跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.103) 您好!臺灣時間:2025/11/22 04:41
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:蕭閔文
研究生(外文):Hsiao, Min-Wen
論文名稱:優化微晶矽單接面與雙接面太陽電池: 藉由最佳化N型微晶矽與微晶矽氧作為摻雜與背反射層
論文名稱(外文):Improvement of Microcrystalline Silicon Single-Junction and Tandem Solar Cells by Optimizing N-Type Microcrystalline Silicon and Silicon Oxide as Doped and Back Reflecting Layers
指導教授:蔡娟娟蔡娟娟引用關係
指導教授(外文):Tsai, Chuang-Chuang
口試委員:冉曉雯李柏璁紀國鐘
口試委員(外文):Zan, Hsiao-WenLee, Po-TsungChi, Gou-Chung
口試日期:2014-11-19
學位類別:碩士
校院名稱:國立交通大學
系所名稱:光電工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:英文
論文頁數:94
中文關鍵詞:太陽電池矽薄膜微晶矽微晶矽氧背反射層摻雜層
外文關鍵詞:Solar CellSilicon Thin-filmMicrocrystallineMicrocrystalline Silicon OxideBack Reflecting LayerDoped Layer
相關次數:
  • 被引用被引用:0
  • 點閱點閱:208
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
低能隙之氫化微晶矽可有效吸收長波長之光譜,非常適合應用於高效率薄膜串疊型太陽電池中作為底層之子電池。在優化微晶矽薄膜太陽電池中,提升長波長的光利用率 (700-1100 nm) 是重要課題之一。因此,本研究使用優化的背反射結構以提升光利用率進而提升微晶矽薄膜太陽電池之轉換效率。研究中的微晶矽薄膜太陽電池是由27.12 MHz的電漿輔助化學氣相沉積系統所製作。首先,優化高電導之n型微晶矽作為摻雜層以進一步提升載子收集能力;另一方面,優化低折射率之n型微晶矽氧作為背反射層以提升電池背接觸面的反射量。研究中,使用最佳化之n型微晶矽與微晶矽氧作為摻雜與背反射層,並與不同的背反射層做比較,發現n型微晶矽氧比起透明導電氧化層用作為太陽電池背反射層具有更好的短路電流與開路電壓,非常有潛力能取而代之,並同時簡化了電池的製程。實驗成果於單接面微晶矽薄膜太陽電池達到之最佳轉換效率為7.2%,開路電壓為0.50 V、短路電流為20.83 mA/cm2以及填充因子為69.9%;雙接面太陽電池最佳轉換效率為10.3%,開路電壓、短路電流以及填充因子分別為1.35 V、10.62 mA/cm2及72.0%。
The hydrogenated microcrystalline silicon (μc-Si:H) thin-film solar cell is the promising candidate for employing as the bottom cell in the multi-junction device due to its higher absorption coefficient in the long-wavelength range (700-1100 nm). A well-operated back reflecting layer (BRL) in the μc-Si:H solar cell is quite essential to assist in reflecting unabsorbed photons back into the absorbing layer, resulting in increasing the photon absorption and improving the cell performance. To improve the μc-Si:H cell performance, the n-type hydrogenated microcrystalline silicon (μc-Si:H(n)) and microcrystalline silicon oxide (μc-SiOx:H(n)) materials were characterized and optimized for the employments as the doped layer and the BRL, respectively. In this thesis, the μc-Si:H solar cells were prepared by the 27.12 MHz radio-frequency plasma-enhanced chemical vapor deposition (PECVD) system. By adjusting the deposition condition of RF power, H2-to-SiH4 flow ratio and pressure, the highly conductive μc-Si:H(n) materials were obtained and employed as the doped layer to establish the built-in electric field and facilitate the carrier collection. Moreover, the lower refractive index μc-SiOx:H(n) materials were employed as BRLs to improve the reflection and raise the absorption of absorbers in μc-Si:H solar cells. To meet the requirements of employing as BRLs, the adjustments of μc-SiOx:H(n) in the H2-to-SiH4 flow ratio and CO2-to-SiH4 flow ratio were executed.
The applications of different BRLs in μc-Si:H solar cells were investigated. By using μc-SiOx:H(n) as an alternative to ITO, the higher external quantum efficiency (EQE) and improved cell performance were achieved. Furthermore, the fabrication processes can be simplified by the in-situ processes of μc-SiOx:H(n) compared to the ex-situ sputtering steps of ITO. The optimal cell efficiency 7.2% in μc-Si:H single-junction solar cells was obtained, with the VOC of 0.50 V, JSC of 20.83 mA/cm2 and FF of 69.9%. In the a-Si:H/μc-Si:H tandem cells, the best cell efficiency 10.3% was achieved, with the VOC of 1.35 V, JSC of 10.62 mA/cm2 and FF of 72.0%.

