|
[1]P. Bergveld, “Development of an ion-sensitive solid-state device for neurophysiological measurements,” IEEE trans. biomed. eng., vol. 17, pp. 70-71, Jan. 1970. [2]J. Van Der Spiegel, I. Lauks, P. Chan and D. Babic, “The extended gate chemical sensitive field effect transistor as multi-species microprobe,” Sens. actuators. B Chem., vol. 4, pp. 291-298, Dec. 1983. [3]L. L. Chi, L. T. Yin, J. C. Chou, W. Y. Chung, T. P. Sun, K. P. Hsiung and S. K. Hsiung, “Study on separative structure of EnFET to detect acetylcholine,” Sens. actuators. B Chem., vol. 71, pp. 68-72, Nov. 2000. [4]S. Caras and J. Janata, “Field effect transistor sensitive to penicillin,” Anal. chem., vol. 52, pp. 1935-1937, Oct. 1980. [5]A. Hayat and J. L. Marty, “Disposable screen printed electrochemical sensors: Tools for environmental monitoring,” Sensors., vol. 14, pp. 10432-10453, Jun. 2014. [6]L. Manjakkal, K. Cvejin, J. Kulawik, K. Zaraska, D. Szwagierczak and R. P. Socha, “Fabrication of thick film sensitive RuO2-TiO2 and Ag/AgCl/KCl reference electrodes and their application for pH measurements,” Sens. actuators. B Chem., vol. 204, pp. 57-67, Dec. 2014. [7]S. C. Rumsey, M. Levine, “Absorption, transport, and disposition of ascorbic acid in humans,” Nutritional biochemistry., vol. 9, pp.116-130, Mar. 1998. [8]P. Kalimuthu, S. Abraham John, “Electropolymerized film of functionalized thiadiazole on glassy carbon electrode for the simultaneous determination of ascorbic acid, dopamine and uric acid” Bioelectrochemistry, vol 77, pp. 13-18, Nov. 2009. [9]E.S. Wintergerst, S. Maggini, D.H. Hornig, “Immune-enhancing role of vitamin C and zinc and effect on clinical conditions,” Annals of nutrition and metabolism., vol. 50, pp. 85-94, Dec. 2006. [10]Y. P. Dong, T. T. Gao, X. F. Chu, J. Chen, C. M. Wang, “Flow injection-chemiluminescence determination of ascorbic acid based onluminol-ferricyanide-gold nanoparticles system,” J. lumin., vol. 154, pp. 350-355, Oct. 2014. [11]F. Turak, R. Gu¨ zel b, Erdal Dinc, “Simultaneous determination of ascorbic acid and caffeine in commercial soft drinks using reversed-phase ultraperformance liquid chromatography,” Journal of Food and Drug Analysis, vol. 25, pp. 285-292, Apr. 2017. [12]L. Wang, C. Gong, Y. Shen, W. Ye, M. Xu, Y. Song, “A novel ratiometric electrochemical biosensor for sensitive detection of ascorbic acid,” Sens. actuators. B Chem., vol. 242, pp. 625-631, Apr. 2017. [13]X. Wang, L. Li, Z. Li, J. Wang, H. Fu, Z. Chen, “Determination of ascorbic acid in individual liver cancer cells by capillary electrophoresis with a platinum nanoparticles modified electrode,” J. electroanal. chem., vol. 712, pp. 139-145, Jan. 2014. [14]M. Singh, N. Verma, A. K. Garg, N. Redhu, “Urea biosensors,” Sens. actuators. B Chem., vol. 134, pp. 345-351, Aug. 2008. [15]A. Sassolas, L. J. Blum, B. D. Leca-Bouvier, “Immobilization strategies to develop enzymatic biosensors,” Biotechnol. adv., vol. 30, pp. 489-511, May-June 2012. [16]M. Singh, N. Verma, A. K. Garg, N. Redhu, “Enzyme immobilization: an overview on techniques and support materials,” 3 Biotech, vol. 3, pp. 1-9, Feb. 2013. [17]J. Ping, J. Wu, Y. Wang, Y. Ying, “Simultaneous