呂明雄. 1986. 改進柿子脫澀處理. 豐年36:26-28.
呂明雄. 1975. 愛文與凱特芒果成熟度之研究. 中國園藝 21:192-197.
李宝、尚丽、薛晓莉、张寅. 2010. 柿果實脫澀機理及脫澀技術研究進展. 中國農
業科學 43:2973-2981.
宋少華. 2015. 礦質元素變化及對甜柿果實品質的影響. 南京農業大學. 中國.
朱峯震. 2009. 龍眼貯藏及牛心柿真空脫澀技術之研究. 國立中興大學園藝學系
碩士論文. 臺中.
林宗賢、謝慶昌、繆八龍. 1987. 二氧化碳與石灰懸浮液對柿果脫澀、軟化與乙烯產生之比較. 中國園藝 33:274-283.
周佳頤. 2016. 肉桂醛處理對‘臺農二號’番木瓜果皮轉色、抗氧化物含量及抗
氧化酶活性之影響. 國立中興大學園藝學系碩士論文. 臺中.
邱俊源. 2015. 採前套袋、噴鈣與採後預冷、比重分級對‘珍珠’番石榴果實品
質之影響. 國立中興大學園藝學系碩士論文. 臺中.
阮雅蘭. 2004. 柿果貯藏及脫澀技術之改進及脫澀機制之研究. 國立中興大學園
藝學系碩士論文. 臺中.
张鹏、李江阔、孟宪军、张平. 2011. 1-MCP和薄膜包裝對磨盤柿採後生理及品
質的影響. 農業機械學報 42:130-134.
賴文龍、黃裕銘. 2004. 甜柿樹體無機養分之變化,p. 117-129. 刊於:張致盛、張林 仁主編. 臺中區農業改良場特刊. 行政院農業委員會臺中區農業改良場. 彰化.
黃思齊. 2005. 熱、乙醇、氣變包裝處理對‘富有’甜柿低溫貯藏生理障礙及品質之影響. 國立中興大學園藝學系碩士論文. 臺中.黃仲彥. 2006. 脫澀後柿果低溫貯藏之研究. 國立中興大學園藝學系碩士論文. 臺中.杨勇、阮小凤、王仁梓、李高潮. 2003. 柿單寧細胞型態特徵及發育動態研究. 西北農林科技大學學報 31:93-99.
傅琦媺. 1994. 柿果二氧化碳脫澀之生理變化及微細構造. 國立中興大學園藝學系碩士論文. 臺中.馮詩蘋. 2000. 牛心柿不同脫澀方法之脫澀機制. 國立中興大學園藝學系碩士論文. 臺中.馮詩蘋、謝慶昌、林慧玲、洪登村. 2000. 柿餅加工期間脫澀與乙烯之關係. 中國園藝 46:417-426.
陳建村. 2007. 真空技術應用在柿子脫澀之研究. 國立嘉義大學生物機電工程學系碩士論文. 嘉義.飯室聡. 1980. 生理障害-綠斑果. 農業技術大系果樹篇第四卷, p.371-373. 農山
漁村文化協會. 東京.
蔡惠文. 2002. 柿樹嫁接不親和性及耐寒性之研究. 國立中興大學園藝學系碩士論文. 臺中.蒲飛. 2014. 柿果實酚類物質含量、生物活性及其相關酶的研究. 西北農林科技大學園藝學院. 中國.
鄭雅凌. 2001. 柿果貯藏之研究. 國立中興大學園藝學系碩士論文. 臺中.鄒采蘋. 2002. 脫澀處理及貯藏溫度對柿果組成份之影響. 國立中興大學園藝學系碩士論文. 臺中.潘永貴、謝江輝. 2009. 現代果蔬採後生理. 化學工業出版社. 中國. 北京.
謝慶昌、蔡平里. 1995. 澀柿傳統石灰水浸漬脫澀處理方法之改良. 中國園藝41:136-143.
謝慶昌、劉秀玲、林慧玲. 2000. ‘四周柿’後熟誘發脫澀可能機制之研究. 中國
園藝 46:399-416.
蕭昀珍 2012. 真空處理對不同澀柿品種脫澀及貯藏品質之影響. 國立中興大學
園藝學系碩士論文. 臺中.
