跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.17) 您好!臺灣時間:2025/09/03 09:53
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:王以琳
研究生(外文):Yi-Lin Wang
論文名稱:澀柿與甜柿果實及葉片組成份比較與採後處理對‘牛心柿’真空脫澀後果皮褐化之影響
論文名稱(外文):Comparison of the Composition of Fruit and Leaf between Astringent and Non-astringent Persimmons and Effect of Postharvest treatments on the Peel Browning of ‘Bull Heart’ Persimmon Fruit after Vacuum Deastringency
指導教授:謝慶昌謝慶昌引用關係
口試委員:李堂察王自存林慧玲
口試日期:2018-06-13
學位類別:碩士
校院名稱:國立中興大學
系所名稱:園藝學系所
學門:農業科學學門
學類:園藝學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:中文
論文頁數:102
中文關鍵詞:‘牛心柿’真空脫澀褐化澀柿甜柿
外文關鍵詞:‘Bull Heart’ persimmonvacuum deastringencybrowningastrigent persimmonnon-astrigent persimmon
相關次數:
  • 被引用被引用:0
  • 點閱點閱:327
  • 評分評分:
  • 下載下載:34
  • 收藏至我的研究室書目清單書目收藏:0
本試驗以17個品種之柿葉為材料,期能尋求果實是否具澀味相關指標,比較澀柿與甜柿葉片礦物元素濃度差異,鐵元素為甜柿高於澀柿;錳元素為澀柿高於甜柿,其他元素則沒有顯著性差異。柿品種間的差異性大,澀柿品種有的可溶性單寧濃度高,有些濃度偏低;甜柿也有相同的情形。因此無法以葉片單一個指標,作為判斷果實是澀柿或甜柿。‘富有’與‘蜂屋’柿果生長期間可溶性單寧濃度變化,澀柿之可溶性單寧濃度高於甜柿,隨著生長期間增加可溶性單寧濃度逐漸下降。‘蜂屋’果實總酚類化合物濃度、銅元素與氮元素濃度在生長期間皆高於‘富有’柿果。鋅元素與鈣元素則是‘富有’高於‘蜂屋’。果實生長後期之鐵元素濃度‘富有’高於‘蜂屋’;錳元素濃度則為‘蜂屋’高於‘富有’。可溶性單寧濃度與銅元素之間可能相互影響,曾有研究指出單寧會吸附銅離子,因此澀柿的銅元素高,可能受到單寧細胞之影響。
‘牛心柿’真空脫澀後,果皮會出現褐化的情形,因此分析不同園區之無機營養元素濃度,2016觀察到B園區的錳元素濃度偏低,且褐化指數低,但是2017年試驗卻發現錳元素可能非影響褐化之原因。真空處理之脫澀時間與溫度,影響果實脫澀程度,真空24小時,柿果無法脫澀,至少需要真空處理48小時才可以脫澀。脫澀溫度為20℃或40℃下柿果無法脫澀,脫澀最佳溫度為30℃或33℃。延遲時間脫澀與熱處理可以降低果實褐化之發生,但是延遲時間脫澀會造成果實硬度下降;而溫湯處理50℃15分鐘與30分鐘,熱風處理50℃3小時,果實會受到熱傷害。真空脫澀與乙烯抑制劑1-MCP複合處理,可以維持柿果之硬度,減緩果實硬度下降,使風味與口感較佳,延長柿果之貯藏時間。果實脫澀後丙二醛之濃度會上升,有膜脂過氧化的現象,進而導致柿果褐化。溫湯處理50℃15與30分鐘,可降低丙二醛之濃度,褐化指數也較低。苯丙胺酸裂解酶活性與褐化指數呈負相關,當苯丙胺酸裂解酶活性高時,褐化指數較低。褐化指數會受到溫度之影響,在38℃脫澀後果實貯藏在25℃,褐化指數最高,但是多酚氧化酶、總酚類化合物、丙二醛濃度卻較其他處理組低。真空脫澀與乙烯抑制劑1-MCP共同處理,使柿果脫澀後,維持果實之硬度與可溶性固形物。果實脫澀處於低氧環境,使柿果容易受到損傷,放置在空氣中時間越長,果皮之褐化情形即越嚴重,因此透過1-MCP處理可以延緩果實軟化,延遲時間脫澀也可以降低果皮之褐化指數,柿果可以維持較佳之品質。
The experiment used 17 cultivars of persimmon leaves as materials. Expect to find out whether the fruit has astringency related indicators. Comparison between the mineral elements concentration of astrigent persimmon to non-astrigent persimmon leaves. Non-astrigent persimmon has higher the iron element than the astrigent persimmon, but no significant difference in other elements. Persimmon cultivars vary widely, but different properties are observed even with the same variety, for example, some astringent persimmon cultivars have high concentrations of soluble tannins while others have low concentrations; the same observation can be made on non-astrigent persimmon as well. Therefore, it is impossible to directly determine base on the leaves whether the plant was astringent or non-astringent persimmon with a single trait. Change of soluble tannin content during persimmon fruit growth in ‘Fuyu’ and ‘Hachiyagaki’, the soluble tannin concentration of astringent persimmon is higher than that of non-astringent persimmon. The concentration of soluble tannins gradually decreased as the growth of fruits. The content of total phenolic compounds, copper, and nitrogen in the ‘Hachiyagaki’ are higher than ‘Fuyu’ persimmon fruits during growth. The element of zinc and calcium in ‘Fuyu’ is higher than ‘Hachiyagaki’. The element of iron in the late fruit stage was higher in ‘Fuyu’ than that of ‘Hachiyagaki’; the element of manganese in ‘Hachiyagaki’ was higher than ‘Fuyu’. The soluble tannin concentration may interact with the element of copper. It has been reported that tannins adsorb copper ions, therefore the astringent persimmon was high in copper ions and may be affected by tannins.