determination of ascorbic acid, dopamine and uric acid using high-performance screen-printed graphene electrode,” Biosens. bioelectron., vol. 34, pp. 70-76, Apr. 2012. [18]A. K. Geim, K. S. Novoselov, “The rise of graphene,” Nature Materials, vol. 6, pp. 183-191, Mar. 2007. [19]E. Pop, D. Mann, Q. Wang, K. Goodson, H. Dai, “Thermal conductance of an individual single-wall carbon nanotube above room temperature,” Nano Letters, vol. 6, pp. 96-100, Dec. 2005. [20]R. R. Nair1, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science, vol. 320, pp.1308-1316, Jun. 2008. [21]C. Lee, X. Wei, J. W. Kysar, J. Hone, “Measurement of the elastic properties and intrinsic strength of monolayer graphene,” Science, vol 321, pp. 385-388, Jul. 2008. [22]K. S. Novoselov, “Graphene: The magic of flat carbon,” ECS Transactions, vol. 19, pp. 3-7, May. 2009. [23]Z. Li, I. A. Kinloch, R. J. Young, “The role of interlayer adhesion in graphene oxide upon its reinforcement of nanocomposites,” Philosophical Transactions of the Royal Society a Mathematical Physical and Engineering Sciences, vol. 374, DOI: 10.1098/rsta.2015.0283, May 2016. [24]M. Munz, C. E. Giusca, R. L. Myers Ward, D. K. Gaskill, O. Kazakova, “Thickness-dependent hydrophobicity of epitaxial graphene,” ACS Nano, vol. 9, pp. 8401-8411, Jul. 2015. [25]D. R. Dreyer, S. Park, C. W. Bielawski, R. S. Ruoff, “The chemistry of graphene oxide,” Chem. Soc. rev., vol. 39, pp. 228-240, Nov. 2009. [26]J. Biscay, M. B. G. García, A. C. García, “Electrochemical biotin determination based on a screen printed carbon electrode array and magnetic beads,” Sens. actuators. B Chem., vol. 205, pp. 426-428, Dec. 2014. [27]S. Kiralp, A. Topcu, G. Bayramoğlu, M. Y. Arıca, L. Toppare, “Alcohol determination via covalent enzyme immobilization on magnetic beads,” Sens. actuators. B Chem., vol. 128, pp. 521-528, Jan. 2008. [28]A. Sassolas, A. Hayat, J.-L. Marty, “Immobilization of enzymes on magnetic beads through affinity interactions,” in Immobilization of Enzymes and Cells, 3 nd ed., vol. 1051, J. M. Guisan, E d. 2013, pp. 139-148. [29]K. Miyamoto, H. Ichimura, T. Wagner, M. J. Schöning, T. Yoshinobu, “Chemical imaging of the concentration profile of ion diffusion in amicrofluidic channel,” Sens. actuators. B Chem., vol. 189, pp. 240–245, Dec. 2013. [30]Y. C. Tan, J. S. Fisher, A. I. Lee, V. Cristini, A. P. Lee, “Design of microfluidic channel geometries for the control of droplet volume, chemical concentration, and sorting,” Sens. actuators. B Chem., vol. 4, pp. 292–298, Jul. 2004. [31]Q. Pu, J. Yun, H. Temkin, S. Liu, “Ion-enrichment and ion-depletion effect of nanochannel structures,” Sens. actuators. B Chem., vol. 4, pp. 1099-1103, May. 2004. [32]W. Vonau, U. Guth, “pH monitoring: a review,” Journal of Solid State Electrochemistry, vol. 10, pp.742-756, Sep. 2006. [33]L. Manjakkala, K. Cvejina, J. Kulawika, K. Zaraskaa, D. Szwagierczaka, R. P. Socha, “Fabrication of thick film sensitive RuO2-TiO2 and Ag/AgCl/KCl reference electrodes and their application for pH measurements,” Sens. actuators. B Chem., vol. 204, pp. 57-67, Dec. 2014. [34]P. Kurzweil, “Metal