中文摘要 I
Abstract II
Acknowledgements IV
Content VI
Table Captions IX
Figure Captions XI
Chapter 1 INTRODUCTION 1
1.1 Problems of Global Energy Supply and Possible Solutions 1
1.2 Introduction to Photovoltaic (PV) Technology 4
1.2.1 Current Development of PV Technology 4
1.2.2 Thin-Film Solar Cell Technology 6
1.2.3 Silicon-Based Thin-Film Solar Cells 7
1.3 Motivations 10
Chapter 2 LITURATURE REVIEW 11
2.1 Operation Principle of Solar Cells 11
2.2 Carrier Collection Mechanism with p-n or p-i-n Junction 13
2.3 Introduction to c-Si and a-Si:H 15
2.4 Stabler-Wronski Effect - Light Induced Degradation 16
2.5 Introduction to µc-Si:H 17
2.6 Process of Doping 19
2.7 Plasma-Enhanced Chemical Vapor Deposition System 20
2.8 µc-Si:H Solar Cell 21
2.9 Back Reflector and Back Reflecting Layer 22
2.10 N-Type Hydrogenated Microcrystalline Silicon Oxide 22
Chapter 3 EXPERIMENT DETAILS 24
3.1 RF-PECVD System 24
3.2 AM 1.5 Light Source 25
3.3 Analytical Tools 26
3.3.1 Raman Spectroscopy 26
3.3.2 Measurement of Elemental Composition 28
3.3.3 Definition of Optical Bandgap (E04) 29
3.3.4 Measurement of Dark Conductivity 29
3.3.5 X-Ray Diffraction (XRD) 31
3.3.6 Spectroscopic Ellipsometry 31
3.3.7 Fourier Transform Infra-Red (FTIR) Spectroscopy 32
3.3.8 Measurement of J-V Characteristic and Cell Efficiency 33
3.3.9 Measurement of External Quantum Efficiency 34
Chapter 4 RESULTS AND DISCUSSION 36
4.1 Preparation and Characterization of Highly Conductive μc-Si:H(n) as Doped Layers in μc-Si:H Solar Cells 36
4.1.1 Effect of RF Power on μc-Si:H(n) Film Properties 36
4.1.2 Effect of H2-to-SiH4 Flow Ratio and Pressure on μc-Si:H(n) Film Properties 43
4.1.3 Employment of Highly Conductive μc-Si:H(n) as Doped Layers in μc-Si:H Cells 47
4.2 Preparation and Characterization of Lower Refractive Index μc-SiOx:H(n) as Back Reflecting Layers (BRL) in μc-Si:H Solar Cells 49
4.2.1 Effect of CO2-to-SiH4 Flow Ratio on μc-SiOx:H(n) Film Properties 49
4.2.2 Effect of H2-to-SiH4 Flow Ratio on μc-SiOx:H(n) Film Properties 51
4.2.3 Employment of Lower Refractive Index μc-SiOx:H(n) as BRLs in μc-Si:H Solar Cells 59
4.2.4 Comparison of μc-Si:H Solar Cells with Lower Refractive Index μc-SiOx:H(n) as Back Reflecting Layers 65
4.3 Application of Improved μc-Si:H Solar Cells with Double N-Layer Structures and Wider Bandgap μc-SiOx:H(p) as P-Layers in a-Si:H/μc-Si:H Tandem Solar Cells 73
4.3.1 Employment of μc-Si:H(n)/μc-SiOx:H(n) Double N-Layer Structures in a-Si:H/μc-Si:H Tandem Solar Cells 73
4.3.2 μc-Si:H Solar Cells Employing Wider Bandgap μc-SiOx:H(p) as P-Layers for Reducing Optical Absorption Losses 77
Chapter 5 CONCLUSION 84
Chapter 6 FUTURE WORK 86
Chapter 7 REFERENCES 87

[1] M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, "Solar cell efficiency tables (version 44)," Progress in Photovoltaics: Research and Applications, vol. 22, p. 701, 2014.
[2] K. Cnops, B. P. Rand, D. Cheyns, B. Verreet, M. A. Empl, and P. Heremans, "8.4% efficient fullerene-free organic solar cells exploiting long-range exciton energy transfer," Nature communications, vol. 5, 2014.
[3] B. Yan, G. Yue, L. Sivec, J. Yang, S. Guha, and C.-S. Jiang, "Innovative dual function nc-SiOx: H layer leading to a> 16% efficient multi-junction thin-film silicon solar cell," Applied Physics Letters, vol. 99, p. 113512, 2011.