After the vacuum deastringency treatment of ‘Bull Heart’ persimmon, the peel will appear brown, so the concentration of essential plant nutrients in different orchards was analyzed. The content of manganese in B orchards was observed to be low, which may be related to the browning index of persimmon fruits in 2016. However, repeated test in 2017 found that manganese content and browning of peel may not be directly correlated. Vacuum treatment of time and temperature will affect, the degree of fruit deastringency. When vacuumed for 24 hours, persimmon fruit would not be deastringent. However, with at least 48 hours of vacuum time, the persimmon fruits will become deastringent. If the deastringent temperature was 20°C or 40°C, deastringent will not occur, and the optimal temperature was 30°C or 33°C. Delaying time deastringent and heat treatment could reduce the occurrence of fruit browning, but delayed deastringent time would cause the softening of the fruit. However, when the hot water was treated at 50°C for 15 and 30 minutes or the hot air was treated at 50°C for 3 hours, the fruit would be damaged by heat injury. Vacuum treatment and ethylene inhibitor 1-MCP complex treatment could maintain the firmness of persimmon fruits if slow down the decrease firmness of fruit would have better the flavor and taste and persimmon fruits to be stored longer. The content of malondialdehyde increased after the fruit was deastringent, and malondialdehyde caused membrane lipid peroxidation induced browning of persimmon fruits. Hot water treatment by 50°C for 15 and 30 minutes was able to reduce browning index and the content of malondialdehyde. The phenylalanine lyase activity was negatively correlated with the browning index. When the phenylalanine lyase activity was high, the browning index was lower. The browning index was affected by temperature, as the fruit was stored at 25°C after being vacuum deastringent at 38°C caused the browning index of fruits to be the highest, but the content of polyphenol oxidase, total phenolic compounds, and malondialdehyde was lower than that of other treatments. Vacuum deastringency and ethylene inhibitor 1-MCP composite treatment can be combined to maintain firmness and soluble solids of the persimmon fruits. The persimmon fruits were in a low oxygen environment, which made them prone to bruising. When they were placed in ambient temperature for longer period of time, the more severe the browning of the persimmon peel, so that the treatment of 1-MCP could delay the softening of the fruits. Delay time treatment could reduce the browning index of persimmon fruits can maintain better quality.