oxides and ion-exchanging surfaces as pH sensors in liquids: state-of-the-art and outlook,” Sensors., vol. 9, pp. 4955-4985, Jun. 2009. [35]C. M. Hsu, W. C. Tzou, C. F. Yang, Y. J. Liou, “Investigation of the high mobility IGZO thin films by using co-sputtering method,” Materials, vol. 8, pp. 2769-2781, May 2015. [36]K. Nomura, A. Takagi, T. Kamiya, H. Ohta, M. Hirano, H. Hosono, 2006, “Amorphous oxide semiconductors for high-performance flexible thin-film transistors,” Jpn. j. appl. phys., vol. 45, pp. 4303-4308, May 2006. [37]J. S. Chen, 2016, “The research of integrating the differential reference electrode as well as magnetic beads and graphene modified in arrayed flexible IGZO glucose biosensor based on microfluidic framework and the fabrication of multifunctional enzyme real-time sensing system”, National Yunlin University of Science and Technology, Master Thesis. [38]C. M. Yang, J. C. Wang, T. W. Chiang, Y. T. Lin, T. W. Juan, T. C. Chen, M. Y. Shih, C. E. Lue, C. S. Lai, Hydrogen ion sensing characteristics of IGZO/Si electrode in EGFET, Int. J. Nanotechnol, vol. 11, pp. 15-26, Nov. 2014. [39]J. C. Chou, J. S. Chen, M. S. Huang, Y. H. Liao, C. H. Lai, T. Y. Wu, S. J. Yan, “The characteristic analysis of IGZO/Al pH sensor and glucose biosensor and application in dynamic measurement,” IEEE Sens J, vol. 16, pp. 8509-8516, Sep. 2016. [40]J. C. Chou, J. S. Chen, Y. H. Liao, C. H. Lai, S. J. Yan, M. S. Huang, T. Y. Wu, “Fabrication and characteristic analysis for enzymatic glucose biosensor modified by graphene oxide and magnetic beads based on microfluidic framework,” IEEE Sens J, vol. 17, pp. 1741 – 1748, Jan. 2017. [41]C. M. Yang, J. C. Wang, T. W. Chiang, Y. T. Lin, T. W. Juan, T. C. Chen, M. Y. Shih, C. E. Lue, C. S. Lai. (2013, 2-4 January). Taoyuan, Taiwan. Nano-IGZO layer for EGFET in pH sensing characteristics. Presented at 2013 IEEE 5th International Nanoelectronics Conference, Taoyuan, Taiwan, Jan. 2-4, 2013. [42]J. E. Enstrom, Epidemiology of Vitamin C, Reference module in biomedical sciences international encyclopedia of public health, vol. 2, pp. 559-568, Oct. 2017. [43]J. C. Chou, H. Y. Chen, Y. H. Liao, C. H. Lai, M. S. Huang, J. S. Chen, S. J. Yan, C. Y. Wu, Sensing characteristic of arrayed flexible indium gallium zinc oxide lactate biosensor modified by magnetic beads, IEEE Sens J, vol. 17, pp. 5920-5926, Jul. 2017. [44]J. C. Chou, H. Y. Huang, Y. H. Liao, C. H. Lai, S. J. Yan, C. Y. Wu, Y. X. Wu, The Fabrication and sensing characteristics of arrayed flexible igzo/al urea biosensor modified by graphene oxide, IEEE Trans. Nanotechnol., vol. 16, pp. 958-964, Aug. 2017. [45]J. C. Chou, J. S. Chen, Y. H. Liao, C. H. Lai, S. J. Yan, M. S. Huang, T. Y. Wu, Fabrication and characteristic analysis for enzymatic glucose biosensor modified by graphene oxide and magnetic beads based on microfluidic framework, IEEE Sens J, vol. 17, pp. 1741-1748, Jan. 2017. [46]A. M. Pisoschi, A. Pop, A. I. Serban, C. Fafaneata, “Electrochemical methods for ascorbic acid determination,” Electrochim. Acta., vol. 121, pp. 443-460, Mar. 2014. [47]C. I. L. Justino, A. R. Gomes, A. C. Freitas, A. C. Duarte, T. A.P. Rocha-Santos, “Graphene