跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.152) 您好!臺灣時間:2025/11/06 14:47
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:吳友祥
研究生(外文):Wu, You-Xiang
論文名稱:以微流體架構研究差動對參考電極整合磁珠與氧化石墨烯修飾可撓式陣列型IGZO/Al抗壞血酸生醫感測器特性、等效電路及即時感測系統之量測
論文名稱(外文):The Research of Differential Reference Electrode Integrated with Magnetic Beads and Graphene Oxide Modified Arrayed Flexible IGZO/Al Ascorbic Acid Biosensor Based on Microfluidic Framework as well as Measurements for Sensing Characteristics, Equivalent Circuit and Real-time Sensing System
指導教授:周榮泉周榮泉引用關係
指導教授(外文):Chou, Jung-Chuan
口試委員:周榮泉賴志賢周學韜廖義宏許渭州
口試委員(外文):Chou, Jung-ChuanLai, Chih-HsienChou, Hsueh-TaoLiao, Yi-HungHsu, Wei-Chou
口試日期:2018-07-02
學位類別:碩士
校院名稱:國立雲林科技大學
系所名稱:電子工程系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:英文
論文頁數:198
中文關鍵詞:氧化銦鎵鋅抗壞血酸氧化酶抗壞血酸生醫感測器氧化石墨烯磁珠微流體無線即時量測系統
外文關鍵詞:Indium gallium zinc oxideascorbate oxidaseL-ascorbic acid (L-AA) biosensorgraphene oxidemagnetic beadmicrofluidic frameworkwireless real-time sensing system
相關次數:
  • 被引用被引用:0
  • 點閱點閱:403
  • 評分評分:
  • 下載下載:71
  • 收藏至我的研究室書目清單書目收藏:0
本論文藉由網版印刷技術(Screen-Printed Technology)、射頻濺鍍系統(Radio Frequency Sputtering System)、熱蒸鍍系統(Thermal Evaporation System)將氧化銦鎵鋅(Indium Gallium Zinc Oxide, IGZO)、鋁電極、銀膠導線整合於可撓式基板,爾後,再以共價鍵結法將抗壞血酸氧化酶(Ascorbate Oxidase, AOX)固化於感測膜上,將此元件備製成一可撓式陣列型氧化銦鎵鋅之抗壞血酸生醫感測器。此外本論文利用氧化石墨烯(Graphene Oxide, GO)及磁珠(Magnetic Beads, MBs)修飾氧化銦鎵鋅之感測膜,藉此提高酵素之固化能力與感測器之感測特性,且使用電化學阻抗分析儀(Electrochemical Impedance Spectroscopy, EIS)確認氧化石墨烯與磁珠是否成功修飾於感測膜上。根據實驗結果,此經由氧化石墨烯與磁珠修飾之抗壞血酸生醫感測器之感測度與線性度分別為78.9 mV/decade與0.997。本論文亦探討感測器之響應時間、時漂、遲滯、抗干擾與生命週期等特性。此外,本論文亦使用微流體架構整合此感測器測量感測器於不同流速下之感測特性。最後將此感測器結合以XBee模組建立之無線量測系統為實現無線遠端之偵測。
In this thesis, the screen-printed technology, radio frequency sputtering system and thermal evaporation system were used to integrate indium gallium zinc oxide (IGZO) membrane, Al electrode and silver paste onto the PET (polyethylene terephthalate) substrate. Next, the covalent bonding was used to immobilize ascorbate oxidase (AOX) onto the IGZO sensing membrane, and the flexible arrayed enzymatic L-ascorbic acid (L-AA) biosensor was completed. Besides, the graphene oxide (GO) and magnetic beads (MBs) were used to modify IGZO sensing membrane, and the electrochemical impedance spectroscopy (EIS) was used to confirm whether the GO and MBs were modified onto the sensing membrane successfully. According to the experimental results, the average sensitivity and linearity of MBs-AOX/GO/IGZO/Al L-AA biosensor were 78.9 mV/decade and 0.997, respectively. In this thesis, the response time, drift effect, hysteresis effect, anti-interfering effect and life time were investigated. Moreover, the sensing characteristic of L-AA biosensor which was integrated with microfluidic framework was detected under the different flow rates. Finally, in order to achieve remote monitoring, the L-AA biosensor was integrated with wireless real-time sensing system based on XBee module.