[4] S. Guha, J. Yang, and B. Yan, "High efficiency multi-junction thin film silicon cells incorporating nanocrystalline silicon," Solar Energy Materials and Solar Cells, vol. 119, p. 1, 2013.
[5] L. V. Mercaldo, P. Delli Veneri, I. Usatii, E. M. Esposito, and G. Nicotra, "Properties of mixed phase n-doped silicon oxide layers and application in micromorph solar cells," Solar Energy Materials and Solar Cells, vol. 119, p. 67, 2013.
[6] T. Söderström, F. J. Haug, X. Niquille, and C. Ballif, "TCOs for nip thin film silicon solar cells," Progress in Photovoltaics: Research and Applications, vol. 17, p. 165, 2009.
[7] S. Kim, H. Lee, J.-W. Chung, S.-W. Ahn, and H.-M. Lee, "n-Type microcrystalline silicon oxide layer and its application to high-performance back reflectors in thin-film silicon solar cells," Current Applied Physics, vol. 13, p. 743, 2013.
[8] A. Einstein, "The photoelectric effect," Ann. Phys, vol. 17, p. 132, 1905.
[9] J. Poortmans and V. Arkhipov, Thin film solar cells: fabrication, characterization and applications vol. 5: John Wiley &; Sons, 2006.
[10] S. Guha, K. Narasimhan, and S. Pietruszko, "On light‐induced effect in amorphous hydrogenated silicon," Journal of Applied Physics, vol. 52, p. 859, 1981.
[11] S. Sriraman, S. Agarwal, E. S. Aydil, and D. Maroudas, "Mechanism of hydrogen-induced crystallization of amorphous silicon," Nature, vol. 418, p. 62, 2002.
[12] D. Staebler and C. Wronski, "Reversible conductivity changes in discharge‐produced amorphous Si," Applied Physics Letters, vol. 31, p. 292, 1977.
[13] A. Kołodziej, "Staebler-Wronski effect in amorphous silicon and its alloys," Opto-electronics review, vol. 12, p. 21, 2004.
[14] M. Stutzmann, "Metastability in amorphous and microcrystalline semiconductors," Amorphous and microcrystalline semiconductor devices, vol. 2, p. 129, 1992.
[15] R. Biswas and B. Pan, "Mechanisms of metastability in hydrogenated amorphous silicon," Solar energy materials and solar cells, vol. 78, p. 447, 2003.
[16] C. C. Tsai, G. B. Anderson, and R. Anderson, "Growth of Amorphous, Microcrystalline, and Epitaxial Silicon in Low Temperature Plasma Deposition," MRS Online Proceedings Library, vol. 192, 1990.
[17] A. Matsuda, "Growth mechanism of microcrystalline silicon obtained from reactive plasmas," Thin Solid Films, vol. 337, p. 1, 1999.
[18] C. Wronski and R. Collins, "Phase engineering of a-Si: H solar cells for optimized performance," Solar Energy, vol. 77, p. 877, 2004.
[19] W. Spear and P. L. Comber, "Electronic properties of substitutionally doped amorphous Si and Ge," Philosophical Magazine, vol. 33, p. 935, 1976.
[20] A. Shah, Thin-film silicon solar cells: EPFL press, 2010.
[21] A. Matsuda and K. Tanaka, "Plasma spectroscopy—glow discharge deposition of hydrogenated amorphous silicon," Thin Solid Films, vol. 92, p. 171, 1982.
[22] T. Grundler, A. Lambertz, and F. Finger, "N-type hydrogenated amorphous silicon oxide containing a microcrystalline silicon phase as an intermediate reflector in silicon thin film solar cells," physica status solidi (c), vol. 7, p. 1085, 2010.
[23] B. Sopori, J. Madjdpour, B. Von Roedern, W. Chen, and S. Hegedus, "Optical losses in amorphous silicon solar cells due to back reflectors," in MRS Proceedings, p. 777, 1997.
[24] P. Delli Veneri, L. V. Mercaldo, and I. Usatii, "Silicon oxide based n-doped layer for improved performance of thin film silicon solar cells," Applied Physics Letters, vol. 97, 2010.
[25] S. Inthisang, K. Sriprapha, S. Miyajima, A. Yamada, and M. Konagai, "Hydrogenated amorphous silicon oxide solar cells fabricated near the phase transition between amorphous and microcrystalline structures," Japanese Journal of Applied Physics, vol. 48, p. 122402, 2009.
