跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.188) 您好!臺灣時間:2026/01/16 04:07
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林育璇
研究生(外文):Yu-hsuan Lin
論文名稱:奈米矽發光機制之研究
論文名稱(外文):The Study of Optical Properties of Nano Crystal Silicon
指導教授:李晁逵
指導教授(外文):Chao-Kuei Lee
學位類別:碩士
校院名稱:國立中山大學
系所名稱:光電工程研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:64
中文關鍵詞:傅立葉轉換紅外光儀奈米矽微光激發光譜時間解析光激螢光
外文關鍵詞:micro-PLFTIRTRPLnc-Si
相關次數:
  • 被引用被引用:0
  • 點閱點閱:651
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文是以微光激發光譜系統(Micro-Photoluminescence)與時間解析光激螢光系統(Time-Resolved Photoluminescence)以及傅立葉轉換紅外光儀(Fourier Transform Infrared)為基礎,透過對奈米矽光學特性分析試圖對其發光機制做一探討。這批奈米矽樣品中均由氣體SiH4 以75.6 kcal/mol的能量與氣體N2O以101.5 kcal/mol的能量以電漿增強化學氣相沉積法製作而成。由微光激發光譜系統的分析中我們看到發光波長、強度與半高寬均隨沉積時間之增加有藍移、增強與變窄的現象,透過傅立葉轉換紅外光儀的分析發現隨著退火與沉積的時間增加,表面Si-O-Si鍵的成分也隨著提升。此外,透過時間解析光激螢光系統的分析,發現生命期有隨著沉澱時間增加而下降的趨勢。因此提出因為受到熱處理的影響導致Si-H鍵的減少,Si-O-Si鍵的增加引發輻射復合機率的增加而導致PL波長藍移與強度增強的螢光,並用此觀點解釋此批樣品在微光激發光譜系統所看到的光譜表現。
In this thesis, using Micro-Photoluminescence (μ-PL), continuous-wave time-resolved photoluminescence (CWPL/TRPL) and Fourier transform infrared (FTIR) analysis, silicon rich nc-Si (nano-crystal Silicon) samples with various emission wavelength (760 30 nm and 390 10 nm) are investigated to understand the proper explanation of the emission mechanism. The model of increasing Si-O -Si bondings during thermal process by enhancing the annealing or deposition time, induced blue shifts in PL spectrums and increased the rate of Schockley-Read-Hall recombination which resulted in the enhancement of its fluorescence is provided.
目錄
摘要 I
Abstract II
第一章 緒論 1
1-1 引言 1
1-2 奈米材料之特性 5
1-3 矽光子學 7
1-3.1 以矽製作而成的光電元件 8
1-3.2 奈米矽晶的背景 9
1-4 目標與動機 10
第二章 實驗原理 11
2-1 螢光 11
2-2 實驗系統原理 14
2-2.1 微光激發光譜 14
2-2.2 時間解析光激螢光系統 16
2-2.3 傅立葉轉換紅外光儀 18
第三章 實驗設備與方法 19
3-1 樣品準備 19
3-2 系統介紹 20
3-2.1微光激發光譜 20
3-2.2 時間解析光激螢光系統 22
3-2.3傅立葉轉換紅外光儀 24
3-3 實驗步驟 25
3-3.1微光激發光譜 25
3-3.2 時間解析光激螢光系統 26
3-3.3傅立葉轉換紅外光儀 27
第四章 結果與討論 29
4-1 微光激發光譜 29
4-2 傅立葉轉換紅外光儀 40
4-3 時間解析光激螢光系統 45
第五章 結論與未來展望 51
參考文獻 52
[1] R. P. Feynman, "There''s Plenty of Room at the Bottom" A transcript of the classic talk that Richard Feynman gave on December 29th 1959 at the annual meeting of the American Physical Society at the California Institute of Technology (Caltech) was first published in the February 1960 issue of Caltech''s Engineering and Science, which owns the copyright. It has been made available on the web at http://www.zyvex.com/nanotech/feynman.html
[2] 馬遠榮, “低維奈米材料”, 科學發展382期, 2004年10月
[3] 吳明佳, “以路徑積分求易行相變模型的解析解,” 物理雙月刊(廿四卷二期)2002年4月
[4] Y. K. Chang, H. H. Hsieh, W. F. Pong, F. Z. Chien, P. K. Tseng, M. H. Tsai, L. C. Chen, T. Y. Wang, K. H. Chen, D. M. Bhusari, J. R. Yang, and S. T. Lin, “Quantum Confinement Effect in Diamond Nanocrystals Studied by X-Ray-Absorption Spectroscopy,” Phys. Rev. Lett. 82, 5377-5380 (1999)