摘要 i
ABSTRACT ii
誌謝 iii
Contents iv
List of Tables ix
List of Figures x
Chapter 1 Background 1
1.1 Introduction 1
1.2 Motive and Purpose 7
1.3 Thesis Outline 11
Fig. 1-1 The flow chart in this thesis. 13
Chapter 2 Introduction 14
2.1 Sensing Materials 14
2.1.1 Indium Gallium Zinc Oxide 15
2.1.2 Graphene Oxide 16
2.1.3 Magenetic Beads 17
2.2 Electrochemical Sensor 19
2.2.1 Sensing Theory of Electrochemical Sensor 19
2.2.2 Sensing Characteristics of Electrochemical Sensor 22
2.3 Enzymatic Biosensor 29
2.3.1 Enzyme and Immobilization 29
2.3.2 Reaction Mechanism of Enzymatic L-AA Biosensor 32
2.4 Measurement System 34
2.4.1 Voltage-Time Measurement System 34
2.4.2 Microfluidic Measurement System 35
2.4.3 Wireless Real-Time Sensing System 36
2.4.4 Electrochemical Impedance Spectroscopy 37
Chapter 3 Experimental 45
3.1 Materials and Instruments 45
3.2 Fabrication of Flexible Arrayed L-AA Biosensors 48
3.2.1 L-AA Biosensors Based on IGZO/Al Membrane 48
3.2.2 L-AA Biosensors Based on GO/IGZO/Al Membrane 49
3.2.3 L-AA Biosensors Based on MBs/GO/IGZO/Al Membrane 51
3.3 Monitoring under Static and Dynamic Test Solutions 53
3.4 Analysis of Electrochemical Impedance Spectroscopy 54
3.5 Remote Monitoring Using Wireless Real-Time Sensing System 55
Chapter 4 Results and Discussion 60
4.1 Analysis of Flexible Arrayed L-AA Biosensor 60
4.1.1 Characterization of L-AA Biosensors Based on IGZO/Al Membrane under Static L-AA Solutions 60
4.1.2 Drift Effect of L-AA Biosensor Based on IGZO/Al Membrane 61
4.1.3 Hysteresis Effect of L-AA Biosensor Based on IGZO/Al Membrane 62
4.1.4 Electrochemical Impedances of IGZO/Al Membrane 63
4.1.5 Response Time of L-AA Biosensor Based on IGZO/Al Membrane 64
4.2 Analysis of Flexible Arrayed L-AA Biosensor Based on GO/IGZO/Al Membrane 66
4.2.1 Characterization of L-AA Biosensors Based on IGZO/Al Membrane under Static L-AA Solutions 66
4.2.2 Drift Effect of L-AA Biosensor Based on GO/IGZO/Al Membrane 68
4.2.3 Hysteresis Effect of L-AA Biosensor Based on GO/IGZO/Al Membrane 69
4.2.4 Electrochemical Impedances of GO/IGZO/Al Membrane 69
4.2.5 Response Time of L-AA Biosensor Based on GO/IGZO/Al Membrane 70
4.2.6 Interference Effect of L-AA Biosensor Based on IGZO/Al Membrane 71
4.2.7 pH Effect for Average Sensitivity of L-AA Biosensor 72
4.2.8 Detection Limit of L-AA Biosensor Based on GO/IGZO/Al Membrane 73
4.3 Analysis of Flexible Arrayed L-AA Biosensor Based on MBs/GO/IGZO/Al Membrane 74
4.3.1 Characterization of L-AA Biosensors Based on IGZO/Al Membrane Modified by GO and MBs under Static and Dynamic L-AA Solutions 74
4.3.2 Drift Effect of L-AA Biosensor Based on MBs/GO/IGZO/Al Membrane 76
4.3.3 Hysteresis Effect of L-AA Biosensor Based on MBs/GO/IGZO/Al Membrane 77
4.3.4 Electrochemical Impedances of MBs/GO/IGZO/Al Membrane 77
4.3.5 Response Time of L-AA Biosensor Based on MBs/GO/IGZO/Al Membrane 78
4.3.6 Interference Effect of L-AA Biosensor Based on MBs/GO/IGZO/Al Membrane 79
4.3.7 Detection Limit of L-AA Biosensor Based on GO/IGZO/Al Membrane 80
4.3.8 Temperature Effect of L-AA Biosensor Based on MBs/GO/IGZO/Al Membrane 81
4.4 Comparisons with Sensing Characteristic for Various L-AA Biosensors 83
4.5 Comparisons with Electrochemical Impedances of Different Membranes 87
4.6 Lifetime and Decay Rate of MBs/GO/IGZO/Al L-AA Biosensor 90
4.7 Surfaces of IGZO and GO Membranes Characterized via Field Emission Scanning Electronic Microscope 92
4.8 Specific Surface Areas of IGZO Membrane and GO Membrane 93
4.9 Surface Roughness for IGZO/Al, GO/IGZO/Al and MB/GO/IGZO/Al Membranes 94
4.10 Analysis of Remote Monitoring for L-AA Biosensor 95
4.11 Specifications of IGZO/Al-based L-AA biosensor 96
Chapter 5 Conclusions 143
Chapter 6 Future Work 148
References 149
Appendix I: 175
1. 許渭州 委員 175
2. 廖義宏 委員 177
3. 周學韜 委員 181
4. 賴志賢 委員 182
5. 周榮泉 委員 186


[1]P. Bergveld, “Development of an ion-sensitive solid-state device for neurophysiological measurements,” IEEE trans. biomed. eng., vol. 17, pp. 70-71, Jan. 1970.
[2]J. Van Der Spiegel, I. Lauks, P. Chan and D. Babic, “The extended gate chemical sensitive field effect transistor as multi-species microprobe,” Sens. actuators. B Chem., vol. 4, pp. 291-298, Dec. 1983.
[3]L. L. Chi, L. T. Yin, J. C. Chou, W. Y. Chung, T. P. Sun, K. P. Hsiung and S. K. Hsiung, “Study on separative structure of EnFET to detect acetylcholine,” Sens. actuators. B Chem., vol. 71, pp. 68-72, Nov. 2000.
[4]S. Caras and J. Janata, “Field effect transistor sensitive to penicillin,” Anal. chem., vol. 52, pp. 1935-1937, Oct. 1980.
[5]A. Hayat and J. L. Marty, “Disposable screen printed electrochemical sensors: Tools for environmental monitoring,” Sensors., vol. 14, pp. 10432-10453, Jun. 2014.
[6]L. Manjakkal, K. Cvejin, J. Kulawik, K. Zaraska, D. Szwagierczak and R. P. Socha, “Fabrication of thick film sensitive RuO2-TiO2 and Ag/AgCl/KCl reference electrodes and their application for pH measurements,” Sens. actuators. B Chem., vol. 204, pp. 57-67, Dec. 2014.
[7]S. C. Rumsey, M. Levine, “Absorption, transport, and disposition of ascorbic acid in humans,” Nutritional biochemistry., vol. 9, pp.116-130, Mar. 1998.
[8]P. Kalimuthu, S. Abraham John, “Electropolymerized film of functionalized thiadiazole on glassy carbon electrode for the simultaneous determination of ascorbic acid, dopamine and uric acid” Bioelectrochemistry, vol 77, pp. 13-18, Nov. 2009.