[26] L. Layeillon, A. Dollet, and B. Despax, "Plasma enhanced deposition of a-Si-H: comparison of two reactor arrangements," The Chemical Engineering Journal and The Biochemical Engineering Journal, vol. 58, p. 1, 1995.
[27] H. Caquineau and B. Despax, "Influence of the reactor design in the case of silicon nitride PECVD," Chemical engineering science, vol. 52, p. 2901, 1997.
[28] C. V. Raman and K. S. Krishnan, "A new type of secondary radiation," Nature, vol. 121, p. 501, 1928.
[29] R. L. McCreery, Raman spectroscopy for chemical analysis vol. 225: John Wiley &; Sons, 2005.
[30] D. Han, J. Lorentzen, J. Weinberg-Wolf, L. McNeil, and Q. Wang, "Raman study of thin films of amorphous-to-microcrystalline silicon prepared by hot-wire chemical vapor deposition," Journal of applied physics, vol. 94, p. 2930, 2003.
[31] M. N. Islam and S. Kumar, "Influence of crystallite size distribution on the micro-Raman analysis of porous Si," Applied Physics Letters, vol. 78, p. 715, 2001.
[32] S. Klein, F. Finger, R. Carius, and M. Stutzmann, "Deposition of microcrystalline silicon prepared by hot-wire chemical-vapor deposition: The influence of the deposition parameters on the material properties and solar cell performance," Journal of applied physics, vol. 98, p. 024905, 2005.
[33] A. Gordijn, J. Rath, and R. Schropp, "High‐efficiency µc‐Si solar cells made by very high‐frequency plasma‐enhanced chemical vapor deposition," Progress in Photovoltaics: Research and Applications, vol. 14, p. 305, 2006.
[34] V. A. Drits, J. Srodon, and D. D. Eberl, "XRD measurement of mean crystallite thickness of illite and illite/smectite; Reappraisal of the Kubler index and the Scherrer equation," Clays and Clay Minerals, vol. 45, p. 461, 1997.
[35] R. Azzam, A.-R. Zaghloul, and N. Bashara, "Ellipsometric function of a film-substrate system: Applications to the design of reflection-type optical devices and to ellipsometry," JOSA, vol. 65, p. 252, 1975.
[36] A. C. Bronneberg, A. H. M. Smets, M. Creatore, and M. C. M. van de Sanden, "On the oxidation mechanism of microcrystalline silicon thin films studied by Fourier transform infrared spectroscopy," Journal of Non-Crystalline Solids, vol. 357, p. 884, 2011.
[37] P. Babal, J. Blanker, R. Vasudevan, A. H. M. Smets, and M. Zeman, "Microstructure analysis of n-doped μc-SiOx:H(n) reflector layers and their implementation in stable a-Si:H p-i-n junctions," in Photovoltaic Specialists Conference (PVSC), 2012 38th IEEE, p. 000321, 2012.
[38] C. T. Kirk, "Quantitative analysis of the effect of disorder-induced mode coupling on infrared absorption in silica," Physical Review B, vol. 38, p. 1255, 1988.
[39] M. Niwano, J. i. Kageyama, K. Kurita, K. Kinashi, I. Takahashi, and N. Miyamoto, "Infrared spectroscopy study of initial stages of oxidation of hydrogen‐terminated Si surfaces stored in air," Journal of Applied Physics, vol. 76, p. 2157, 1994.
[40] S. Guha, J. Yang, and B. Yan, "High efficiency multi-junction thin film silicon cells incorporating nanocrystalline silicon," Solar Energy Materials and Solar Cells, vol. 119, p. 1, 2013.
[41] R. E. Hollingsworth and P. K. Bhat, "Doped microcrystalline silicon growth by high frequency plasmas," Applied Physics Letters, vol. 64, p. 616, 1994.
[42] S. C. Saha, A. K. Barua, and S. Ray, "The role of hydrogen dilution and radio frequency power in the formation of microcrystallinity of n‐type Si:H thin film," Journal of Applied Physics, vol. 74, p. 5561, 1993.
[43] S. C. Saha and S. Ray, "Development of highly conductive n‐type μc‐Si:H films at low power for device applications," Journal of Applied Physics, vol. 78, p. 5713, 1995.
[44] C. C. Tsai, G. B. Anderson, and R. Thompson, "Low temperature growth of epitaxial and amorphous silicon in a hydrogen-diluted silane plasma," Journal of Non-Crystalline Solids, vol. 137–138, Part 2, p. 673, 1991.
[45] M. Kondo, M. Fukawa, L. Guo, and A. Matsuda, "High rate growth of microcrystalline silicon at low temperatures," Journal of Non-Crystalline Solids, vol. 266–269, Part 1, p. 84, 2000.