Akagi, T., A. Katayama-Ikegami, and K. Yonemori. 2011. Proanthocyanidin
biosynthesis of persimmon (Diospyros kaki Thunb.) fruit. Scientia Hort.
130:373-380.
Amarowica, R., R.B. Pegg, P. Rahimi-Moghaddam, B. Barl. and J.A. Weil. 2004.
Free-radical scavenging capacity and antioxidant activity of selected plant species from the Canadian prairies. Food Chem. 84:551-562.
Apaliya, M.T., H. Zhang, Q. Yang, X. Zheng, L. Zhao, E. Kwaw, and G.K. Mahunu. 2017. Hanseniaspora uvarum enhanced with trehalose induced defense-related enzyme activities and relative genes expression levels against Aspergillus tubingensis in table grapes. Postharvest Biol. Technol. 132:162-170.
Arnal, L., and M.A. Del Rio. 2003. Removing astringency by carbon dioxide and nitrogen-enriched atmospheres in persimmon fruit cv. ‘Rojo brillante’. J. food Sci. 68:1516-1518.
Araji, S., T.A. Grammer, R. Gertzen, S. D. Anderson, M. Mikulic-Petkovsek, R. Veberic, M.L. Phu, A. Solar, C.A. Leslie, A.M. Dandekar, M.A. Escobar. 2014. Novel roles for the polyphenol oxidase enzyme in secondary metabolism and the regulation of cell death in walnut. Plant Physi. 164:1191-1203.
Beaudry, R. M. 1999. Efect of O2 and CO2 partial pressure on selected phenomena affecting fruit and vegetable quality. Postharvest Biol. Tech. 15: 293-303.
Besada, C., A. Salvador, L. Arnal, and M. Martı´nez-Ja´vega. 2008. Hot water treatment for chilling injury reduction of astringent ‘Rojo Brillante’ persimmon at different maturity stages. Hortscience 43:2120-2123.
Bennett, A.B. 2002. Biochemical and genetic determinants of cell wall disassembly in
ripening fruit: a general model. HortScience 37:447-450.
Ben-Arie, R. and L. Sonego. 1993. Temperature affects astringency removal and recurrence in persimmon. J. Food Sci. 58: 1397-1400.
Bibi, N., A.B. Khattak, and Z. Mehmood. 2007. Quality improvement and shelf life extension of persimmon fruit (Diospyros kaki). J. Food Eng. 79:1359-1363.
Biton, E., I. Kobiler, O. Feygenberg, M. Yaari, T. Kaplunov, M. Ackerman, H.
Friedman, and D. Prusky. 2014. The mechanism of differential susceptibility to
alternaria black spot, caused by Alternaria alternata, of stem- and bottom-end
tissues of persimmon fruit. Postharvest Biol. Technol. 94:74-81.
Blankenship, S.M., and J.M. Dole. 2003. 1-Methylcyclopropene: a review. Postharvest Biol. Technol. 28:1-25.
Boonsiri, K., S. Ketsa, and W.G. van Doorn. 2007. Seed browning of hot peppers during low temperature storage. Postharvest Biol. Technol. 45:358-365.
Brummell, D.A. 2006. Cell wall disassembly in ripening fruit. Funct. Plant Biol.
33:103-119.
Bubba M.D., E. Giodani, L. Pippucci, A. Cincinelli, and P. Galvan. 2009. Changes in tannins, ascorbic acid and sugar content in astringent persimmons during on-tree growth and ripening and in response to different postharvest treatments. J. Food Compos. Anal. 22:668-677.
Bustamante, C.A., C.O. Budde, J. Borsani, V.A. Lombardo, M.A. Lauxmann, C.S. Andreo, M.V. Lara, and M.F. Drincovich. 2012. Heat treatment of peach fruit: modifications in the extracellular compartment and identification of novel extracellular proteins. Plant Physiol. Bioch. 60:35-45.
Cao, S., Y. Zheng, Z. Yang, S. Tang, P. Jin, K. Wang, and X. Wang. 2008. Effect of
methyl jasmonate on the inhibition of Colletotrichum acutatum infection in loquat
fruit and the possible mechanisms. Postharvest Biol. Technol. 49:301-307.
Chen, J.H., X. Sun, W. Weng, H.X. Guo, S.R. Hu, Y.S. He, F.M. Li, and W.B. Wu.