[9]E.S. Wintergerst, S. Maggini, D.H. Hornig, “Immune-enhancing role of vitamin C and zinc and effect on clinical conditions,” Annals of nutrition and metabolism., vol. 50, pp. 85-94, Dec. 2006.
[10]Y. P. Dong, T. T. Gao, X. F. Chu, J. Chen, C. M. Wang, “Flow injection-chemiluminescence determination of ascorbic acid based onluminol-ferricyanide-gold nanoparticles system,” J. lumin., vol. 154, pp. 350-355, Oct. 2014.
[11]F. Turak, R. Gu¨ zel b, Erdal Dinc, “Simultaneous determination of ascorbic acid and caffeine in commercial soft drinks using reversed-phase ultraperformance liquid chromatography,” Journal of Food and Drug Analysis, vol. 25, pp. 285-292, Apr. 2017.
[12]L. Wang, C. Gong, Y. Shen, W. Ye, M. Xu, Y. Song, “A novel ratiometric electrochemical biosensor for sensitive detection of ascorbic acid,” Sens. actuators. B Chem., vol. 242, pp. 625-631, Apr. 2017.
[13]X. Wang, L. Li, Z. Li, J. Wang, H. Fu, Z. Chen, “Determination of ascorbic acid in individual liver cancer cells by capillary electrophoresis with a platinum nanoparticles modified electrode,” J. electroanal. chem., vol. 712, pp. 139-145, Jan. 2014.
[14]M. Singh, N. Verma, A. K. Garg, N. Redhu, “Urea biosensors,” Sens. actuators. B Chem., vol. 134, pp. 345-351, Aug. 2008.
[15]A. Sassolas, L. J. Blum, B. D. Leca-Bouvier, “Immobilization strategies to develop enzymatic biosensors,” Biotechnol. adv., vol. 30, pp. 489-511, May-June 2012.
[16]M. Singh, N. Verma, A. K. Garg, N. Redhu, “Enzyme immobilization: an overview on techniques and support materials,” 3 Biotech, vol. 3, pp. 1-9, Feb. 2013.
[17]J. Ping, J. Wu, Y. Wang, Y. Ying, “Simultaneous determination of ascorbic acid, dopamine and uric acid using high-performance screen-printed graphene electrode,” Biosens. bioelectron., vol. 34, pp. 70-76, Apr. 2012.
[18]A. K. Geim, K. S. Novoselov, “The rise of graphene,” Nature Materials, vol. 6, pp. 183-191, Mar. 2007.
[19]E. Pop, D. Mann, Q. Wang, K. Goodson, H. Dai, “Thermal conductance of an individual single-wall carbon nanotube above room temperature,” Nano Letters, vol. 6, pp. 96-100, Dec. 2005.
[20]R. R. Nair1, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science, vol. 320, pp.1308-1316, Jun. 2008.
[21]C. Lee, X. Wei, J. W. Kysar, J. Hone, “Measurement of the elastic properties and intrinsic strength of monolayer graphene,” Science, vol 321, pp. 385-388, Jul. 2008.
[22]K. S. Novoselov, “Graphene: The magic of flat carbon,” ECS Transactions, vol. 19, pp. 3-7, May. 2009.
[23]Z. Li, I. A. Kinloch, R. J. Young, “The role of interlayer adhesion in graphene oxide upon its reinforcement of nanocomposites,” Philosophical Transactions of the Royal Society a Mathematical Physical and Engineering Sciences, vol. 374, DOI: 10.1098/rsta.2015.0283, May 2016.
[24]M. Munz, C. E. Giusca, R. L. Myers Ward, D. K. Gaskill, O. Kazakova, “Thickness-dependent hydrophobicity of epitaxial graphene,” ACS Nano, vol. 9, pp. 8401-8411, Jul. 2015.
[25]D. R. Dreyer, S. Park, C. W. Bielawski, R. S. Ruoff, “The chemistry of graphene oxide,” Chem. Soc. rev., vol. 39, pp. 228-240, Nov. 2009.
[26]J. Biscay, M. B. G. García, A. C. García, “Electrochemical biotin determination based on a screen printed carbon electrode array and magnetic beads,” Sens. actuators. B Chem., vol. 205, pp. 426-428, Dec. 2014.
[27]S. Kiralp, A. Topcu, G. Bayramoğlu, M. Y. Arıca, L. Toppare, “Alcohol determination via covalent enzyme immobilization on magnetic beads,” Sens. actuators. B Chem., vol. 128, pp. 521-528, Jan. 2008.
[28]A. Sassolas, A. Hayat, J.-L. Marty, “Immobilization of enzymes on magnetic beads through affinity interactions,” in Immobilization of Enzymes and Cells, 3 nd ed., vol. 1051, J. M. Guisan, E d. 2013, pp. 139-148.
[29]K. Miyamoto, H. Ichimura, T. Wagner, M. J. Schöning, T. Yoshinobu, “Chemical imaging of the concentration profile of ion diffusion in amicrofluidic channel,” Sens. actuators. B Chem., vol. 189, pp. 240–245, Dec. 2013.
[30]Y. C. Tan, J. S. Fisher, A. I. Lee, V. Cristini, A. P. Lee, “Design of microfluidic channel geometries for the control of droplet volume, chemical concentration, and sorting,” Sens. actuators. B Chem., vol. 4, pp. 292–298, Jul. 2004.
[31]Q. Pu, J. Yun, H. Temkin, S. Liu, “Ion-enrichment and ion-depletion effect of nanochannel structures,” Sens. actuators. B Chem., vol. 4, pp. 1099-1103, May. 2004.
[32]W. Vonau, U. Guth, “pH monitoring: a review,” Journal of Solid State Electrochemistry, vol. 10, pp.742-756, Sep. 2006.