[46] T. Matsui, A. Matsuda, and M. Kondo, "High-Rate Plasma Process for Microcrystalline Silicon: Over 9% Efficiency Single Junction Solar Cells," MRS Online Proceedings Library, vol. 808, 2004.
[47] T. Jana and S. Ray, "Microcrystalline silicon phase in silicon oxide thin films developed by photo-CVD technique," Thin Solid Films, vol. 376, p. 241, 2000.
[48] S. Iftiquar, "The roles of deposition pressure and rf power in opto-electronic properties of a-SiO:H films," Journal of Physics D: Applied Physics, vol. 31, p. 1630, 1998.
[49] A. Janotta, R. Janssen, M. Schmidt, T. Graf, M. Stutzmann, L. Görgens, et al., "Doping and its efficiency in a-SiOx :H," Physical Review B, vol. 69, p. 115206, 2004.
[50] A. Lambertz, T. Grundler, and F. Finger, "Hydrogenated amorphous silicon oxide containing a microcrystalline silicon phase and usage as an intermediate reflector in thin-film silicon solar cells," Journal of Applied Physics, vol. 109, 2011.
[51] F.-J. Haug, T. Söderström, O. Cubero, V. Terrazzoni-Daudrix, and C. Ballif, "Plasmonic absorption in textured silver back reflectors of thin film solar cells," Journal of Applied Physics, vol. 104, 2008.
[52] Y.-F. Tsai, "Development of Large Bandgap and Highly Conductive N-type uc-SiOx as Back Reflecting Layer for Silicon Thin-Film Solar Cells," National Chiao Tung University, Master Thesis, 2013.
[53] G. Yue, B. Yan, C. Teplin, J. Yang, and S. Guha, "Optimization and characterization of i/p buffer layer in hydrogenated nanocrystalline silicon solar cells," Journal of Non-Crystalline Solids, vol. 354, p. 2440, 2008.
[54] A. Lambertz, V. Smirnov, T. Merdzhanova, K. Ding, S. Haas, G. Jost, et al., "Microcrystalline silicon–oxygen alloys for application in silicon solar cells and modules," Solar Energy Materials and Solar Cells, vol. 119, p. 134, 2013.
[55] S. Klein, S. Wieder, S. Buschbaum, M. Rohde, K. Schwanitz, T. Stolley, et al., "Large area thin film silicon modules with 10% efficiency for production," physica status solidi (c), vol. 8, p. 2978, 2011.
[56] P. Cuony, M. Marending, D. T. L. Alexander, M. Boccard, G. Bugnon, M. Despeisse, et al., "Mixed-phase p-type silicon oxide containing silicon nanocrystals and its role in thin-film silicon solar cells," Applied Physics Letters, vol. 97, p. 213502, 2010.
[57] A. Lambertz, F. Finger, B. Holländer, J. Rath, and R. Schropp, "Boron-doped hydrogenated microcrystalline silicon oxide (μc-SiOx: H) for application in thin-film silicon solar cells," Journal of non-crystalline solids, vol. 358, p. 1962, 2012.
[58] K. Schwanitz, S. Klein, T. Stolley, M. Rohde, D. Severin, and R. Trassl, "Anti-reflective microcrystalline silicon oxide p-layer for thin-film silicon solar cells on ZnO," Solar Energy Materials and Solar Cells, vol. 105, p. 187, 2012.
[59] P.-L. Chen, "Enhanced Light Management in Silicon-Based Thin-Film Solar Cells by Developing Wide Bandgap P-Type Doped Layer and Self-Assembled Ag Nanoparticle Back-Reflecting Structure " , National Chiao Tung University, Doctoral Proposal, 2014.
[60] A. Lambertz, V. Smirnov, T. Merdzhanova, K. Ding, S. Haas, G. Jost, et al., "Microcrystalline silicon–oxygen alloys for application in silicon solar cells and modules," Solar Energy Materials and Solar Cells, vol. 119, p. 134, 2013.
[61] B. Bills, X. Liao, D. W. Galipeau, and Q. H. Fan, "Effect of Tunnel Recombination Junction on Crossover Between the Dark and Illuminated Current-Voltage Curves of Tandem Solar Cells," Electron Devices, IEEE Transactions on, vol. 59, p. 2327, 2012.
[62] P. Cuony, D. T. L. Alexander, I. Perez-Wurfl, M. Despeisse, G. Bugnon, M. Boccard, et al., "Silicon Filaments in Silicon Oxide for Next-Generation Photovoltaics," Advanced Materials, vol. 24, p. 1182, 2012.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