分子間作用力隨MoCl5之增加而增大,依實驗結果推定[MoCl4OC(NH2)2]+及MoCl6-等錯離子生成而影響導電度之大小。130℃定溫下以不鏽鋼SS304為工作電極,Zn/ZnCl2為參考電極,鉬為對極,針對不同Urea-MoCl5組成下,進行循環伏安曲線量測,發現在-1V~-4V之間有明顯還原峰,同時可知MoCl5添加,有利於MoCl6-之錯離子之還原沉積反應。
二元系熔融鹽依電解沉積實驗結果顯示;定電流電沉積鍍層緻密度與鉬含量依MoCl5增加而增加,鍍層緻密度與鉬含量於電流密度(0.1A/ cm2~0.5A/ cm2)有先增後降的趨勢;定電位電沉積鍍層緻密度與鉬含量依MoCl5增加而增加,於還原電位-4V有最佳表面型態;脈衝電沉積可提升鉬含量於38.2w%~57.7w%之間,亦可改善鍍層之表面型態,選擇適當之脈衝條件更可使鍍層達到最緻密化。
三元系熔融鹽依電解沉積實驗結果顯示,操作溫度可下降至100℃,在電流密度0.2A/cm2時有較佳表面型態與附著性;定電位電解沉積結果顯示,電位-4V時鉬含量較高。脈衝電流電解沉積結果顯示,改變脈衝條件可增加鉬含量(50.13~58.21wt%),而在脈衝條件為3:1有較佳表面型態與鉬含量,使表面緻密度上升,裂痕消失;脈衝電位電解沉積顯示,改變脈衝條件可增加鉬含量(45.59~63.17wt%)顆粒大小0.3 µm ,在脈衝條件為3:1有較佳表面型態與鉬含量,依照鍍層厚度與通電庫倫數之關係,推算三元系鉬金屬電解沉積速率約為0.0127 µm/min。

The effect of solute composition on transport properties, and the effect of electrolytic modulus on molybdenum coating content and surface morphology were studied in the low temperature binary (urea-MoCl5) molten salt and ternary (urea-acetamide-MoCl5) molten salt.
Experimental results showed that the density decreased with increasing temperature and MoCl5 content; the conductivity increased with increasing temperature, and rose first then dropped with MoCl5 content. According to Raman spectra, the increase of MoCl5 resulted in the disappearance of NH2 symmetric stretching (3000-3500 cm-1) and C=O stretching (1300-1800 cm-1) and the formation of Mo-O stretching (700-850 cm-1), which indicated that the intermolecular forces between urea and MoCl5 is enhanced with increasing MoCl5. This observation also helped explain how the [MoCl4OC(NH2)2]+ and MoCl6- complex ions affect the conductivity. At constant temperature of 130oC, a stainless steel SS304 working electrode, a Zn/ZnCl2 reference electrode, and a molybdenum electrode were used in different urea-MoCl5 compositions. Cyclic voltammetry measurement revealed that the reduction peak was observed between -1 ~ -4 V.
The electrodeposition results of the binary (urea-MoCl5) molten salt showed that the constant current electrodeposited molybdenum content increased from increasing MoCl5, and it increased followed by a decline between 0.1 ~ 0.5 A/cm2. The constant potential electrodeposited molybdenum content also had the same MoCl5 dependency with optimal surface morphology at potential of -4V. By using pulsed electrodeposition molybdenum content can be enhanced between 38.2 ~ 57.7 w%, and the surface morphology can be significantly improved.
For ternary (urea-acetamide-MoCl5) molten salt electrodeposition, the operating temperature was lowered to 100 oC. The constant current electrodeposition had better surface morphology and adhesion at current density of 0.2 A/cm2. High molybdenum content was also observed at -4V for constant potential electrodeposition. Pulsed current and potential electrodeposition improved the molybdenum content between 50.13 ~ 58.21 wt% and 45.59 ~ 63.17 wt%, respectively. Optimal surface morphology and molybdenum content was obtained at Ton:Toff = 3:1 with deposition rate of 0.0127 μm/min.