based sensors and biosensors,” TrAC, Trends anal. chem., vol. 91, pp. 53-66, Jun. 2017. [48]Laia Reverté, B. Prieto-Simón, M. Campàs, “New advances in electrochemical biosensors for the detection of toxins: Nanomaterials, magnetic beads and microfluidics systems. A review,” Anal. chim. acta., vol. 908, pp. 8-21, Dec. 2016. [49]M. Javadi, S. Sheikhaei, A. S. Kashi, H. Pourmodheji, “Design of a direct conversion ultra low power ZigBee receiver RF front-end for wireless sensor networks,” Microelectronics, vol. 44, pp. 347-353, Apr. 2013. [50]W. T. Sung, K. Y. Chang, “Health parameter monitoring via a novel wireless system,” Applied Soft Computing, vol. 22, pp. 667-680, Sep. 2014. [51]W. Vonau, U. Guth, “pH Monitoring: a review,” J Solid State Electr, vol. 10, pp.742-756, Sep. 2006. [52]L. Manjakkala, K. Cvejina, J. Kulawika, K. Zaraskaa, D. Szwagierczaka, R. P. Socha, “Fabrication of thick film sensitive RuO2-TiO2 and Ag/AgCl/KCl reference electrodes and their application for pH measurements,” Sens. actuators. B Chem., vol. 204, pp. 57-67, Dec. 2014. [53]D. E. Yates, S. Levine, T. W. Healy, “Site-binding model of the electrical double layer at the oxide/water interface,” Journal of the Chemical Society, J. Chem. Soc., Faraday Trans.1, vol. 70, pp. 1807-1818, Nov. 1973. [54]P. Kurzweil, “Metal oxides and ion-exchanging surfaces as pH sensors in liquids: state-of-the-art and outlook,” Sensors., vol. 9, pp. 4955-4985, Jun. 2009. [55]R. Elghanian, J. J. Storhoff, R. C. Mucic, R. L. Letsinger, C. A. Mirkin, Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles, Science, vol. 277, 1078-1081, Aug. 1997. [56]S. Hou, A. Zhang, M. Su, Nanomaterials for biosensing applications, Nanomaterials, vol. 6, 4 Pages, Apr. 2016. [57]M. Holzinger, A. L. Goff, S. Cosnier, Nanomaterials for biosensing applications: a review, Front Chem., vol. 2, 10 Pages, Apr. 2014. [58]J. C. Lin, B. R. Huang, Y. K. Yang, IGZO nanoparticle-modified silicon nanowires as extended-gate field-effect transistor pH sensors, Sens. Actuators. B Chem., vol. 184, pp. 27-32, Jul. 2013. [59]H. Yabuta, M. Sano, K. Abe, T. Aiba, T. Den, and H. Kumoni, “High-mobility thin film transistor with amorphous InGaZnO4 channel fabricated by room temperature rf-magnetron sputtering,” Appl. phys. lett., vol. 89, pp. 112123-1-3, Jul. 2006. [60]D. Sun, H Matsui, C.N. Wu, H Tabata, “Surface treatment on amorphous InGaZnO4 thin film for single-stranded DNA biosensing,” Appl. surf. sci., vol. 324, pp. 310-318, Jan. 2015. [61]D. J. Yang, G. C. Whitfield, N. G. Cho, P.S. Cho, Il-Doo Kim, H. M. Saltsburg, H. L. Tuller, “Amorphous InGaZnO4 films: gas sensor response and stability,” Sens. actuators. B Chem., vol. 171-172, pp.1166-1171, Aug.