[33]L. Manjakkala, K. Cvejina, J. Kulawika, K. Zaraskaa, D. Szwagierczaka, R. P. Socha, “Fabrication of thick film sensitive RuO2-TiO2 and Ag/AgCl/KCl reference electrodes and their application for pH measurements,” Sens. actuators. B Chem., vol. 204, pp. 57-67, Dec. 2014.
[34]P. Kurzweil, “Metal oxides and ion-exchanging surfaces as pH sensors in liquids: state-of-the-art and outlook,” Sensors., vol. 9, pp. 4955-4985, Jun. 2009.
[35]C. M. Hsu, W. C. Tzou, C. F. Yang, Y. J. Liou, “Investigation of the high mobility IGZO thin films by using co-sputtering method,” Materials, vol. 8, pp. 2769-2781, May 2015.
[36]K. Nomura, A. Takagi, T. Kamiya, H. Ohta, M. Hirano, H. Hosono, 2006, “Amorphous oxide semiconductors for high-performance flexible thin-film transistors,” Jpn. j. appl. phys., vol. 45, pp. 4303-4308, May 2006.
[37]J. S. Chen, 2016, “The research of integrating the differential reference electrode as well as magnetic beads and graphene modified in arrayed flexible IGZO glucose biosensor based on microfluidic framework and the fabrication of multifunctional enzyme real-time sensing system”, National Yunlin University of Science and Technology, Master Thesis.
[38]C. M. Yang, J. C. Wang, T. W. Chiang, Y. T. Lin, T. W. Juan, T. C. Chen, M. Y. Shih, C. E. Lue, C. S. Lai, Hydrogen ion sensing characteristics of IGZO/Si electrode in EGFET, Int. J. Nanotechnol, vol. 11, pp. 15-26, Nov. 2014.
[39]J. C. Chou, J. S. Chen, M. S. Huang, Y. H. Liao, C. H. Lai, T. Y. Wu, S. J. Yan, “The characteristic analysis of IGZO/Al pH sensor and glucose biosensor and application in dynamic measurement,” IEEE Sens J, vol. 16, pp. 8509-8516, Sep. 2016.
[40]J. C. Chou, J. S. Chen, Y. H. Liao, C. H. Lai, S. J. Yan, M. S. Huang, T. Y. Wu, “Fabrication and characteristic analysis for enzymatic glucose biosensor modified by graphene oxide and magnetic beads based on microfluidic framework,” IEEE Sens J, vol. 17, pp. 1741 – 1748, Jan. 2017.
[41]C. M. Yang, J. C. Wang, T. W. Chiang, Y. T. Lin, T. W. Juan, T. C. Chen, M. Y. Shih, C. E. Lue, C. S. Lai. (2013, 2-4 January). Taoyuan, Taiwan. Nano-IGZO layer for EGFET in pH sensing characteristics. Presented at 2013 IEEE 5th International Nanoelectronics Conference, Taoyuan, Taiwan, Jan. 2-4, 2013.
[42]J. E. Enstrom, Epidemiology of Vitamin C, Reference module in biomedical sciences international encyclopedia of public health, vol. 2, pp. 559-568, Oct. 2017.
[43]J. C. Chou, H. Y. Chen, Y. H. Liao, C. H. Lai, M. S. Huang, J. S. Chen, S. J. Yan, C. Y. Wu, Sensing characteristic of arrayed flexible indium gallium zinc oxide lactate biosensor modified by magnetic beads, IEEE Sens J, vol. 17, pp. 5920-5926, Jul. 2017.
[44]J. C. Chou, H. Y. Huang, Y. H. Liao, C. H. Lai, S. J. Yan, C. Y. Wu, Y. X. Wu, The Fabrication and sensing characteristics of arrayed flexible igzo/al urea biosensor modified by graphene oxide, IEEE Trans. Nanotechnol., vol. 16, pp. 958-964, Aug. 2017.
[45]J. C. Chou, J. S. Chen, Y. H. Liao, C. H. Lai, S. J. Yan, M. S. Huang, T. Y. Wu, Fabrication and characteristic analysis for enzymatic glucose biosensor modified by graphene oxide and magnetic beads based on microfluidic framework, IEEE Sens J, vol. 17, pp. 1741-1748, Jan. 2017.
[46]A. M. Pisoschi, A. Pop, A. I. Serban, C. Fafaneata, “Electrochemical methods for ascorbic acid determination,” Electrochim. Acta., vol. 121, pp. 443-460, Mar. 2014.
[47]C. I. L. Justino, A. R. Gomes, A. C. Freitas, A. C. Duarte, T. A.P. Rocha-Santos, “Graphene based sensors and biosensors,” TrAC, Trends anal. chem., vol. 91, pp. 53-66, Jun. 2017.
[48]Laia Reverté, B. Prieto-Simón, M. Campàs, “New advances in electrochemical biosensors for the detection of toxins: Nanomaterials, magnetic beads and microfluidics systems. A review,” Anal. chim. acta., vol. 908, pp. 8-21, Dec. 2016.
[49]M. Javadi, S. Sheikhaei, A. S. Kashi, H. Pourmodheji, “Design of a direct conversion ultra low power ZigBee receiver RF front-end for wireless sensor networks,” Microelectronics, vol. 44, pp. 347-353, Apr. 2013.
[50]W. T. Sung, K. Y. Chang, “Health parameter monitoring via a novel wireless system,” Applied Soft Computing, vol. 22, pp. 667-680, Sep. 2014.
[51]W. Vonau, U. Guth, “pH Monitoring: a review,” J Solid State Electr, vol. 10, pp.742-756, Sep. 2006.
[52]L. Manjakkala, K. Cvejina, J. Kulawika, K. Zaraskaa, D. Szwagierczaka, R. P. Socha, “Fabrication of thick film sensitive RuO2-TiO2 and Ag/AgCl/KCl reference electrodes and their application for pH measurements,” Sens. actuators. B Chem., vol. 204, pp. 57-67, Dec. 2014.