目錄
摘要 i
ABSTRACT ii
誌謝 iii
目錄 v
表目錄 vii
圖目錄 viii
一、緒論 1
1-1 前言 1
1-2 研究動機與目的 2
二、理論基礎 6
2-1 熔融鹽定義 6
2-2 導電度原理 11
2-3 密度原理 14
2-4 熔融鹽之電化學行為 15
2-5 循環伏安曲線(Cyclic voltammetry,C.V.) 16
2-6 脈衝電鍍法(Pulse electrodepsition) 17
2-7 電化學成核機制 18
2-8 電極極化作用 20
三、文獻回顧 21
3-1 金屬鉬鍍層發展 21
3-1-1 化學氣相沉積法(Vapor deposition,CVD) 21
3-1-2 物理氣相沉積(Physical vapor deposition,PVD) 22
3-1-3 等離子噴塗法(Plasma spraying) 22
3-1-4 熔融鹽電鍍法(Electrodeposition in molten salt) 22
四、實驗方法與步驟 30
4-1 實驗藥品 30
4-2 實驗儀器設備 30
4-3 實驗架構與流程 37
4-3-1 二元系熔融鹽浴實驗架構 37
4-3-2 三元系熔融鹽浴實驗架構 38
4-3-3 輸送性質實驗流程 39
五、結果與討論 42
5-1二元系熔融鹽Urea-MoCl5輸送現象探討 42
5-1-1二元系熔融鹽Urea-MoCl5密度測定 43
5-1-2二元系熔融鹽導電度測定 44
5-1-3二元系熔融鹽Raman 光譜分析 47
5-2循環伏安曲線分析(Cyclic Voltammetry,C.V.) 49
5-2-1、確定C.V.之較佳掃描速率 49
5-3二元系熔融鹽電解質之電解沉積反應 53
5-3-1二元系熔融鹽電解質之定溫130℃定電流電解沉積 53
5-3-2二元系熔融鹽電解質之定溫130℃定電位電解沉積 57
5-3-3二元系熔融鹽電解質之定溫130℃脈衝電流電解沉積 62
5-3-4二元系熔融鹽電解質之定溫130℃脈衝電位電解沉積 65
5-4三元系熔融鹽乙醯胺添加對電解沉積反應之影響 68
5-4-1選用乙醯胺為第三成分之動機 68
5-4-2 於定溫100℃下使用C.V決定acetamide之添加量 69
5-4-3三元系熔融鹽40%乙醯胺定電流與脈衝電流電解沉積 72
5-4-4三元系熔融鹽40%乙醯胺定電位與脈衝電位電解沉積 76
六、結論 86
參考文獻 88


參考文獻
1.jie, M., Effect of Chemical Vapor Deposition Temperature on Microstructures and Properties of Molybdenum coatings. Rare Metal Materials and Engineering, 2005. 34(12).
2.Ivanova, T., M. Surtchev, and K. Gesheva, Investigation of CVD molybdenum oxide films. Materials Letters, 2002. 53(4): p. 250-257.
3.Di Giuseppe, G. and J.R. Selman, Thin film deposition of Mo and Mo- compounds by PECVD from Mo(CO)6 and MoF6 as precursors: characterization of films and thermodynamic analysis. Journal of Electroanalytical Chemistry, 2003. 559: p. 31-43.
4.Gesheva, K., et al., Deposition and study of CVD—tungsten and molybdenum thin films and their impact on microelectronics technology. Applied surface science, 1993. 73: p. 86-89.
5.Schmid, U. and H. Seidel, Effect of substrate properties and thermal annealing on the resistivity of molybdenum thin films. Thin Solid Films, 2005. 489(1-2): p. 310-319.
6.Dhar, N., et al., An Investigation on Structural and Electrical Properties of RF-Sputtered Molybdenum Thin Film Deposited on Different Substrates. Energy Procedia, 2013. 33: p. 186-197.
7.R. Goswami, et al., Plasma sprayed Mo-Mo oxide nanocomposites: synthesis and characterization. Surface and Coatings Technology, 2001. 141: p. 220-226.
8.Uyulgan, B., et al., Friction and wear properties of Mo coatings on cast-iron substrates. Surface and Coatings Technology, 2003. 174-175: p. 1082-1088.
