跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.54) 您好!臺灣時間:2026/01/12 15:57
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:楊柔軒
研究生(外文):YANG,JOU-HSUAN
論文名稱:GA-SVM在外匯預測應用之可行性
論文名稱(外文):Feasibility of using GA-SVM On FOREX Forecasting
指導教授:黃明祥黃明祥引用關係
指導教授(外文):Huang,Ming-Hsiang
口試委員:吳信宏卓翠月黃明祥
口試委員(外文):Wu,Hsin-HungCho,Tsui-YuehHuang,Ming-Hsiang
口試日期:2019-03-04
學位類別:碩士
校院名稱:國立彰化師範大學
系所名稱:企業管理學系
學門:商業及管理學門
學類:企業管理學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:英文
論文頁數:36
中文關鍵詞:基因演算法支援向量機匯率預測均方根誤差
外文關鍵詞:GA-SVMFOREX PredictionRMSE
相關次數:
  • 被引用被引用:0
  • 點閱點閱:191
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
臺灣是淺碟式經濟,出口額平均占GDP的50%以上。因此,預測外匯匯率對臺灣企業的永續發展至關重要。在財務金融文獻中,許多學者已經投入研究至外匯預測模型中。不同的預測模型,所得到結果也紛紛不一。其中,近年來,以基因演算法結合支援向量機(GA-SVM)為預測方法的首選。但數據上卻很少有相關文獻利用此模型來預測匯率。本研究基於資料探勘的GA-SVM模型用於預測匯率,以2015年1月5日至2017年11月30日為觀察期,使用其資料為學習資料,2017年12月1日到2017年12月28日之資料為預測資料。再運用平均絕對值誤差率(MAPE)和均方根誤差(RMSE)對匯率預測的準確性進行了驗證。結果表明,GA-SVM模型在MAPE、RMSE具有高的精準度。
關鍵字:基因演算法、支援向量機、匯率預測、均方根誤差
The amount of Taiwan’s export constitutes on average around more than 50% of GDP in recent years. Therefore, an accurate forecasting of foreign exchange rate (FOREX) is very critical to the sustainability of the firms in Taiwan. Although the FOREX forecasting is a very important issue in financial literature and numerous previous works has put endeavor into the search of best model for the FOREX forecasting. However, the results are still mixed. This might be attributed to the variations of modeling techniques. More recently, GA-SVM has evolved as a preferred approach in the prediction of financial arena. However, only a few researches have utilized the model to predict the FOREX to the knowledge of authors. The objective of this study is to examine the feasibility of using the GA-SVM to predict the USD/NTD exchange rate. The daily data of exchange rate of USD/NTD over the period from January 5, 2015 to November 30, 2017 served as training data. while the daily data from December 1, 2017 to December 28, 2017 is the holdout data set. The data-mining-based GA-SVM model is utilized to predict the said exchange rate. The accuracy of the exchange rate forecasting is validated by both MAPE and RMSE. Our empirical result suggests that the GA-SVM model presents a high accuracy in terms of MAPE, 0.0032, and RMSE, 0.0001.

Keyword: GA-SVM, FOREX Prediction, RMSE.
摘要 Ⅰ
ABSTRACT II
誌謝 Ⅲ
TABLE OF CONTENTS IV
LIST OF TABLES V
LIST OF FIGURES VI

CHAPTER I INTRODUCTION 1
1.1 Backgrounds 1
1.2 Motivation and Purpose of the Study 2
CHAPTER II LITERATURE REVIEW 4
2.1 Theory on the Detrainments of Foreign Exchange Rate 4
2.2 Related Literature on Foreign Exchange Rate Prediction 7
CHAPTER III METHODOLOGY AND DATA 12
3.1 Methodology 12
3.2 Data Sources 26
CHAPTER IV EMPERICAL RESULT 28
4.1 Analysis Sample Characteristic 28
4.2 Forecast Evaluation Index 30
4.3 Exchange Rate Prediction Test Results Based on GA-SVM 31
CHAPTER V CONCLUSION AND DISCUSSION 32
REFERENCES 33
REFERENCES
Chamberlain, S., Howe, J. S., & Popper, H. (1997). The exchange rate exposure of US and Japanese banking institutions. Journal of banking & finance, 21(6), 871-892.