2015. Recovery and investigation of Cu(II) ions by tannin immobilized porous
membrane adsorbent from aqueous solution. Chem. Eng. J. 273:19-27.
Falcao, L. and M.E.M. Araujo. 2011. Tannins characterisation in new and historic vegetable tanned leathers fibres by spot tests. J. Cult. Herit. 12:149-156.
Freudenberg, K. 1920. Die chemie der naturliche gerbstoffe. Springer, Berlin.
Fukushima, T., T. Kitamura, H. Murayama, and T. Yoshida. 1991. Mechanisms of
astringency removal by ethanol treatment in ‘Hiratanenashi’ kaki fruits. J. Japan. Soc. Hort. Sci. 60:685-694.
Haslam, E. 2007. Vegetable tannins – Lessons of a phytochemical lifetime. Phytochemistry 68:2713-2721.
Hirai, S. and K. Yamazaki. 1984. Studies on sugar components of sweet and astringent persimmon by gas chromatography. J. Jpn. Soc. Food Chem. 39:1270-1274.
Hiroshi, Y. and N. Akira. 2007. Recent persimmon research in Japan. Jpn. J. Plant Sci. 1:42-62.
Huan, C., S. Han, L. Jiang, X. An, M. Yu, Y. Xu, R. Ma, and Z. Yu. 2017. Postharvest hot air and hot water treatments affect the antioxidant system in peach fruit during refrigerated storage. Postharvest Biol. Technol. 126:1-14.
Ikegami, A., K. Yonemori, A. Sugiura, A. Sato, and M. Yamada. 2004. Segregation of astringency in F1 progenies derived from crosses between pollination-constant, non-astringent persimmon cultivars. HortScience 39:371-374.
Ikegami, A., S. Eguchi, A. Kitajima, K. Inoue, and K. Yonemori. 2007. Identification of genes involved in proanthocyanidin biosynthesis of persimmon (Diospyros kaki) fruit. Plant Sci. 172:1037-1047.
Itamura, H. 1986. Relationships between fruit softening, respiration and ethylene production after deastringent treatment by ethanol in Japanese persimmon (Diospyros kaki Thunb. var. Hiratanenashi) fruit harvested at various stages. J. Japan. Soc. Hort. Sci. 55:89-98.
Itamura, H., T. Kitamura, S. Taira, H. Harada, N. Ito, Y. Takahashi, and T. Fukushima. 1991. Relationship between fruit softening, ethylene production and respiration
in Japanese persimmon ‘Hiratanenashi’. J. Japan. Soc. Hort. Sci. 60:695-701.
Ito, S. 1971. The persimmon. pp.281-302. In:S. P. Monselise(ed.) CRC Handbook of fruit Set and Development. CRC Press, Inc. Boca Raton, Florida.
Kato, K. 1984. Astringency removal and ripening as related to ethanol concentration during the de-astringency by ethanol in persimmon fruits. J. Japan. Soc. Hort. Sci. 53:278-289.
Kennedy, J.A.and A.W. Taylor. 2003. Analysis of proanthocyanidins by high-performance gel permeation chromatography. J. Chromatogr. A. 995:99-107.
Keith, R.W., D. L. Tourneau, and D. Mahlum. 1958. Quantitative paperchromtographic determination of phenols. J. Chromatogr. 1:534-536.
Khademi,O.,C. Besada, Y. Mostofi, and A. Salavador. 2014. Changes in pectin methylesterase, polygalacturonase, catalase and peroxidase activities associated with alleviation of chilling injury in persimmon by hot water and 1-MCP treatments. Scientia Hort. 179:191-197.
Khademi, O., A. Salvador, Z. Zamani, and C. Besada. 2013. Effects of hot water
treatments on antioxidant enzymatic system in reducing flesh browning of persimmon. Food Bioprocess Tenchnol. 6:3038-3046.
Komiyama, Y., M. Harakawa, and M. Tsuji. 1985. Characteristics of sugar composition of various fruits in relation to maturity and storage. J. Nippon Shokuhin Kogyo Gakkaishi 32:552-529.
Kubota, N. 1996. Phenolic content and L-phenylalanine ammonia-lyase acyivity in peach fruit, p.81-95. In: H.F. Linskens and F. Jackson(eds.). Plant analysis. Springer-Verlag Berlin Heildelberg, Inc, Germant.