[53]D. E. Yates, S. Levine, T. W. Healy, “Site-binding model of the electrical double layer at the oxide/water interface,” Journal of the Chemical Society, J. Chem. Soc., Faraday Trans.1, vol. 70, pp. 1807-1818, Nov. 1973.
[54]P. Kurzweil, “Metal oxides and ion-exchanging surfaces as pH sensors in liquids: state-of-the-art and outlook,” Sensors., vol. 9, pp. 4955-4985, Jun. 2009.
[55]R. Elghanian, J. J. Storhoff, R. C. Mucic, R. L. Letsinger, C. A. Mirkin, Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles, Science, vol. 277, 1078-1081, Aug. 1997.
[56]S. Hou, A. Zhang, M. Su, Nanomaterials for biosensing applications, Nanomaterials, vol. 6, 4 Pages, Apr. 2016.
[57]M. Holzinger, A. L. Goff, S. Cosnier, Nanomaterials for biosensing applications: a review, Front Chem., vol. 2, 10 Pages, Apr. 2014.
[58]J. C. Lin, B. R. Huang, Y. K. Yang, IGZO nanoparticle-modified silicon nanowires as extended-gate field-effect transistor pH sensors, Sens. Actuators. B Chem., vol. 184, pp. 27-32, Jul. 2013.
[59]H. Yabuta, M. Sano, K. Abe, T. Aiba, T. Den, and H. Kumoni, “High-mobility thin film transistor with amorphous InGaZnO4 channel fabricated by room temperature rf-magnetron sputtering,” Appl. phys. lett., vol. 89, pp. 112123-1-3, Jul. 2006.
[60]D. Sun, H Matsui, C.N. Wu, H Tabata, “Surface treatment on amorphous InGaZnO4 thin film for single-stranded DNA biosensing,” Appl. surf. sci., vol. 324, pp. 310-318, Jan. 2015.
[61]D. J. Yang, G. C. Whitfield, N. G. Cho, P.S. Cho, Il-Doo Kim, H. M. Saltsburg, H. L. Tuller, “Amorphous InGaZnO4 films: gas sensor response and stability,” Sens. actuators. B Chem., vol. 171-172, pp.1166-1171, Aug.- Sep. 2012.
[62]C. I. L. Justino, A. R. Gomes, A. C. Freitas, A. C. Duarte and T. A. P. Rocha-Santos, “Graphene based sensors and biosensors,” TrAC, Trends anal. chem., vol. 91, pp. 53-66, Jun. 2017.
[63]S. Kiralp, A. Topcu, G. Bayramoğlu, M. Y. Arıca, L. Toppare, “Alcohol determination via covalent enzyme immobilization on magnetic beads,” Sens. actuators. B Chem., vol. 128, pp. 521-528, Jan. 2008.
[64]L. Manjakkal, K. Cvejin, J. Kulawik, K. Zaraska, D. Szwagierczak, G. Stojanovic, “Sensing mechanism of RuO2–SnO2 thick film pH sensors studied by potentiometric method and electrochemical impedance spectroscopy, J. electroanal. chem. interfacial electrochem., vol. 759, pp. 82-90, Dec. 2015.
[65]S. Prakash, M. Pinti, B. Bhushan, “Theory, fabrication and applications of microfluidic and nanofluidic biosensors, Phil. Trans. R. Soc. A, vol. 370, pp. 2269-2303, May 2012.
[66]D. Lee, “Thermophysical properties of interfacial layer in nanofluids, Langmuir., vol. 23, pp. 6011-6018, Apr. 2007.
[67]A. K. Covington, R. G. Bates and R. A. Durst, “Definition of pH scales, standard reference values, measurement of pH and related terminology,” Pure appl. chem., vol. 57, pp. 531-542, Jan. 1985.
[68]A. Sardarinejad, D. K. Maurya, M. Khaled and K. Alameh, “Temperature effects on the performance of RuO2 thin-film pH sensor,” Sens. Actuators. A Phys., vol. 233, pp. 414-421, Sep. 2015.
[69]J. C. Chou, K. Y. Huang and J. S. Lin, “Simulation of time-dependent effects of pH-ISFETs,” Sens. actuators. B Chem., vol. 62, pp. 88-91, Feb. 2000.
[70]D. Yu, Y. d. Wei, G. h. Wang, “Time-dependent response characteristics of pH-sensitive ISFET,” Sens. actuators. B Chem., vol. 3, pp. 279-285, Apr. 1991.
[71]L. Bousse and P. Bergveld, 1984, “The role of buried OH sites in the response mechanism of inorganic-gate pH-sensitive ISFETs,” Sensors and Actuators, vol. 6, pp. 65-78, Sep. 1984.
[72]E. Ruckenstein, H. Huang, “Specific ion effects on double layer forces through ion hydration,” Colloids Surf. A Physicochem. Eng. Asp., vol. 459, pp. 151-156, Oct. 2014.
[73]J. C. Chou, H. M. Tsai, C. N. Shiao and J. S. Lin, “Study and simulation of the drift behaviour of hydrogenated amorphous silicon gate pH-ISFET,” Sens. actuators. B Chem., vol. 62, pp. 97-101, Feb. 2000.
[74]L. V. Rajakovic, D. D. Markovic´, V. N. Rajakovic´-Ognjanovic´, D. Z. Antanasijevic, “Review: The approaches for estimation of limit of detection for ICP-MS trace analysis of arsenic,” Talanta, vol. 102, pp. 79-87, Dec. 2012.
[75]A. Sardarinejad, D. K. Maurya, M. Khaled and K. Alameh, “Temperature effects on the performance of RuO2 thin-film pH sensor,” Sens. Actuators. A Phys., vol. 233, pp. 414-421, Sep. 2015.