摘要 i
Summary ii
圖目次 v
表目次 vii
壹、 前言 1
貳、 前人研究 2
一、 柿之概述 2
二、 脫澀機制 3
三、 脫澀方法 4
四、 採後柿果生理與品質變化 5
五、 熱處理對品質的影響 6
六、 果實褐化 7
參、 材料與方法 9
一、 澀柿與甜柿葉片組成分比較 9
二、 澀柿與甜柿果實組成分比較 11
三、 採後處理對‘牛心柿’真空脫澀後果皮褐化之影響 12
肆、 結果 19
一、 澀柿與甜柿葉片組成分比較 19
二、 澀柿與甜柿果實組成分比較 26
三、 無機營養元素對柿果真空處理品質之影響 34
四、 成熟度對脫澀後‘牛心柿’果實品質之影響 41
五、 比重分級對‘牛心柿’果實脫澀後品質之影響 47
六、 脫澀時間對‘牛心柿’脫澀與褐化之影響 49
七、 乙烯抑制劑1-MCP與過錳酸鉀對柿果之影響 56
八、 脫澀溫度與貯藏溫度對柿果之影響 58
九、 溫湯處理與熱風處理對柿果脫澀之影響 71
十、 褐化指數與丙二醛、PAL、PPO、TPC之間之比較 81
伍、 討論 83
一、 澀柿與甜柿之間的比較 83
二、 採後處理對‘牛心柿’真空脫澀後果皮褐化之影響 85
陸、 結論 92
參考文獻 93
呂明雄. 1986. 改進柿子脫澀處理. 豐年36:26-28.
呂明雄. 1975. 愛文與凱特芒果成熟度之研究. 中國園藝 21:192-197.
李宝、尚丽、薛晓莉、张寅. 2010. 柿果實脫澀機理及脫澀技術研究進展. 中國農
業科學 43:2973-2981.
宋少華. 2015. 礦質元素變化及對甜柿果實品質的影響. 南京農業大學. 中國.
朱峯震. 2009. 龍眼貯藏及牛心柿真空脫澀技術之研究. 國立中興大學園藝學系
碩士論文. 臺中.
林宗賢、謝慶昌、繆八龍. 1987. 二氧化碳與石灰懸浮液對柿果脫澀、軟化與乙烯產生之比較. 中國園藝 33:274-283.
周佳頤. 2016. 肉桂醛處理對‘臺農二號’番木瓜果皮轉色、抗氧化物含量及抗
氧化酶活性之影響. 國立中興大學園藝學系碩士論文. 臺中.
邱俊源. 2015. 採前套袋、噴鈣與採後預冷、比重分級對‘珍珠’番石榴果實品
質之影響. 國立中興大學園藝學系碩士論文. 臺中.
阮雅蘭. 2004. 柿果貯藏及脫澀技術之改進及脫澀機制之研究. 國立中興大學園
藝學系碩士論文. 臺中.
张鹏、李江阔、孟宪军、张平. 2011. 1-MCP和薄膜包裝對磨盤柿採後生理及品
質的影響. 農業機械學報 42:130-134.
賴文龍、黃裕銘. 2004. 甜柿樹體無機養分之變化,p. 117-129. 刊於:張致盛、張林 仁主編. 臺中區農業改良場特刊. 行政院農業委員會臺中區農業改良場. 彰化.
黃思齊. 2005. 熱、乙醇、氣變包裝處理對‘富有’甜柿低溫貯藏生理障礙及品質之影響. 國立中興大學園藝學系碩士論文. 臺中.
黃仲彥. 2006. 脫澀後柿果低溫貯藏之研究. 國立中興大學園藝學系碩士論文. 臺中.
杨勇、阮小凤、王仁梓、李高潮. 2003. 柿單寧細胞型態特徵及發育動態研究. 西北農林科技大學學報 31:93-99.
傅琦媺. 1994. 柿果二氧化碳脫澀之生理變化及微細構造. 國立中興大學園藝學系碩士論文. 臺中.
馮詩蘋. 2000. 牛心柿不同脫澀方法之脫澀機制. 國立中興大學園藝學系碩士論文. 臺中.
馮詩蘋、謝慶昌、林慧玲、洪登村. 2000. 柿餅加工期間脫澀與乙烯之關係. 中國園藝 46:417-426.
陳建村. 2007. 真空技術應用在柿子脫澀之研究. 國立嘉義大學生物機電工程學系碩士論文. 嘉義.
飯室聡. 1980. 生理障害-綠斑果. 農業技術大系果樹篇第四卷, p.371-373. 農山
漁村文化協會. 東京.
蔡惠文. 2002. 柿樹嫁接不親和性及耐寒性之研究. 國立中興大學園藝學系碩士論文. 臺中.
蒲飛. 2014. 柿果實酚類物質含量、生物活性及其相關酶的研究. 西北農林科技大學園藝學院. 中國.
鄭雅凌. 2001. 柿果貯藏之研究. 國立中興大學園藝學系碩士論文. 臺中.
鄒采蘋. 2002. 脫澀處理及貯藏溫度對柿果組成份之影響. 國立中興大學園藝學系碩士論文. 臺中.