Lay-Yee, M., S. Ball, S.K. Forbes, and A.B. Woolf. 1997. Hot-water treatment for insect disinfestations and reduction of chilling injury of ‘Fuyu’ persimmon. Postharvest Biol. Technol. 10:81-87.
Lee, C.Y. and N.L. Smith. 1979. Blanching effect on polyphenol oxidase activity in table beets. J. Food Sci. 44:72-77.
Lee, S.Y. and H.J. Choi. 2018. Persimmon leaf bio-waste for adsorptive removal of
heavy metals from aqueous solution. J. Environ. Manage. 209:382-392.
Lee, S.K., I.S. Shin, and Y.M. Park. 1993. Factors involved in skin browning of non-astringent ‘Fuyu’ persimmon. Acta. Horti. 343:300-303.
Lloyd, F.E. 1913. The induction of nonastringency in persimmons at supranormal pressures of carbon dioxide. Sci. 37:228-232.
Lurie, S. 1998. Postharvest heat treatments. Postharvest Biol. Technol. 14:257-269.
Lurie, S. and C.H. Crisosto. 2005. Chilling injury in peach and nectarine. Postharvest
Biol. Technol. 37:195-208.
Luna, C.M. C.A. Gonzalez, and V.S. Trippi. 1994. Oxidative damage caused by an
excess of copper in oat leaves. Plant Cell Physiol. 35:11-15.
Liu, J., Y. Sui, M. Wisniewski, S. Droby, S. Tian, J. Norelli, and V. Hershkovitz. 2012.
Effect of heat treatment on inhibition of Monilinia fructicola and induction of disease resistance in peach fruit. Postharvest Biol. Technol. 65:61-68.
Li, Y., H. Lu, Q. Cheng, R. Li, S. He, and B. Li. 2016. Changes of reactive oxygen species and scavenging enzymes of persimmon fruit treated with CO2 deastringency and the effect of hydroxyl radicals on breakdown of cell wall polysaccharides in vitro. Scientia Hort. 199:81-87.
Maotani, T., M. Yamada, A. Kurihara, T. Alimoto, and Y. Iiya. 1982. Storage of Japanese persimmon of pollination constant non-astringent type in polyethylene bags with ethylene absorbent. J. Japan. Soc. Hort. Sci. 51: 195-202.
Mastuo, T. and S. Ito. 1977. On mechanisms of removing astringency in persimmon
fruits by carbon treatmeat I. Some properties of the two process in the de-astringency. Plant&Cell Physiol. 18:17-25.
Matsuo, T., S. Itoo, and R. Ben-Arie. 1991. A model experiment for elucidating the mechanism of astringency removal in persimmon fruit using respiration inhibitors. J. Japan. Soc. Hort. Sci. 60: 437-442.
Matsuo, T., J. Shinohara, and S. Ito, 1976. An improvement on removing astringency in persimmon fruits by carbon dioxide gas. Agric. Biol. Chem. 40:215-217.
Min, D., L. Dong, P. Shu, X. Gui, X. Zhang, and F. Li. 2018. The application of carbon dioxide and 1-methylcyclopropene to maintain fruit quality of ‘Niuxin’ persimmon during storage. Scientia Hort. 229:201-206.
Mittler, R. 2002. Oxidative stress, antioxidants and stress tolerance. Trends plant Sci. 7:405-410.
Mizobusti, G.P., F.L. Finger, R.A. Ribeiro, R. Puschmann, L.L.de Melo Neves, and W.F. da Mota. 2010. Effect of pH and temperature on peroxidase and polyphenoloxidase activities of litchi pericarp. Sci. Agric. 67:213-217.
Nakano, R., S. Harima, E. Ogura, S. Inoue, Y. Kubo, and A. Inaba. 2001. Involvement of stress-induced ethylene biosynthesis in fruit softening of ‘Saijo’ persimmon. J. Jpn. Soc. Hort. Sci. 70:581-585.
Nakano, R., E. Ogura, Y. Kubo, and A. Inaba. 2003. Ethylene biosynthesis in detached young persimmon fruit is initiated in calyx and modulated by water loss from the fruit. Plant Physiol. 131:276-286.