- Sep. 2012. [62]C. I. L. Justino, A. R. Gomes, A. C. Freitas, A. C. Duarte and T. A. P. Rocha-Santos, “Graphene based sensors and biosensors,” TrAC, Trends anal. chem., vol. 91, pp. 53-66, Jun. 2017. [63]S. Kiralp, A. Topcu, G. Bayramoğlu, M. Y. Arıca, L. Toppare, “Alcohol determination via covalent enzyme immobilization on magnetic beads,” Sens. actuators. B Chem., vol. 128, pp. 521-528, Jan. 2008. [64]L. Manjakkal, K. Cvejin, J. Kulawik, K. Zaraska, D. Szwagierczak, G. Stojanovic, “Sensing mechanism of RuO2–SnO2 thick film pH sensors studied by potentiometric method and electrochemical impedance spectroscopy, J. electroanal. chem. interfacial electrochem., vol. 759, pp. 82-90, Dec. 2015. [65]S. Prakash, M. Pinti, B. Bhushan, “Theory, fabrication and applications of microfluidic and nanofluidic biosensors, Phil. Trans. R. Soc. A, vol. 370, pp. 2269-2303, May 2012. [66]D. Lee, “Thermophysical properties of interfacial layer in nanofluids, Langmuir., vol. 23, pp. 6011-6018, Apr. 2007. [67]A. K. Covington, R. G. Bates and R. A. Durst, “Definition of pH scales, standard reference values, measurement of pH and related terminology,” Pure appl. chem., vol. 57, pp. 531-542, Jan. 1985. [68]A. Sardarinejad, D. K. Maurya, M. Khaled and K. Alameh, “Temperature effects on the performance of RuO2 thin-film pH sensor,” Sens. Actuators. A Phys., vol. 233, pp. 414-421, Sep. 2015. [69]J. C. Chou, K. Y. Huang and J. S. Lin, “Simulation of time-dependent effects of pH-ISFETs,” Sens. actuators. B Chem., vol. 62, pp. 88-91, Feb. 2000. [70]D. Yu, Y. d. Wei, G. h. Wang, “Time-dependent response characteristics of pH-sensitive ISFET,” Sens. actuators. B Chem., vol. 3, pp. 279-285, Apr. 1991. [71]L. Bousse and P. Bergveld, 1984, “The role of buried OH sites in the response mechanism of inorganic-gate pH-sensitive ISFETs,” Sensors and Actuators, vol. 6, pp. 65-78, Sep. 1984. [72]E. Ruckenstein, H. Huang, “Specific ion effects on double layer forces through ion hydration,” Colloids Surf. A Physicochem. Eng. Asp., vol. 459, pp. 151-156, Oct. 2014. [73]J. C. Chou, H. M. Tsai, C. N. Shiao and J. S. Lin, “Study and simulation of the drift behaviour of hydrogenated amorphous silicon gate pH-ISFET,” Sens. actuators. B Chem., vol. 62, pp. 97-101, Feb. 2000. [74]L. V. Rajakovic, D. D. Markovic´, V. N. Rajakovic´-Ognjanovic´, D. Z. Antanasijevic, “Review: The approaches for estimation of limit of detection for ICP-MS trace analysis of arsenic,” Talanta, vol. 102, pp. 79-87, Dec. 2012. [75]A. Sardarinejad, D. K. Maurya, M. Khaled and K. Alameh, “Temperature effects on the performance of RuO2 thin-film pH sensor,” Sens. Actuators. A Phys., vol. 233, pp. 414-421, Sep. 2015. [76]G. Rocchitta, A. Spanu, S. Babudieri, G. Latte, G. Madeddu, G. Galleri, S. Nuvoli, P. Bagella, M. I. Demartis, V. Fiore, R. Manetti and P. A. Serra, “Enzyme biosensors for biomedical applications: Strategies for safeguarding analytical performances in biological fluids,” Sensors., vol. 16, 21 pages, May 2016. [77]L. C. Clark, C. Lyons, “Electrode systems for monitoring in cardiovascular surgery,” Ann. N.Y. Acad. Sci., vol. 102, pp. 29–45, Oct. 1962. [78]T. Jesionowski, J. Zdarta, B. Krajewska, “Enzyme immobilization by adsorption: a review,” Adsorption, vol. 20, pp. 801–821, Jun. 2014. [79]S. X. Wang, D. Acha, A. J. Shah, F. Hills, I. Roitt, A. Demosthenous, R. H. Bayford, “Detection of the tau protein in human serum by a sensitive four-electrode electrochemical biosensor,” Biosens. bioelectron., vol. 92, pp. 482-488, June 