潘永貴、謝江輝. 2009. 現代果蔬採後生理. 化學工業出版社. 中國. 北京.
謝慶昌、蔡平里. 1995. 澀柿傳統石灰水浸漬脫澀處理方法之改良. 中國園藝41:136-143.
謝慶昌、劉秀玲、林慧玲. 2000. ‘四周柿’後熟誘發脫澀可能機制之研究. 中國
園藝 46:399-416.
蕭昀珍 2012. 真空處理對不同澀柿品種脫澀及貯藏品質之影響. 國立中興大學
園藝學系碩士論文. 臺中.
Akagi, T., A. Katayama-Ikegami, and K. Yonemori. 2011. Proanthocyanidin
biosynthesis of persimmon (Diospyros kaki Thunb.) fruit. Scientia Hort.
130:373-380.
Amarowica, R., R.B. Pegg, P. Rahimi-Moghaddam, B. Barl. and J.A. Weil. 2004.
Free-radical scavenging capacity and antioxidant activity of selected plant species from the Canadian prairies. Food Chem. 84:551-562.
Apaliya, M.T., H. Zhang, Q. Yang, X. Zheng, L. Zhao, E. Kwaw, and G.K. Mahunu. 2017. Hanseniaspora uvarum enhanced with trehalose induced defense-related enzyme activities and relative genes expression levels against Aspergillus tubingensis in table grapes. Postharvest Biol. Technol. 132:162-170.
Arnal, L., and M.A. Del Rio. 2003. Removing astringency by carbon dioxide and nitrogen-enriched atmospheres in persimmon fruit cv. ‘Rojo brillante’. J. food Sci. 68:1516-1518.
Araji, S., T.A. Grammer, R. Gertzen, S. D. Anderson, M. Mikulic-Petkovsek, R. Veberic, M.L. Phu, A. Solar, C.A. Leslie, A.M. Dandekar, M.A. Escobar. 2014. Novel roles for the polyphenol oxidase enzyme in secondary metabolism and the regulation of cell death in walnut. Plant Physi. 164:1191-1203.
Beaudry, R. M. 1999. Efect of O2 and CO2 partial pressure on selected phenomena affecting fruit and vegetable quality. Postharvest Biol. Tech. 15: 293-303.
Besada, C., A. Salvador, L. Arnal, and M. Martı´nez-Ja´vega. 2008. Hot water treatment for chilling injury reduction of astringent ‘Rojo Brillante’ persimmon at different maturity stages. Hortscience 43:2120-2123.
Bennett, A.B. 2002. Biochemical and genetic determinants of cell wall disassembly in
ripening fruit: a general model. HortScience 37:447-450.
Ben-Arie, R. and L. Sonego. 1993. Temperature affects astringency removal and recurrence in persimmon. J. Food Sci. 58: 1397-1400.
Bibi, N., A.B. Khattak, and Z. Mehmood. 2007. Quality improvement and shelf life extension of persimmon fruit (Diospyros kaki). J. Food Eng. 79:1359-1363.
Biton, E., I. Kobiler, O. Feygenberg, M. Yaari, T. Kaplunov, M. Ackerman, H.
Friedman, and D. Prusky. 2014. The mechanism of differential susceptibility to
alternaria black spot, caused by Alternaria alternata, of stem- and bottom-end
tissues of persimmon fruit. Postharvest Biol. Technol. 94:74-81.
Blankenship, S.M., and J.M. Dole. 2003. 1-Methylcyclopropene: a review. Postharvest Biol. Technol. 28:1-25.
Boonsiri, K., S. Ketsa, and W.G. van Doorn. 2007. Seed browning of hot peppers during low temperature storage. Postharvest Biol. Technol. 45:358-365.
Brummell, D.A. 2006. Cell wall disassembly in ripening fruit. Funct. Plant Biol.
33:103-119.
Bubba M.D., E. Giodani, L. Pippucci, A. Cincinelli, and P. Galvan. 2009. Changes in tannins, ascorbic acid and sugar content in astringent persimmons during on-tree growth and ripening and in response to different postharvest treatments. J. Food Compos. Anal. 22:668-677.
Bustamante, C.A., C.O. Budde, J. Borsani, V.A. Lombardo, M.A. Lauxmann, C.S. Andreo, M.V. Lara, and M.F. Drincovich. 2012. Heat treatment of peach fruit: modifications in the extracellular compartment and identification of novel extracellular proteins. Plant Physiol. Bioch. 60:35-45.