[76]G. Rocchitta, A. Spanu, S. Babudieri, G. Latte, G. Madeddu, G. Galleri, S. Nuvoli, P. Bagella, M. I. Demartis, V. Fiore, R. Manetti and P. A. Serra, “Enzyme biosensors for biomedical applications: Strategies for safeguarding analytical performances in biological fluids,” Sensors., vol. 16, 21 pages, May 2016.
[77]L. C. Clark, C. Lyons, “Electrode systems for monitoring in cardiovascular surgery,” Ann. N.Y. Acad. Sci., vol. 102, pp. 29–45, Oct. 1962.
[78]T. Jesionowski, J. Zdarta, B. Krajewska, “Enzyme immobilization by adsorption: a review,” Adsorption, vol. 20, pp. 801–821, Jun. 2014.
[79]S. X. Wang, D. Acha, A. J. Shah, F. Hills, I. Roitt, A. Demosthenous, R. H. Bayford, “Detection of the tau protein in human serum by a sensitive four-electrode electrochemical biosensor,” Biosens. bioelectron., vol. 92, pp. 482-488, June 2017.
[80]S.E. Naimi, B. Hajji, I. Humenyuk, J. Launay, P. Temple-Boyer, “Temperature influence on pH-ISFET sensor operating in weak and moderate inversion regime: Model and circuitry,” Sens. actuators. B Chem., vol. 202, pp. 1019-1027, October 2014.
[81]W. Yu, T. Lang, J. Bian, W. Kong, “Label-free fiber optic biosensor based on thin-core modal interferometer,” Sens. actuators. B Chem., vol. 228, pp. 322-329, June 2016.
[82]R. L. Bunde, E. J. Jarvi, J. J. Rosentreter, “Piezoelectric quartz crystal business,” Talanta, vol. 46, pp. 1223-1236, August 1998.
[83]J. C. Chou, C. Y. Lin, Y. H. Liao, J. T. Chen, Y. L. Tsai, J. L. Chen, H. T. Chou, “Data fusion and fault diagnosis for flexible arrayed pH sensor measurement system based on LabVIEW,” IEEE Sens. J., vol. 14, pp. 1405- 1411, May 2014.
[84]J. C. Chou, S. J. Yan, Y. H. Liao, C. H. Lai, J. S. Chen, H. Y. Chen, T. W. Tseng, T. Y. Wu, “Characterization of flexible arrayed ph sensor based on nickel oxide films,” IEEE Sens. J., vol. 18, pp. 605-612, Nov. 2017.
[85]M. Javadi, S. Sheikhaei, A. S. Kashi, H. Pourmodheji, 2013, “Design of a direct conversion ultra low power ZigBee receiver RF front-end for wireless sensor networks,” Microelectronics, vol. 44, pp. 347-353.
[86]W. T. Sung, K. Y. Chang, “Health parameter monitoring via a novel wireless system, Applied Soft Computing,” vol. 22, pp. 667-680, Sep. 2014.
[87]N. V. Rajeesh Kumar, C. Bhuvana, S. Anushya. (2017, 23-24 February). India. Comparison of ZigBee and Bluetooth wireless technologies-survey. Presented at 2017 International Conference on Information Communication and Embedded Systems (ICICES), India, Feb. 23-24, 2017.
[88]J. T. Chen, 2014, “Design and analysis of flexible screen-printed arrayed glucose biosensor based on multifunction real-time remote home care in wireless sensing system”, National Yunlin University of Science and Technology, Master Thesis.
[89]S. J. Yan, 2017, “The analysis of the stability, interference, and impedance for magnetic beads and graphene modified in arrayed flexible nickel oxide glucose and lactate biosensor based on microfluidic framework and the measurement of real-time sensing system”, National Yunlin University of Science and Technology, Master Thesis.
[90]Z. Li, L. Zhang, S. Zeng, M. Zhang, E. Du, B. Li, “Effect of surface pretreatment on self-assembly of thiol-modified DNA monolayers on gold electrode,” J. Electroanal. Chem., vol.722-723, pp. 131-140, May 2014.
[91]S. Wua, F. Wildhaber, A. Bertsch, J. Brugger, P. Renaud, “Field effect modulated nanofluidic diode membrane based on Al2O3/W heterogeneous nanopore arrays,” Appl. phys. lett., vol.102, pp. 213108-1-213108-4, May 2013.
[92]S. Prakash, M. Pinti, B. Bhushan, “Theory, fabrication and applications of microfluidic and nanofluidic biosensors,” Philos Trans A Math Phys Eng Sci., vol.370, pp. 2269-2303, May 2012.
[93]D. Lee, “Thermophysical properties of interfacial layer in nanofluids,” Langmuir., vol. 23, pp. 6011-6018, Apr. 2007.
[94]Z. H. Ibupoto, S. M. U. Ali, K. Khun, and M.Willander, “L-ascorbic acid biosensor based on immobilized enzyme on ZnO nanorods,” J. Biosens. Bioelectron., vol. 2, p. 110, Nov. 2011.
[95]C. Pacier, D. M. Martirosyan, “Vitamin C: optimal dosages, supplementation and use in disease prevention,” FFHD, vol. 5, pp. 89-107, Mar. 2015.
[96]J. Zhang, F. Zhang, H. Yang, X. Huang, H. Liu, J. Zhang, S. Guo, “Graphene oxide as a matrix for enzyme immobilization,” Langmuir, vol. 26, pp. 6083-6085, May 2010.
[97]S. Hermanová, M. Zarevúcká, D. Bouša, M. Pumera, Z. Sofer, “Graphene oxide immobilized enzymes show high thermal and solvent stability,” Nanoscale, vol. 7, pp. 5852-5858, Feb. 2015.
[98]C. I. L. Justino, A. R. Gomes, A. C. Freitas, A. C. Duarte, T. A.P. Rocha-Santos, “Graphene based sensors and biosensors,” TrAC, Trends anal. chem., vol. 91, pp. 53-66, June. 2017.