2017. [80]S.E. Naimi, B. Hajji, I. Humenyuk, J. Launay, P. Temple-Boyer, “Temperature influence on pH-ISFET sensor operating in weak and moderate inversion regime: Model and circuitry,” Sens. actuators. B Chem., vol. 202, pp. 1019-1027, October 2014. [81]W. Yu, T. Lang, J. Bian, W. Kong, “Label-free fiber optic biosensor based on thin-core modal interferometer,” Sens. actuators. B Chem., vol. 228, pp. 322-329, June 2016. [82]R. L. Bunde, E. J. Jarvi, J. J. Rosentreter, “Piezoelectric quartz crystal business,” Talanta, vol. 46, pp. 1223-1236, August 1998. [83]J. C. Chou, C. Y. Lin, Y. H. Liao, J. T. Chen, Y. L. Tsai, J. L. Chen, H. T. Chou, “Data fusion and fault diagnosis for flexible arrayed pH sensor measurement system based on LabVIEW,” IEEE Sens. J., vol. 14, pp. 1405- 1411, May 2014. [84]J. C. Chou, S. J. Yan, Y. H. Liao, C. H. Lai, J. S. Chen, H. Y. Chen, T. W. Tseng, T. Y. Wu, “Characterization of flexible arrayed ph sensor based on nickel oxide films,” IEEE Sens. J., vol. 18, pp. 605-612, Nov. 2017. [85]M. Javadi, S. Sheikhaei, A. S. Kashi, H. Pourmodheji, 2013, “Design of a direct conversion ultra low power ZigBee receiver RF front-end for wireless sensor networks,” Microelectronics, vol. 44, pp. 347-353. [86]W. T. Sung, K. Y. Chang, “Health parameter monitoring via a novel wireless system, Applied Soft Computing,” vol. 22, pp. 667-680, Sep. 2014. [87]N. V. Rajeesh Kumar, C. Bhuvana, S. Anushya. (2017, 23-24 February). India. Comparison of ZigBee and Bluetooth wireless technologies-survey. Presented at 2017 International Conference on Information Communication and Embedded Systems (ICICES), India, Feb. 23-24, 2017. [88]J. T. Chen, 2014, “Design and analysis of flexible screen-printed arrayed glucose biosensor based on multifunction real-time remote home care in wireless sensing system”, National Yunlin University of Science and Technology, Master Thesis. [89]S. J. Yan, 2017, “The analysis of the stability, interference, and impedance for magnetic beads and graphene modified in arrayed flexible nickel oxide glucose and lactate biosensor based on microfluidic framework and the measurement of real-time sensing system”, National Yunlin University of Science and Technology, Master Thesis. [90]Z. Li, L. Zhang, S. Zeng, M. Zhang, E. Du, B. Li, “Effect of surface pretreatment on self-assembly of thiol-modified DNA monolayers on gold electrode,” J. Electroanal. Chem., vol.722-723, pp. 131-140, May 2014. [91]S. Wua, F. Wildhaber, A. Bertsch, J. Brugger, P. Renaud, “Field effect modulated nanofluidic diode membrane based on Al2O3/W heterogeneous nanopore arrays,” Appl. phys. lett., vol.102, pp. 213108-1-213108-4, May 2013. [92]S. Prakash, M. Pinti, B. Bhushan, “Theory, fabrication and applications of microfluidic and nanofluidic biosensors,” Philos Trans A Math Phys Eng Sci., vol.370, pp. 2269-2303, May 2012. [93]D. Lee, “Thermophysical properties of interfacial layer in nanofluids,” Langmuir., vol. 23, pp. 6011-6018, Apr. 2007. [94]Z. H. Ibupoto, S. M. U. Ali, K. Khun, and M.Willander, “L-ascorbic acid biosensor based on immobilized enzyme on ZnO nanorods,” J. Biosens. Bioelectron., vol. 2, p. 110, Nov. 