Cao, S., Y. Zheng, Z. Yang, S. Tang, P. Jin, K. Wang, and X. Wang. 2008. Effect of
methyl jasmonate on the inhibition of Colletotrichum acutatum infection in loquat
fruit and the possible mechanisms. Postharvest Biol. Technol. 49:301-307.
Chen, J.H., X. Sun, W. Weng, H.X. Guo, S.R. Hu, Y.S. He, F.M. Li, and W.B. Wu.
2015. Recovery and investigation of Cu(II) ions by tannin immobilized porous
membrane adsorbent from aqueous solution. Chem. Eng. J. 273:19-27.
Falcao, L. and M.E.M. Araujo. 2011. Tannins characterisation in new and historic vegetable tanned leathers fibres by spot tests. J. Cult. Herit. 12:149-156.
Freudenberg, K. 1920. Die chemie der naturliche gerbstoffe. Springer, Berlin.
Fukushima, T., T. Kitamura, H. Murayama, and T. Yoshida. 1991. Mechanisms of
astringency removal by ethanol treatment in ‘Hiratanenashi’ kaki fruits. J. Japan. Soc. Hort. Sci. 60:685-694.
Haslam, E. 2007. Vegetable tannins – Lessons of a phytochemical lifetime. Phytochemistry 68:2713-2721.
Hirai, S. and K. Yamazaki. 1984. Studies on sugar components of sweet and astringent persimmon by gas chromatography. J. Jpn. Soc. Food Chem. 39:1270-1274.
Hiroshi, Y. and N. Akira. 2007. Recent persimmon research in Japan. Jpn. J. Plant Sci. 1:42-62.
Huan, C., S. Han, L. Jiang, X. An, M. Yu, Y. Xu, R. Ma, and Z. Yu. 2017. Postharvest hot air and hot water treatments affect the antioxidant system in peach fruit during refrigerated storage. Postharvest Biol. Technol. 126:1-14.
Ikegami, A., K. Yonemori, A. Sugiura, A. Sato, and M. Yamada. 2004. Segregation of astringency in F1 progenies derived from crosses between pollination-constant, non-astringent persimmon cultivars. HortScience 39:371-374.
Ikegami, A., S. Eguchi, A. Kitajima, K. Inoue, and K. Yonemori. 2007. Identification of genes involved in proanthocyanidin biosynthesis of persimmon (Diospyros kaki) fruit. Plant Sci. 172:1037-1047.
Itamura, H. 1986. Relationships between fruit softening, respiration and ethylene production after deastringent treatment by ethanol in Japanese persimmon (Diospyros kaki Thunb. var. Hiratanenashi) fruit harvested at various stages. J. Japan. Soc. Hort. Sci. 55:89-98.
Itamura, H., T. Kitamura, S. Taira, H. Harada, N. Ito, Y. Takahashi, and T. Fukushima. 1991. Relationship between fruit softening, ethylene production and respiration
in Japanese persimmon ‘Hiratanenashi’. J. Japan. Soc. Hort. Sci. 60:695-701.
Ito, S. 1971. The persimmon. pp.281-302. In:S. P. Monselise(ed.) CRC Handbook of fruit Set and Development. CRC Press, Inc. Boca Raton, Florida.
Kato, K. 1984. Astringency removal and ripening as related to ethanol concentration during the de-astringency by ethanol in persimmon fruits. J. Japan. Soc. Hort. Sci. 53:278-289.
Kennedy, J.A.and A.W. Taylor. 2003. Analysis of proanthocyanidins by high-performance gel permeation chromatography. J. Chromatogr. A. 995:99-107.
Keith, R.W., D. L. Tourneau, and D. Mahlum. 1958. Quantitative paperchromtographic determination of phenols. J. Chromatogr. 1:534-536.
Khademi,O.,C. Besada, Y. Mostofi, and A. Salavador. 2014. Changes in pectin methylesterase, polygalacturonase, catalase and peroxidase activities associated with alleviation of chilling injury in persimmon by hot water and 1-MCP treatments. Scientia Hort. 179:191-197.
Khademi, O., A. Salvador, Z. Zamani, and C. Besada. 2013. Effects of hot water
treatments on antioxidant enzymatic system in reducing flesh browning of persimmon. Food Bioprocess Tenchnol. 6:3038-3046.