Naser, F., V. Rabiei, F. Razavi, and O. Khademi. 2018. Effect of calcium lactate in combination with hot water treatment on the nutritional quality of persimmon fruit during cold storage. Scientia Hort. 233:114-123.
Novillo, P., A. Salvador, T. Magalhaes, and C. Besada. 2014. Deastringency treatment with CO2 induces oxidative stress in persimmon fruit. Postharvest Biol. Technol. 92:16-22.
Novillo, P., A. Salvador, C. Crisoto, and C. Besada. 2016. Influence of persimmon astringency type on physico-chemical changes from the green stage to commercial harvest. Scientia Hort. 206:7-14.
Ortiz, G.I., S. Sugaya, Y. Sekozawa, H. Ito, K. Wada, and H. Gemma. 2005. Efficacy of 1-Methylcyclopropene(1-MCP) in prolonging the shelf- life of ‘Rendaiji’ persimmon fruits previously subjected to astringency removal treatment. J. Japan. Soc. Hort. Sci. 74:248-254.
Ozen, A., A. Colak, B. Dincer, and S. Guner. 2004. A diphenolase from persimmon
fruits (Diospyros kaki L., Ebenaceae). Food Chem. 85:431-437.
Pesis, E. and R. Ben-Arie. 1986. Carbon dioxide assimilation during postharvest removal of astringency from persimmon fruit. Physiol. Plant. 67:644-648.
Pesis, E. and R. Ben-Arie. 1984. Involvement of acetaldehyde and ethanol accumulation during induced deastringency of persimmon fruits. J Food Sci. 49:896-899.
Park, D.S., S. Tilahun, J.Y. Heo, and C.S. Jeong. 2017. Quality and expression of ethylene response genes of ‘Daebong’ persimmon fruit during ripening at different temperatures. Postharvest Biol. Technol. 133:57-63.
Paull, R.E., and N.J. Chen. 2000. Heat treatment and fruit ripening. Postharvest Biol. Technol. 21:21-37.
Rice-Evans, C.A., N.J. Miller, and G. Paganga. 1997. Antioxidant properties of phenolic compounas. Trends Plant Sci. 2:152-159.
Robards, K., P.D. Prenzler, G. Tucker, P. Swatsitang, and W. Glover. 1999. Phenolic compounds and their role in oxidative processes in fruits. Food Chem. 66:401-436.
Saltveit, M.E. 2000. Wound induced changes in phenolic metabolism and tissue browning are altered by heat shock. Postharvest Biol. Technol. 21:61-69.
Salunkhe, D.K. and B.B. Desai. 1984. Persimmon, p. 105-109. In: Postharvest biotechnology of fruit. VolumeⅡCRC. Press, United States, Ind.
Salvador, A., L. Arnal, A. Monterde, and J. Cuquerella. 2004. Reduction of chilling injury symptoms in persimmon fruit cv. ‘Rojo Brillante’ by 1-MCP. Postharvest Biol. Tech. 33:285-291.
Salvador, A., L. Arnal, C. Besada, V. Larrea, A. Quiles, and I. Perez-Munuera. 2007. Physiological and structure changes during ripening and deastringency treatment of persimmon fruit cv. ‘Rojo Brillante’. Postharvest Biol. Tech. 46:181-188.
Sato, A., and M. Yamada. 2016. Persimmon breeding in Japan for pollination-constant non-astringent (PCNA) type with marker-assisted selection. Breeding Sci. 66:60-68.
Scalzo, J., A. Politi, N. Pellegrini, B. Mezzetti, and M. Battino. 2005. Plant genotype affects total antioxidant capacity and phenolic contents in fruit. Nutr. 21:207-213.
Shahidi, F., and P. Ambigaipalan. 2015. Phenolics and polyphenolics in foods, beverages and spices: antioxidant activity and health effects –a review. J. Funct. Foods 18:820-897.
Sugiura, A., and T. Tomana. 1983. Relationships of ethanol production by seeds of
different types of Japanese persimmons and their tannin content. HortScience
18:319-321.
Suzuki, T., S. Someya, F. Hu, and M. Tanokura. 2005. Comparative study of catechin compositions in five Japanese persimmons (Diospyros kaki). Food Chem. 93:149-152.