[5] H. J. Leamy, J. H. Wernick: Semiconductor Silicon, The Extraordinary Made Ordinary, MRS Bull., 22, 47–55 (1997)
[6] 林俊榮,“富含奈米矽晶之過矽二氧化矽發光材料與元件,” 2007國立交通大學光電工程學所博士論文
[7] R. Soref, “Applications of silicon based optoelectronics,” MRS Bull. 23, 20-24 (1998)
[8] G. R. Lin, C. J. Lin, and H. C. Kuo, “Improving carrier transport and light emission in a silicon-nanocrystal based MOS light-emitting diode on silicon nanopillar array” Appl. Phys. Lett. 91, 0931221-0931223 (2007) [9] H. S. Mavi, A. K. Shukla, R. Kumar, S. Rath, B. Joshi and S. S. Islam, “Quantum confinement effects in silicon nanocrystals produced by laser-induced etching and cw laser annealing,” Semicond. Sci. Technol. 21, 1627–1632 (2006)
[10] L. C. Lenchyshyn, M. L.W. Thewalt, D. C. Houghton, J.-P. No‥el, N. L. Rowell, J. C. Sturm, X. Xiao, “Photoluminescence mechanisms in thin Si1-xGex quantum wells” Phys. Rev. B 47, 16655-16658 (1993)
[11] J. Valenta, R. Juhasz, J. Linnros, “Photoluminescence spectroscopy of single silicon quantum dots,” Appl. Phys. Lett. 80, 1070-1072 (2002)
[12] R. T. Neal, M. D.C. Charlton, G. J. Parker, C.E. Finlayson, M.C. Netti, J. J.Baumberg, “Ultrabroadband transmission measurements on waveguides of silicon-rich silicon dioxide,” Appl. Phys. Lett. 83, 4598-4600 (2003)
[13]陳志豪, “利用HBT 光子相干技術及單分子螢光量測系統來測量 DiI 分子的光物理特性,” 2006國立中山大學光電工程學所碩士論文
[14]謝嘉民,賴一凡,林永昌,枋志堯, “光激發螢光量測的原理、架構及應用,” 奈米通訊第十二卷第二期, (2005)
[15] M. Zhu and Y. Han, “The origin of visible photoluminescence from silicon oxide thin films prepared by dual-plasma chemical vapor deposition,” Appl. Phys. Lett. 83, 5386-5393 (1998)
[16] D. S. Citrin, “Long intrinsic radiative lifetimes of excitons in quantum wires,” Phys. Rev. Lett. 69, 3393-3396 (1992)
[17] Q. Cheny, X. J. Liy, Y. B. Jiay, J. S. Zhuy and Z. Yuheng, “The role of SiO2 in the blue luminescence in hydrothermally prepared porous silicon,” J. Phys. Condens. Matter 9 L151-L156 (1997)
[18] C. J. Lin, C. K. Lee, E. W. G. Diau, and G. R. Lin, “Time-resolved photoluminescence analysis of multidose Si-Ion-implanted SiO2,” J. Electrochem.Soc., 153 E25-E32 (2006)
[19] F. Iacona, “Silicon nanocrystals and Er3+ ions in an optical microcavity,” J. Appl. Phys. 89 8354-8356 (2001)
[20] 黃國閔, “多孔矽材料之退火製程於光電特性之研究與分析,” 2008中國文化大學材料科學與奈米科技研究所碩士論文
[21] C. Landes, C. Burda, M. Braun, and M. A. El-Sayed, “Photoluminescence of CdSe Nanoparticles in the Presence of a Hole Acceptor: n-Butylamine,” J. Phys. Chem. B. 105 2981-2986 (2001)
[22] T. Shimizu-Iwayama and N. Kurumado, “Optical properties of silicon nanoclusters fabricated by ion implantation,” J. Appl. Phys. 83 6018-6021 (1998)
[23] A. J. Kenyon, P. F. Trwoga, C. W. Pitt, and G. Rehm, “The origin of photoluminescence from thin films of silicon-rich silica,” J. Appl. Phys. 79, 9291 (1996)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top