9.Ozdemir, I., Thermal behaviour of plasma-sprayed Mo coating on cast-iron substrate. Surface and Coatings Technology, 2003. 174-175: p. 1064-1069.
10.S.Senderoff and G.W. Mellors, Science, 1996. 153: p. 1575.
11.Nakajima, H., T. Nohira, and R. Hagiwara, Electrodeposition of metallic molybdenum films in ZnCl2–NaCl–KCl–MoCl3 systems at 250°C. Electrochimica Acta, 2006. 51(18): p. 3776-3780.
12.NITTA, K., et al., Electrodeposition of Molybdenum from Molten Salt.pdf. SEI TECHNICAL REVIEW, 2010.
13.Simka, W., D. Puszczyk, and G. Nawrat, Electrodeposition of metals from non-aqueous solutions. Electrochimica Acta, 2009. 54(23): p. 5307-5319.
14.H.F.H.Bright and J.G.Wurm ,Can.J.Chem,36615(1958).
15.F.R.Clayton,G.Mamantov and D.L.Manning, J.Electrochem. Soc,120, 1193(1973).
16.N.Ene and S.Zuca, j. of Appl.Electrochem,25,671(1995).
17.A. Girginov,T.Z.Tzvetkoff and MBojinov,J.Appl.Electrochem,25,993(195).
18.G.M.Haarberg,W.Rolland,A.serten and J.Thonstad.,J.Appl.Electrochem.,23,217 (1993).
19.J.De Lepinay,j.Bouteillon,S.Traore,D.Renaud and M.J.Barbier,J.Appl. Electrochem. 17,294(1987).
20.G.W.Mellors and S.Senderoff,J.Electrochem.Soc.113,60(1966).
21.G.W.Mellors and S.Senderoff,J.Electrochem.Soc.113,66(1966).
22.G.W.Mellors and S.Senderoff,J.Electrochem.Soc.114,556(1967).
23.G.W.Mellors and S.Senderoff,J.Electrochem.Soc.118,220(1971).
24.Qing, w., et al., Physicochemical properties of Urea-ZnCl2 eutectic based ionic liquid. JOURNAL OFRAREEARTHS, 2011. 29: p. 195.
25.Yanga, C.-C., M.-F. Shub, and P.-Y. Chengc, The Electrical Conductivity of the Molten Binary Systems CO(NH2)2-MNO3 (M = Li, Na, NH4). Z. Naturforsch, 2005. 60a: p. 848 – 852.
26.Su-mei, Z., et al., Studies on the binary mixture of LiCl-Urea and its ionic behavior. Chemical Research and Application, 2005. 17: p. 3.
27.張國億,低溫型熔融鹽電解質浴脈衝電解鍍鎢.雲林科技大學,2007.碩士論文.
28.丁忠威, 含鋰室溫型熔融鹽LiTFSI(溶質)-醯胺類(溶劑)之輸送特性及其微量添加對於鋰離子二次電池性質之影響. 雲林科技大學, 2008. 碩士論文.
29.許晨瑞, 含鋰室溫型熔融鹽電解質(LiTFSI-acetamide)之輸送特性及其微量添加對於鋰離子二次電池性質之影響. 雲林科技大學, 2007. 碩士論文.
30.鄧晉嘉, 含鋰室溫型熔融鹽電解質(LiTFSI-urea)之輸送特性及其微量添加對於鋰離子二次電池性質之影響. 雲林科技大學, 2007. 碩士論文.
31.HARVEY, P.D., TRUCTURAL AND SPECTROSCOPIC PROPERTIES OF METAL-UREA COMPLEXES. Coordination Chemistry Reviews, 1987. 76: p. 237-264.
32.Ibrahim, O.B., et al., Chemical Studies on the Uses of Urea Complexes to Synthesize Compounds Having Electrical and Biological Applications. International Journal of Material Science, 2012. 2(3): p. 67-82.
33.Kochetova, S. and N.K. Tumanova, ELECTROLYSIS OF CARBAMIDE-CHLORIDE MELTS AT INERT ELECTRODES, in New Carbon Based Materials for Electrochemical Energy Storage Systems: Batteries, Supercapacitors and Fuel Cells. 2006, Springer. p. 425-432.