[99]L J. Shi, H. Zhang, A. Snyder, M. X. Wang, J. Xie, D. M. Porterfield, L. A. Stanciu, “An aqueous media based approach for the preparation of a biosensor platform composed of graphene oxide and Pt-black,” Biosens. bioelectron., vol. 38, pp. 314-320, Oct. 2012.
[100]S. N. A. M. Yazid, I. M. Isa, S. A. Bakar, N. Hashim, S. A. Ghani, “A review of glucose biosensors based on graphene/metal oxide nanomaterials,” Anal. lett., vol. 47, pp. 1821-1834, Mar. 2014.
[101]S. Chowdhury, R. Balasubramanian, “Recent advances in the use of graphene-family nanoadsorbents for removal of toxic pollutants from wastewater,” Adv. colloid interface sci., vol. 204, pp. 35-36, Feb. 2014.
[102]H. L. Tan, F. Denny, M. Hermawan, R. J. Wong, R. Amal, Y. H. Ng, “Reduced graphene oxide is not a universal promoter for photocatalytic activities of TiO2,” Journal of Materiomics, vol. 3, pp. 51-57, Mar. 2017.
[103]M. J. Novak, A. Pattammattel, B. Koshmerl, M. Puglia, C. Williams, C. V. Kumar, ““Stable-on-the-table” enzymes: engineering the enzyme-graphene oxide interface for unprecedented kinetic stability of the biocatalyst,” ACS Catal., vol. 6, pp. 339-347, Dec. 2015.
[104]F. Yang, J. Wanga, Y. Cao, L. Zhang, X. Zhang, “A highly sensitive ascorbic acid sensor based on carbon-supported CoPd nanoparticles,” Sens. actuators. B Chem., vol. 205, pp. 20-25, Dec. 2014.
[105]A. Jo, M. Kanga, A. Cha, H. S. Jang, J. H. Shim, N. S. Lee, M. H. Kim, Youngmi Lee, C. Lee, “Nonenzymatic amperometric sensor for ascorbic acid based on hollow gold/ruthenium nanoshells,” Anal. chim. acta., vol. 819, pp. 94-101, Mar. 2014.
[106]J. C. Chou, Y. H. Tsai, C. C. Chen, “Development of a disposable all-solid-state ascorbic acid biosensor and miniaturized reference electrode fabricated on single substrate,” IEEE Sens. J., vol. 8, pp. 1571-1577, Sep. 2008.
[107]E. Akyilmaz, E. Dinçkaya, “A new enzyme electrode based on ascorbate oxidase immobilized in gelatin for specific determination of L-ascorbic acid,” Talanta, vol. 50, pp. 87-83, Aug.1999.
[108]B. Gerwin, S. R. Burstein, J. Westley, “Ascorbate oxidase inhibition, activation, and pH effects,” J. biol. chem., vol. 249, pp. 2005-2008, Apr. 1974.
[109]D. K. Kannoujia, S. Kumar, P. Nahar, “Covalent immobilization of ascorbate oxidase onto polycarbonate strip for L-ascorbic acid detection,” Journal of Bioscience and Bioengineering, vol. 114, pp. 402-404, Jun. 2012.
[110]P. G. Veltsistas, M. I. Prodromidis, C. E. Efstathiou, “All-solid-state potentiometric sensors for ascorbic acid by using a screen-printed compatible solid contact,” Anal. chim. acta., vol. 502, pp. 15-22, Jan. 2004.
[111]D. Tonelli, B. Ballarin, L. Guadagnini, A. Mignani, E. Scavetta, “A novel potentiometric sensor for l-ascorbic acid based on molecularly imprinted polypyrrole,” Electrochim. acta., vol. 56, pp. 7149-7154, Aug. 2011.
[112]K. Wang, J. J. Xu, K. S. Tang, H. Y. Chen, “Solid-contact potentiometric sensor for ascorbic acid based on cobalt phthalocyanine nanoparticles as ionophore,” Talanta, vol. 67, pp. 798-805, Oct.2005.
[113]J. C. B. Fernandes, L. T. Kubota, G. de Oliveira Neto, “Potentiometric biosensor for l-ascorbic acid based on ascorbate oxidase of natural source immobilized on ethylene–vinylacetate membrane,” Anal. chim. acta., vol. 385, pp. 3-12, Apr. 1999.
[114]L. Zhang, G. Wang, D. Wu, C. Xiong, L. Zheng, Y. Ding, H. Lu, G. Zhang, L. Qiu, “Highly selective and sensitive sensor based on an organic electrochemical transistor for the detection of ascorbic acid,” Biosens. bioelectron., vol. 100, pp. 235-241, Feb. 2018.
[115]S. Qiua, S. Gaoa, Q. Liub, Z. Lina, B. Qiua, G. Chen, “Electrochemical impedance spectroscopy sensor for ascorbic acid based on copper(I) catalyzed click chemistry,” Biosens Bioelectron., vol. 26, pp. 4326-4330, Jul. 2011.
[116]K. Saksenaa, A. Shrivastavaa, R. Kant, “Chiral analysis of ascorbic acid in bovine serum using ultrathin molecular imprinted polyaniline/graphite electrode,” J. electroanal. chem., vol. 795, pp. 103-109, Jun. 2017.
[117]Y. S. Lee, W. J. Chen, J. S. Huang, S. C. Wu, “Effects of composition on optical and electrical properties of amorphous In–Ga–Zn–O films deposited using radio-frequency sputtering with varying O2 gas flows,” Thin solid films., vol. 520, pp. 6942-6946, Sep. 2012.
[118]T. C. Li, C. F. Han, T. H. Kuan, J. F. Lin, “Effects of sputtering-deposition inclination angle on the IGZO film microstructures, optical properties and photoluminescence,” Optical Materials Express, vol. 6, pp. 343-366, February 2016.