2011. [95]C. Pacier, D. M. Martirosyan, “Vitamin C: optimal dosages, supplementation and use in disease prevention,” FFHD, vol. 5, pp. 89-107, Mar. 2015. [96]J. Zhang, F. Zhang, H. Yang, X. Huang, H. Liu, J. Zhang, S. Guo, “Graphene oxide as a matrix for enzyme immobilization,” Langmuir, vol. 26, pp. 6083-6085, May 2010. [97]S. Hermanová, M. Zarevúcká, D. Bouša, M. Pumera, Z. Sofer, “Graphene oxide immobilized enzymes show high thermal and solvent stability,” Nanoscale, vol. 7, pp. 5852-5858, Feb. 2015. [98]C. I. L. Justino, A. R. Gomes, A. C. Freitas, A. C. Duarte, T. A.P. Rocha-Santos, “Graphene based sensors and biosensors,” TrAC, Trends anal. chem., vol. 91, pp. 53-66, June. 2017. [99]L J. Shi, H. Zhang, A. Snyder, M. X. Wang, J. Xie, D. M. Porterfield, L. A. Stanciu, “An aqueous media based approach for the preparation of a biosensor platform composed of graphene oxide and Pt-black,” Biosens. bioelectron., vol. 38, pp. 314-320, Oct. 2012. [100]S. N. A. M. Yazid, I. M. Isa, S. A. Bakar, N. Hashim, S. A. Ghani, “A review of glucose biosensors based on graphene/metal oxide nanomaterials,” Anal. lett., vol. 47, pp. 1821-1834, Mar. 2014. [101]S. Chowdhury, R. Balasubramanian, “Recent advances in the use of graphene-family nanoadsorbents for removal of toxic pollutants from wastewater,” Adv. colloid interface sci., vol. 204, pp. 35-36, Feb. 2014. [102]H. L. Tan, F. Denny, M. Hermawan, R. J. Wong, R. Amal, Y. H. Ng, “Reduced graphene oxide is not a universal promoter for photocatalytic activities of TiO2,” Journal of Materiomics, vol. 3, pp. 51-57, Mar. 2017. [103]M. J. Novak, A. Pattammattel, B. Koshmerl, M. Puglia, C. Williams, C. V. Kumar, ““Stable-on-the-table” enzymes: engineering the enzyme-graphene oxide interface for unprecedented kinetic stability of the biocatalyst,” ACS Catal., vol. 6, pp. 339-347, Dec. 2015. [104]F. Yang, J. Wanga, Y. Cao, L. Zhang, X. Zhang, “A highly sensitive ascorbic acid sensor based on carbon-supported CoPd nanoparticles,” Sens. actuators. B Chem., vol. 205, pp. 20-25, Dec. 2014. [105]A. Jo, M. Kanga, A. Cha, H. S. Jang, J. H. Shim, N. S. Lee, M. H. Kim, Youngmi Lee, C. Lee, “Nonenzymatic amperometric sensor for ascorbic acid based on hollow gold/ruthenium nanoshells,” Anal. chim. acta., vol. 819, pp. 94-101, Mar. 2014. [106]J. C. Chou, Y. H. Tsai, C. C. Chen, “Development of a disposable all-solid-state ascorbic acid biosensor and miniaturized reference electrode fabricated on single substrate,” IEEE Sens. J., vol. 8, pp. 1571-1577, Sep. 2008. [107]E. Akyilmaz, E. Dinçkaya, “A new enzyme electrode based on ascorbate oxidase immobilized in gelatin for specific determination of L-ascorbic acid,” Talanta, vol. 50, pp. 87-83, Aug.1999. [108]B. Gerwin, S. R. Burstein, J. Westley, “Ascorbate oxidase inhibition, activation, and pH effects,” J. biol. chem., vol. 249, pp. 2005-2008, Apr. 1974. [109]D. K. Kannoujia, S. Kumar, P. Nahar, “Covalent immobilization of ascorbate oxidase onto polycarbonate strip for L-ascorbic acid detection,” Journal of Bioscience and Bioengineering, vol. 114, pp. 402-404, Jun. 2012. [110]P. G. Veltsistas, M. I. Prodromidis, C. E. Efstathiou, “All-solid-state