|
1. Balkwill, F.R., M. Capasso, and T. Hagemann, The tumor microenvironment at a glance. J Cell Sci, 2012. 125(Pt 23): p. 5591-6. 2. Hanahan, D. and L.M. Coussens, Accessories to the crime: functions of cells recruited to the tumor microenvironment. Cancer Cell, 2012. 21(3): p. 309-22. 3. J. Bissell, M., H.G. Hall, and G. Parry, Bissell MJ, Hall HG, Parry G.. How does the extracellular matrix direct gene expression? J Theor Biol 99: 31-68. Vol. 99. 1982. 31-68. 4. Armulik, A., A. Abramsson, and C. Betsholtz, Endothelial/pericyte interactions. Circ Res, 2005. 97(6): p. 512-23. 5. Navas, C., et al., EGF receptor signaling is essential for k-ras oncogene-driven pancreatic ductal adenocarcinoma. Cancer Cell, 2012. 22(3): p. 318-30. 6. Cirri, P. and P. Chiarugi, Cancer-associated-fibroblasts and tumour cells: a diabolic liaison driving cancer progression. Cancer Metastasis Rev, 2012. 31(1-2): p. 195-208. 7. Mohamed, M.M. and B.F. Sloane, Cysteine cathepsins: multifunctional enzymes in cancer. Nat Rev Cancer, 2006. 6(10): p. 764-75. 8. Pontiggia, O., et al., The tumor microenvironment modulates tamoxifen resistance in breast cancer: a role for soluble stromal factors and fibronectin through β1 integrin. Breast cancer research and treatment, 2012. 133(2): p. 459-471. 9. De Bock, K., S. Cauwenberghs, and P. Carmeliet, Vessel abnormalization: another hallmark of cancer? Molecular mechanisms and therapeutic implications. Curr Opin Genet Dev, 2011. 21(1): p. 73-9. 10. Goel, S., et al., Normalization of the vasculature for treatment of cancer and other diseases. Physiol Rev, 2011. 91(3): p. 1071-121. 11. Takeda, N., et al., Differential activation and antagonistic function of HIF-{alpha} isoforms in macrophages are essential for NO homeostasis. Genes Dev, 2010. 24(5): p. 491-501. 12. Pietras, K. and A. Ostman, Hallmarks of cancer: interactions with the tumor stroma. Exp Cell Res, 2010. 316(8): p. 1324-31. 13. Martinez-Outschoorn, U.E., F. Sotgia, and M.P. Lisanti, Power surge: supporting cells "fuel" cancer cell mitochondria. Cell Metab, 2012. 15(1): p. 4-5. 14. Nieman, K.M., et al., Adipocytes promote ovarian cancer metastasis and provide energy for rapid tumor growth. Nat Med, 2011. 17(11): p. 1498-503. 15. Manzur, M., J. Hamzah, and R. Ganss, Modulation of the "blood-tumor" barrier improves immunotherapy. Cell Cycle, 2008. 7(16): p. 2452-2455. 16. Sennino, B. and D.M. McDonald, Controlling escape from angiogenesis inhibitors. Nat Rev Cancer, 2012. 12(10): p. 699-709. 17. Bertout, J.A., S.A. Patel, and M.C. Simon, The impact of O2 availability on human cancer. Nat Rev Cancer, 2008. 8(12): p. 967-75. 18. Corbet, C. and O. Feron, Tumour acidosis: from the passenger to the driver''s seat. Nat Rev Cancer, 2017. 17(10): p. 577-593. 19. Neri, D. and C.T. Supuran, Interfering with pH regulation in tumours as a therapeutic strategy. Nat Rev Drug Discov, 2011. 10(10): p. 767-77. 20. Vander Heiden, M.G., L.C. Cantley, and C.B. Thompson, Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science, 2009. 324(5930): p. 1029-33. 21. Helmlinger, G., et al., Acid production in glycolysis-impaired tumors provides new insights into tumor metabolism. Clin Cancer Res, 2002. 8(4): p. 1284-91. 22. Nakazawa, M.S., B. Keith, and M.C. Simon, Oxygen availability and metabolic adaptations. Nat Rev Cancer, 2016. 16(10): p. 663-73. 23. Corbet, C. and O. Feron, Cancer cell metabolism and mitochondria: Nutrient plasticity for TCA cycle fueling. Biochim Biophys Acta Rev Cancer, 2017. 1868(1): p. 7-15. 24. Draoui, N. and O. Feron, Lactate shuttles at a glance: from physiological paradigms to anti-cancer treatments. Dis Model Mech, 2011. 4(6): p. 727-32. 25. Khacho, M., et al., Acidosis overrides oxygen deprivation to maintain mitochondrial function and cell survival. Nature Communications, 2014. 5: p. 3550. 26. Corbet, C., et al., Acidosis Drives the Reprogramming of Fatty Acid Metabolism in Cancer Cells through Changes in Mitochondrial and Histone Acetylation. Cell Metab, 2016. 24(2): p. 311-23. 27. Lamonte, G., et al., Acidosis induces reprogramming of cellular metabolism to mitigate oxidative stress. Cancer Metab, 2013. 1(1): p. 23. 28. Peppicelli, S., F. Bianchini, and L. Calorini, Extracellular acidity, a "reappreciated" trait of tumor environment driving malignancy: perspectives in diagnosis and therapy. Cancer Metastasis Rev, 2014. 33(2-3): p. 823-32. 29. Parks, S.K., J. Chiche, and J. Pouyssegur, Disrupting proton dynamics and energy metabolism for cancer therapy. Nat Rev Cancer, 2013. 13(9): p. 611-23. 30. Wojtkowiak, J.W., et al., Chronic autophagy is a cellular adaptation to tumor acidic pH microenvironments. Cancer Res, 2012. 72(16): p. 3938-47. 31. Marino, M.L., et al., Autophagy is a protective mechanism for human melanoma cells under acidic stress. J Biol Chem, 2012. 287(36): p. 30664-76. 32. Fischer, K., et al., Inhibitory effect of tumor cell-derived lactic acid on human T cells. Blood, 2007. 109(9): p. 3812-9. 33. Dietl, K., et al., Lactic acid and acidification inhibit TNF secretion and glycolysis of human monocytes. J Immunol, 2010. 184(3): p. 1200-9. 34. Ciccone, V., et al., Stemness marker ALDH1A1 promotes tumor angiogenesis via retinoic acid/HIF-1alpha/VEGF signalling in MCF-7 breast cancer cells. J Exp Clin Cancer Res, 2018. 37(1): p. 311. 35. Maniotis, A.J., et al., Vascular channel formation by human melanoma cells in vivo and in vitro: vasculogenic mimicry. Am J Pathol, 1999. 155(3): p. 739-52. 36. Ricci-Vitiani, L., et al., Tumour vascularization via endothelial differentiation of glioblastoma stem-like cells. Nature, 2010. 468(7325): p. 824-8.
|