Taira, S., K. Abe, K. Oot, and S. Watanabe. 1990. Influence of fruit size, degoliation, gibberellin, and growing regions on the ease of removal of astringency in Japanese persimmon (Diospyros kaki Thunb. var. Hiratanenashi). J. Japan. Soc. Hort. Sci. 59:299-305.
Taira, S., I. Satoh, and S. Watanabe. 1992. Relationship between differences in the ease of removal of astringency among fruits of Japanese persimmon and their ability to accumulate ethanol and acetaldehyde. J. Japan. Soc. Hort. Sci. 60:1003-1009.
Taira, S., M. Ono, and N. Matsumoto. 1997. Reduction of persimmon astringency by complex formation between pectin and tannins. Postharvest Biol. Technol. 12:265-271.
Tamura, F., K. Tanabe, A. Itai, and M. Hasegawa. 1999. Characteristics of acetaldehyde accumulation and removal of astringency with ethanol and carbon dioxide treatment in ‘Saijo’ persimmon fruit. J. Japan. Soc. Hort. Sci. 68:1178-1183.
Tessmer, M. A., C. Besada, I. Hernando, B. Appezzato-da-Gloria, A. Quiles, and A. Salvador. 2016. Microstructural changes while persimmon fruits mature and ripen comparison between astringent and non-astringent cultivars. Postharvest Biol. Technol. 120:52-60.
Timperio, A.M., M.G. Egidi, and L. Zolla. 2008. Proteomics applied on plant abiotic
stresses: Role of heat shock proteins (HSP). J. Proteomics. 71:391-411.
Vaughn, K.C., A.R. Lax, and S.O. Duke. (1988) Polyphenol oxidase: the chloroplast oxidase with no established function. Physiol Plant 72(3):659 (abstr.).
Veberic, R., J. Jurhar, M. Mikulic-Petkovsek, F. Stampar, and V. Schmitzer. 2010. Comparative study of primary and secondary metabolites in 11 cultivars of persimmon fruit (Diospyros kaki L.) Food Chem. 119:447-483.
Wang, M.M., Q.G. Zhu, C.L. Deng, Z.R. Luo, N.J. Sun, D. Grierson, X.R. Yin, and K.S. Chen. 2017. Hypoxia-responsive ERFs involved in postdeastringency softening of persimmon fruit.Plant Biotechnol. J. 15:1409-1419.
Wu, P.W., and L.S. Hwang. 2002. Determination of soluble persimmon tannin by high performance gel permeation chromatography. Food Res. Int. 35:793-800.
Yamada, M., S. Taira, M. Ohtsuki, A. Sato, H. Iwanami, H. Yakushiji, R. Wang, Y. Yang, and G. Li. 2002. Varietal differences in the ease of astringency removal by carbon dioxide gas and ethanol vapor treatments among oriental astringent persimmon of Japanese and Chinese origin. Sci. Hort. 94: 63-72.
Yonemori, K., and J. Matsushima. 1985. Property of development of tannin cells in non-astringent type fruits of Japanese persimmon (Diospyros kaki) and its relationship to natural deastringency. J. Japan. Soc. Hort. Sci. 54: 201-208.
Youryon, P., and S. Supzpvanich. 2017. Physicochemical quality and antioxidant changes in ‘Leb Mue Nang’ banana fruit during ripening. Agr. Natural Resources 51:47-52.
Yin, X.R., Y.N. Shi, T. Min, Z.R. Luo, Y.C. Yao, Q. Xu, I. Ferguson, and K.S. Chen. 2012. Expression of ethylene response genes during persimmon fruit astringency removal. Planta 235:895-906.
Yilmaz, B., A. Genc, B. Cimen, M. Incesu, and T. Yesiloglu. 2017. Characterization of morphological traits of local and global persimmon varieties and genotypes collected from Turkey. Turk. J. Agric. For. 41:93-102.
Zhang, Z., D.J. Huber, H. Qu, Z. Yun, H. Wang, Z. Huang, H. Huang, and Y. Jiang. 2015. Enzymatic browning and antioxidant activities in harvested litchi fruit as influenced by apple polyphenols. Food Chem. 171:191-199.
Zhou, Y., M. Dahler, S.J.R. Undrhill, and R.B.H. Wills. 2003. Enzymes associated with blackheart development in pineapple fruit. Food Chem. 80:565-572.