potentiometric sensors for ascorbic acid by using a screen-printed compatible solid contact,” Anal. chim. acta., vol. 502, pp. 15-22, Jan. 2004. [111]D. Tonelli, B. Ballarin, L. Guadagnini, A. Mignani, E. Scavetta, “A novel potentiometric sensor for l-ascorbic acid based on molecularly imprinted polypyrrole,” Electrochim. acta., vol. 56, pp. 7149-7154, Aug. 2011. [112]K. Wang, J. J. Xu, K. S. Tang, H. Y. Chen, “Solid-contact potentiometric sensor for ascorbic acid based on cobalt phthalocyanine nanoparticles as ionophore,” Talanta, vol. 67, pp. 798-805, Oct.2005. [113]J. C. B. Fernandes, L. T. Kubota, G. de Oliveira Neto, “Potentiometric biosensor for l-ascorbic acid based on ascorbate oxidase of natural source immobilized on ethylene–vinylacetate membrane,” Anal. chim. acta., vol. 385, pp. 3-12, Apr. 1999. [114]L. Zhang, G. Wang, D. Wu, C. Xiong, L. Zheng, Y. Ding, H. Lu, G. Zhang, L. Qiu, “Highly selective and sensitive sensor based on an organic electrochemical transistor for the detection of ascorbic acid,” Biosens. bioelectron., vol. 100, pp. 235-241, Feb. 2018. [115]S. Qiua, S. Gaoa, Q. Liub, Z. Lina, B. Qiua, G. Chen, “Electrochemical impedance spectroscopy sensor for ascorbic acid based on copper(I) catalyzed click chemistry,” Biosens Bioelectron., vol. 26, pp. 4326-4330, Jul. 2011. [116]K. Saksenaa, A. Shrivastavaa, R. Kant, “Chiral analysis of ascorbic acid in bovine serum using ultrathin molecular imprinted polyaniline/graphite electrode,” J. electroanal. chem., vol. 795, pp. 103-109, Jun. 2017. [117]Y. S. Lee, W. J. Chen, J. S. Huang, S. C. Wu, “Effects of composition on optical and electrical properties of amorphous In–Ga–Zn–O films deposited using radio-frequency sputtering with varying O2 gas flows,” Thin solid films., vol. 520, pp. 6942-6946, Sep. 2012. [118]T. C. Li, C. F. Han, T. H. Kuan, J. F. Lin, “Effects of sputtering-deposition inclination angle on the IGZO film microstructures, optical properties and photoluminescence,” Optical Materials Express, vol. 6, pp. 343-366, February 2016. [119]Z. Jia, Y. Wang, “Covalently crosslinked graphene oxide membranes by esterification reactions for ions separation,” Journal of Materials Chemistry A, vol. 3, pp. 4405-4412, January 2015. [120]S. Pakapongpan, R. P. Poo-arporn, “Self-assembly of glucose oxidase on reduced graphene oxide-magnetic nanoparticles nanocomposite-based direct electrochemistry for reagentless glucose biosensor,” Materials Science and Engineering: C, vol. 76, pp. 398-405, July 2017. [121]L. Jiang, Z. Fan, “Design of advanced porous graphene materials: from graphene nanomesh to 3D architectures,” Nanoscale, vol. 6, pp. 1922-1945, Feb. 2014. [122]S. Ameen, M. S. Akhtar, H. S. Shin, Nanocages-augmented aligned polyaniline nanowires as unique platform for electrochemical non-enzymatic glucose biosensor, Applied Catalysis A: General, vol. 517, 21-29, May 2016. [123]J. C. Chou, J. T. Chen, Y. H. Liao, C. H. Lai, R. T. Chen, Y. L. Tsai, C. Y. Lin, J. S. Chen, M. S. Huang and H. T. Chou, “Wireless sensing system for flexible arrayed potentiometric sensor based on XBee module,” IEEE Sens J, vol. 16, pp. 5588-5595, July 2016.
|