Komiyama, Y., M. Harakawa, and M. Tsuji. 1985. Characteristics of sugar composition of various fruits in relation to maturity and storage. J. Nippon Shokuhin Kogyo Gakkaishi 32:552-529.
Kubota, N. 1996. Phenolic content and L-phenylalanine ammonia-lyase acyivity in peach fruit, p.81-95. In: H.F. Linskens and F. Jackson(eds.). Plant analysis. Springer-Verlag Berlin Heildelberg, Inc, Germant.
Lay-Yee, M., S. Ball, S.K. Forbes, and A.B. Woolf. 1997. Hot-water treatment for insect disinfestations and reduction of chilling injury of ‘Fuyu’ persimmon. Postharvest Biol. Technol. 10:81-87.
Lee, C.Y. and N.L. Smith. 1979. Blanching effect on polyphenol oxidase activity in table beets. J. Food Sci. 44:72-77.
Lee, S.Y. and H.J. Choi. 2018. Persimmon leaf bio-waste for adsorptive removal of
heavy metals from aqueous solution. J. Environ. Manage. 209:382-392.
Lee, S.K., I.S. Shin, and Y.M. Park. 1993. Factors involved in skin browning of non-astringent ‘Fuyu’ persimmon. Acta. Horti. 343:300-303.
Lloyd, F.E. 1913. The induction of nonastringency in persimmons at supranormal pressures of carbon dioxide. Sci. 37:228-232.
Lurie, S. 1998. Postharvest heat treatments. Postharvest Biol. Technol. 14:257-269.
Lurie, S. and C.H. Crisosto. 2005. Chilling injury in peach and nectarine. Postharvest
Biol. Technol. 37:195-208.
Luna, C.M. C.A. Gonzalez, and V.S. Trippi. 1994. Oxidative damage caused by an
excess of copper in oat leaves. Plant Cell Physiol. 35:11-15.
Liu, J., Y. Sui, M. Wisniewski, S. Droby, S. Tian, J. Norelli, and V. Hershkovitz. 2012.
Effect of heat treatment on inhibition of Monilinia fructicola and induction of disease resistance in peach fruit. Postharvest Biol. Technol. 65:61-68.
Li, Y., H. Lu, Q. Cheng, R. Li, S. He, and B. Li. 2016. Changes of reactive oxygen species and scavenging enzymes of persimmon fruit treated with CO2 deastringency and the effect of hydroxyl radicals on breakdown of cell wall polysaccharides in vitro. Scientia Hort. 199:81-87.
Maotani, T., M. Yamada, A. Kurihara, T. Alimoto, and Y. Iiya. 1982. Storage of Japanese persimmon of pollination constant non-astringent type in polyethylene bags with ethylene absorbent. J. Japan. Soc. Hort. Sci. 51: 195-202.
Mastuo, T. and S. Ito. 1977. On mechanisms of removing astringency in persimmon
fruits by carbon treatmeat I. Some properties of the two process in the de-astringency. Plant&Cell Physiol. 18:17-25.
Matsuo, T., S. Itoo, and R. Ben-Arie. 1991. A model experiment for elucidating the mechanism of astringency removal in persimmon fruit using respiration inhibitors. J. Japan. Soc. Hort. Sci. 60: 437-442.
Matsuo, T., J. Shinohara, and S. Ito, 1976. An improvement on removing astringency in persimmon fruits by carbon dioxide gas. Agric. Biol. Chem. 40:215-217.
Min, D., L. Dong, P. Shu, X. Gui, X. Zhang, and F. Li. 2018. The application of carbon dioxide and 1-methylcyclopropene to maintain fruit quality of ‘Niuxin’ persimmon during storage. Scientia Hort. 229:201-206.
Mittler, R. 2002. Oxidative stress, antioxidants and stress tolerance. Trends plant Sci. 7:405-410.
Mizobusti, G.P., F.L. Finger, R.A. Ribeiro, R. Puschmann, L.L.de Melo Neves, and W.F. da Mota. 2010. Effect of pH and temperature on peroxidase and polyphenoloxidase activities of litchi pericarp. Sci. Agric. 67:213-217.
Nakano, R., S. Harima, E. Ogura, S. Inoue, Y. Kubo, and A. Inaba. 2001. Involvement of stress-induced ethylene biosynthesis in fruit softening of ‘Saijo’ persimmon. J. Jpn. Soc. Hort. Sci. 70:581-585.