34.Lai, H., et al., Microstructure and magnetic properties of electrodeposited Gd-Co alloy films. Rare Metals, 2008. 27(6): p. 586-590.
35.Li, M., Z. Wang, and R.G. Reddy, Cobalt electrodeposition using urea and choline chloride. Electrochimica Acta, 2014. 123: p. 325-331.
36.洪福鈞, 熔融鹽浴鋁電鍍層之探討. 大同工學院, 1991. 碩士論文.
37.吳文宏, 低溫型熔融鹽浴鉑鈦電極製備與電化學行為之影響. 雲林科技大學, 2001. 碩士論文.
38.周政偉, 含EMIC低溫型熔融鹽電解質之輸送特性及白金鍍層之電解披覆研究. 雲林科技大學, 2005. 碩士論文.
39.劉邦彥, 室溫型熔融鹽電解沉積法製備ZnO薄膜應用於染料敏化太陽能電池之研究. 雲林科技大學, 2007. 碩士論文.
40.林佳緯, 含鋰室溫型離子液體之輸送特性及其微量添加對於鋰離子二次電池性質之影響. 雲林科技大學, 2009. 碩士論文.
41.邱泳霖, 室溫型熔融鹽電解沉積法製備染料敏化太陽能電池用ZnO薄膜電極之研究. 雲林科技大學, 2009. 碩士論文.
42.江亞承, 低溫型三元系熔融鹽電解沉積鍍鉬之研究. 雲林科技大學, 2012. 碩士論文.
43.陳威統, 高溫型熔融氯化鹽電解質浴電解製備鎂金屬之研究. 雲林科技大學, 2012. 碩士論文.
44.董諺璋, 非水溶液電解質浴脈衝電解鍍鎢之研究. 雲林科技大學, 2012. 碩士論文.
45.賴盈傑, 高溫型熔融氯化鹽電解質浴脈衝電解精煉鎂金屬之研究. 雲林科技大學, 2013. 碩士論文.
46.徐明豐, 室溫型熔融鹽電解質雌性薄膜之電解電鍍研究. 雲林科技大學, 2001. 碩士論文.
47.許信儀, 低溫型熔融鹽電解質輸送特性及相關應用之研究 國立雲林科技大學, 2003. 博士論文.
48.Gale, D.G.L.a.R.J., Molten Salt Techniques. VOl, 1983: p. 1.
49.G. S. Kell and A. R. Gordon, J. Am. Chem. Soc., 81(3207), 1959.
50.H. Y. Hsu and C. C. Yang, Z. Naturforsch. 56a(670), 2001.
51.H. Y. Hsu and C. C. Yang, Z. Naturforsch. 57a(129), 2002.
52.M. F. Shu, H. Y. Hsu and C. C. Yang, Z. Naturforsch. 58a(451), 2003.
53.H. Y Hsu and C. C. Yang, J. Human. Appl. Sci., 2(73), 2004.
54.C. C. Yang and M. F. Shu, Z. Naturforsch. 60a(444), 2005.
55.C. C. Yang, M. F. Shu, and P. Y. Cheng, Z. Naturforsch. 60a(848), 2005.
56.陳泊余, 低溫融熔鹽的製備與電化學上的應用,國立成功大學[博士論文], 2000.
57.楊肇政 , 許信儀 . 低溫型熔融鹽電解鍍鉬之研究 . 國立雲林科技大學 刊, 第 9卷, 第 3期, 199 -206,(2000). 206,(2000). .
58.Ene, N. and C. Donath, Texture of electrolytic Mo deposition from molten alkali halide. Journal of Optoelectronics and Advanced Materials, 2006. 8(2): p. 708.
59.Gao, B., T. Nohira, and R. Hagiwara, Electrodeposition of Molybdenum in LiTFSI-CsTFSI Melt at 150ºC. ECS Transactions, 2007. 3(35): p. 323-331.
60.Lee, S.-H., et al., Raman spectroscopic studies of electrochromic a-MoO3 thin films. Solid State Ionics, 2002. 147: p. 129–133.
61.Jianchao, W., et al., Study of Binary Solid-liquid Phase Diagram of Acetamide-urea. :Journal of Qinghai Normal University(Natural Science Edition), 2010. 1: p. 31-34.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