[119]Z. Jia, Y. Wang, “Covalently crosslinked graphene oxide membranes by esterification reactions for ions separation,” Journal of Materials Chemistry A, vol. 3, pp. 4405-4412, January 2015.
[120]S. Pakapongpan, R. P. Poo-arporn, “Self-assembly of glucose oxidase on reduced graphene oxide-magnetic nanoparticles nanocomposite-based direct electrochemistry for reagentless glucose biosensor,” Materials Science and Engineering: C, vol. 76, pp. 398-405, July 2017.
[121]L. Jiang, Z. Fan, “Design of advanced porous graphene materials: from graphene nanomesh to 3D architectures,” Nanoscale, vol. 6, pp. 1922-1945, Feb. 2014.
[122]S. Ameen, M. S. Akhtar, H. S. Shin, Nanocages-augmented aligned polyaniline nanowires as unique platform for electrochemical non-enzymatic glucose biosensor, Applied Catalysis A: General, vol. 517, 21-29, May 2016.
[123]J. C. Chou, J. T. Chen, Y. H. Liao, C. H. Lai, R. T. Chen, Y. L. Tsai, C. Y. Lin, J. S. Chen, M. S. Huang and H. T. Chou, “Wireless sensing system for flexible arrayed potentiometric sensor based on XBee module,” IEEE Sens J, vol. 16, pp. 5588-5595, July 2016.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 結合磁珠技術的快速檢測登革熱感染及流感病毒感染之微流體晶片
2. 以微流體架構研究差動對參考電極整合磁珠與氧化石墨烯修飾可撓式陣列型AZO與ZnO葡萄糖與抗壞血酸生醫感測器特性、等效電路之阻抗分析與讀出電路之設計
3. 以氧化石墨烯修飾與微流體架構研製整合於陣列型可撓式氯離子生醫感測系統之量測與阻抗分析
4. 以微流體架構探討磁珠與石墨烯修飾可撓式陣列型 TiO2 (NiO)葡萄糖與尿素感測器之感測特性、穩定性及即時感測系統之量測
5. 探討以石墨烯與磁珠整合氧化鋅奈米線修飾 可撓式陣列型二氧化鈦染料敏化太陽能電池於低照度 之光電特性與大面積串並聯等效電路的阻抗分析
6. 以微流體架構探討磁珠與石墨烯修飾可撓式陣列型氧化鎳葡萄糖與乳酸感測器之穩定性、干擾性、阻抗分析及即時感測系統之量測
7. 以微流體架構研究差動對參考電極整合磁珠與石墨烯修飾陣列型可撓式IGZO葡萄糖感測器與多功能酵素即時感測系統之研製
8. 探討以石墨烯與磁珠修飾陣列型氧化鋅/二氧化鈦大面積染料敏化太陽能電池之等效電路分析及無線遠端即時監控系統之研究
9. 以石墨烯修飾磁珠與微流體架構研製差動對參考電極整合於陣列型可撓式葡萄糖生醫感測系統之量測與阻抗分析
10. 整合磁珠與微流體架構研製可撓式陣列型葡萄糖生醫感測器
11. 連續式微流體系統運用於系統性配位子指數增益演繹程序
12. 新式酵素固定技術應用於血糖、尿素、肌酐酸生醫晶片
13. 整合微混合器之微流體系統及其相關應用
 
無相關期刊
 
1. 探討以石墨烯修飾IGZO工作電極雙層結構可撓式陣列型TiO2染敏太陽能電池模組於低照度之光伏特性 、等效電路分析與即時監控系統之研究
2. 以微流體架構探討磁珠與石墨烯修飾可撓式陣列型 TiO2 (NiO)葡萄糖與尿素感測器之感測特性、穩定性及即時感測系統之量測
3. 以微流體架構研究差動對參考電極整合磁珠與石墨烯修飾陣列型可撓式IGZO葡萄糖感測器與多功能酵素即時感測系統之研製
4. 以微流體架構探討磁珠與石墨烯修飾可撓式陣列型氧化鎳葡萄糖與乳酸感測器之穩定性、干擾性、阻抗分析及即時感測系統之量測
5. 以微流體架構研究差動對參考電極整合磁珠與氧化石墨烯修飾可撓式陣列型AZO與ZnO葡萄糖與抗壞血酸生醫感測器特性、等效電路之阻抗分析與讀出電路之設計
6. 探討以石墨烯與磁珠整合氧化鋅奈米線修飾 可撓式陣列型二氧化鈦染料敏化太陽能電池於低照度 之光電特性與大面積串並聯等效電路的阻抗分析
7. 整合磁珠與微流體架構研製可撓式陣列型葡萄糖生醫感測器
8. 以石墨烯修飾磁珠與微流體架構研製差動對參考電極整合於陣列型可撓式葡萄糖生醫感測系統之量測與阻抗分析
9. 以LabVIEW設計實現具數據融合之量測系統應用於可撓式陣列型酸鹼感測器與葡萄糖生醫感測器
10. 以微流體架構及改良型讀出電路研究銀奈米線修飾 可撓式陣列型非酵素電壓式CZO薄膜 葡萄糖生醫感測器
11. 探討以石墨烯與磁珠修飾陣列型氧化鋅/二氧化鈦大面積染料敏化太陽能電池之等效電路分析及無線遠端即時監控系統之研究
12. 以微流體架構探討差動對參考電極整合磁珠與還原氧化石墨烯修飾可撓式陣列型NiO尿酸生醫感測器特性、時漂、遲滯穩定性之研究與後端類比讀出電路校正之量測
13. 以氧化石墨烯修飾與微流體架構研製整合於陣列型可撓式氯離子生醫感測系統之量測與阻抗分析
14. 基於干擾協調下D2D能效資源分配研究
15. 使用 Cu 為金屬催化劑 對鑽石線切割多晶矽進行表面織構化