Nakano, R., E. Ogura, Y. Kubo, and A. Inaba. 2003. Ethylene biosynthesis in detached young persimmon fruit is initiated in calyx and modulated by water loss from the fruit. Plant Physiol. 131:276-286.
Naser, F., V. Rabiei, F. Razavi, and O. Khademi. 2018. Effect of calcium lactate in combination with hot water treatment on the nutritional quality of persimmon fruit during cold storage. Scientia Hort. 233:114-123.
Novillo, P., A. Salvador, T. Magalhaes, and C. Besada. 2014. Deastringency treatment with CO2 induces oxidative stress in persimmon fruit. Postharvest Biol. Technol. 92:16-22.
Novillo, P., A. Salvador, C. Crisoto, and C. Besada. 2016. Influence of persimmon astringency type on physico-chemical changes from the green stage to commercial harvest. Scientia Hort. 206:7-14.
Ortiz, G.I., S. Sugaya, Y. Sekozawa, H. Ito, K. Wada, and H. Gemma. 2005. Efficacy of 1-Methylcyclopropene(1-MCP) in prolonging the shelf- life of ‘Rendaiji’ persimmon fruits previously subjected to astringency removal treatment. J. Japan. Soc. Hort. Sci. 74:248-254.
Ozen, A., A. Colak, B. Dincer, and S. Guner. 2004. A diphenolase from persimmon
fruits (Diospyros kaki L., Ebenaceae). Food Chem. 85:431-437.
Pesis, E. and R. Ben-Arie. 1986. Carbon dioxide assimilation during postharvest removal of astringency from persimmon fruit. Physiol. Plant. 67:644-648.
Pesis, E. and R. Ben-Arie. 1984. Involvement of acetaldehyde and ethanol accumulation during induced deastringency of persimmon fruits. J Food Sci. 49:896-899.
Park, D.S., S. Tilahun, J.Y. Heo, and C.S. Jeong. 2017. Quality and expression of ethylene response genes of ‘Daebong’ persimmon fruit during ripening at different temperatures. Postharvest Biol. Technol. 133:57-63.
Paull, R.E., and N.J. Chen. 2000. Heat treatment and fruit ripening. Postharvest Biol. Technol. 21:21-37.
Rice-Evans, C.A., N.J. Miller, and G. Paganga. 1997. Antioxidant properties of phenolic compounas. Trends Plant Sci. 2:152-159.
Robards, K., P.D. Prenzler, G. Tucker, P. Swatsitang, and W. Glover. 1999. Phenolic compounds and their role in oxidative processes in fruits. Food Chem. 66:401-436.
Saltveit, M.E. 2000. Wound induced changes in phenolic metabolism and tissue browning are altered by heat shock. Postharvest Biol. Technol. 21:61-69.
Salunkhe, D.K. and B.B. Desai. 1984. Persimmon, p. 105-109. In: Postharvest biotechnology of fruit. VolumeⅡCRC. Press, United States, Ind.
Salvador, A., L. Arnal, A. Monterde, and J. Cuquerella. 2004. Reduction of chilling injury symptoms in persimmon fruit cv. ‘Rojo Brillante’ by 1-MCP. Postharvest Biol. Tech. 33:285-291.
Salvador, A., L. Arnal, C. Besada, V. Larrea, A. Quiles, and I. Perez-Munuera. 2007. Physiological and structure changes during ripening and deastringency treatment of persimmon fruit cv. ‘Rojo Brillante’. Postharvest Biol. Tech. 46:181-188.
Sato, A., and M. Yamada. 2016. Persimmon breeding in Japan for pollination-constant non-astringent (PCNA) type with marker-assisted selection. Breeding Sci. 66:60-68.
Scalzo, J., A. Politi, N. Pellegrini, B. Mezzetti, and M. Battino. 2005. Plant genotype affects total antioxidant capacity and phenolic contents in fruit. Nutr. 21:207-213.
Shahidi, F., and P. Ambigaipalan. 2015. Phenolics and polyphenolics in foods, beverages and spices: antioxidant activity and health effects –a review. J. Funct. Foods 18:820-897.
Sugiura, A., and T. Tomana. 1983. Relationships of ethanol production by seeds of
different types of Japanese persimmons and their tannin content. HortScience
18:319-321.
Suzuki, T., S. Someya, F. Hu, and M. Tanokura. 2005. Comparative study of catechin compositions in five Japanese persimmons (Diospyros kaki). Food Chem. 93:149-152.
Taira, S., K. Abe, K. Oot, and S. Watanabe. 1990. Influence of fruit size, degoliation, gibberellin, and growing regions on the ease of removal of astringency in Japanese persimmon (Diospyros kaki Thunb. var. Hiratanenashi). J. Japan. Soc. Hort. Sci. 59:299-305.
Taira, S., I. Satoh, and S. Watanabe. 1992. Relationship between differences in the ease of removal of astringency among fruits of Japanese persimmon and their ability to accumulate ethanol and acetaldehyde. J. Japan. Soc. Hort. Sci. 60:1003-1009.
Taira, S., M. Ono, and N. Matsumoto. 1997. Reduction of persimmon astringency by complex formation between pectin and tannins. Postharvest Biol. Technol. 12:265-271.
Tamura, F., K. Tanabe, A. Itai, and M. Hasegawa. 1999. Characteristics of acetaldehyde accumulation and removal of astringency with ethanol and carbon dioxide treatment in ‘Saijo’ persimmon fruit. J. Japan. Soc. Hort. Sci. 68:1178-1183.
Tessmer, M. A., C. Besada, I. Hernando, B. Appezzato-da-Gloria, A. Quiles, and A. Salvador. 2016. Microstructural changes while persimmon fruits mature and ripen comparison between astringent and non-astringent cultivars. Postharvest Biol. Technol. 120:52-60.
Timperio, A.M., M.G. Egidi, and L. Zolla. 2008. Proteomics applied on plant abiotic
stresses: Role of heat shock proteins (HSP). J. Proteomics. 71:391-411.
Vaughn, K.C., A.R. Lax, and S.O. Duke. (1988) Polyphenol oxidase: the chloroplast oxidase with no established function. Physiol Plant 72(3):659 (abstr.).
Veberic, R., J. Jurhar, M. Mikulic-Petkovsek, F. Stampar, and V. Schmitzer. 2010. Comparative study of primary and secondary metabolites in 11 cultivars of persimmon fruit (Diospyros kaki L.) Food Chem. 119:447-483.
Wang, M.M., Q.G. Zhu, C.L. Deng, Z.R. Luo, N.J. Sun, D. Grierson, X.R. Yin, and K.S. Chen. 2017. Hypoxia-responsive ERFs involved in postdeastringency softening of persimmon fruit.Plant Biotechnol. J. 15:1409-1419.
Wu, P.W., and L.S. Hwang. 2002. Determination of soluble persimmon tannin by high performance gel permeation chromatography. Food Res. Int. 35:793-800.
Yamada, M., S. Taira, M. Ohtsuki, A. Sato, H. Iwanami, H. Yakushiji, R. Wang, Y. Yang, and G. Li. 2002. Varietal differences in the ease of astringency removal by carbon dioxide gas and ethanol vapor treatments among oriental astringent persimmon of Japanese and Chinese origin. Sci. Hort. 94: 63-72.
Yonemori, K., and J. Matsushima. 1985. Property of development of tannin cells in non-astringent type fruits of Japanese persimmon (Diospyros kaki) and its relationship to natural deastringency. J. Japan. Soc. Hort. Sci. 54: 201-208.
Youryon, P., and S. Supzpvanich. 2017. Physicochemical quality and antioxidant changes in ‘Leb Mue Nang’ banana fruit during ripening. Agr. Natural Resources 51:47-52.
Yin, X.R., Y.N. Shi, T. Min, Z.R. Luo, Y.C. Yao, Q. Xu, I. Ferguson, and K.S. Chen. 2012. Expression of ethylene response genes during persimmon fruit astringency removal. Planta 235:895-906.
Yilmaz, B., A. Genc, B. Cimen, M. Incesu, and T. Yesiloglu. 2017. Characterization of morphological traits of local and global persimmon varieties and genotypes collected from Turkey. Turk. J. Agric. For. 41:93-102.
Zhang, Z., D.J. Huber, H. Qu, Z. Yun, H. Wang, Z. Huang, H. Huang, and Y. Jiang. 2015. Enzymatic browning and antioxidant activities in harvested litchi fruit as influenced by apple polyphenols. Food Chem. 171:191-199.
Zhou, Y., M. Dahler, S.J.R. Undrhill, and R.B.H. Wills. 2003. Enzymes associated with blackheart development in pineapple fruit. Food Chem. 80:565-572.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