Chow, E. H., Lee, W. Y., & Solt, M. E. (1997). The economic exposure of US multinational firms. Journal of Financial Research, 20(2), 191-210.

Chang, J. F., Chang, C. W., & Tzeng, W. Y. (2009). Forecasting exchange rates using integration of particle swarm optimization and neural networks. In Innovative Computing, Information and Control (ICICIC), 2009 Fourth International Conference on (pp. 660-663). IEEE.

Cao, D. Z., Pang, S. L., & Bai, Y. H. (2005). Forecasting exchange rate using support vector machines. In Machine Learning and Cybernetics, 2005. Proceedings of 2005 International Conference on (Vol. 6, pp. 3448-3452). IEEE.

Chiu, I. M. (2008). An Empirical Study on the Long-Run Determinants of Exchange Rate. Review of Pacific Basin Financial Markets & Policies, 11(3), 389-409.

Flood, R. P., Rose, A. K., & Mathieson, D. J. (1991). An empirical exploration of exchange-rate target-zones. In Carnegie-Rochester Conference Series on Public Policy (Vol. 35, pp. 7-65). North-Holland.

Frenkel, J. A. (1976). A monetary approach to the exchange rate: doctrinal aspects and empirical evidence. The scandinavian Journal of economics, 200-224.

Huang, S. C., & Huang, M. H. (2010). Using SVMs with Embedded Recursive Feature Selections for Credit Rating Forecasting. Journal of Statistics & Management Systems, 13 (1), 165-177.

Huang, C . Y. (2014). An Application of GA-SVM in the FX Rate Forecast. Thesis of the Master Program in Business, Administration Department of Business Administration, National Changhua University of Education


Haque, M. A. (2010). An empirical test of the interest rate parity:Does it hold between U.S.A. and selected emerging Asian economies? Journal of International Business Research, 9(2), 91-98.

Jubert de Almeida, B., Ferreira Neves, R., & Horta, N. (2018). Combining Support Vector Machine with Genetic Algorithms to optimize investments in Forex markets with high leverage. Applied Soft Computing, 64, 596-613.

Lee, Y. H., Huang, Y. L., & Chen, T. H. (2017). Does hot money impact stock and exchange rate markets on China? Asian Academy of Management Journal of Accounting & Finance, 13(2), 95-108.

Lee, C. H., Doong, S. C., & Chou, P. I. (2011). Dynamic correlation between stock prices and exchange rates. Applied Financial Economics, 21(11), 789-800.

Lothian, J. R. (2016). Purchasing power parity and the behavior of prices and nominal exchange rates across exchange-rate regimes. Journal of International Money and Finance, 69, 5-21.

Lu, Y., Zeng, N., Liu, X., & Yi, S. (2015). A new hybrid algorithm for bankruptcy prediction using switching particle swarm optimization and support vector machines. Discrete Dynamics in Nature and Society, 2015.

Lewis, C. D. (1982). Industrial and business forecasting methods: A practical guide to exponential smoothing and curve fitting. Butterworth-Heinemann.

Moosa, I., & Burns, K. (2013). The monetary model of exchange rates is better than the random walk in out-of-sample forecasting. Applied Economics Letters, 20(14), 1293-1297.

Mishra, A. K. (2004). Stock market and foreign exchange market in India: are they related? South Asia Economic Journal, 5(2), 209-232.

Mirchandani, A. (2013). Analysis of macroeconomic determinants of exchange rate volatility in India. International Journal of Economics and Financial Issues, 3(1), 172.



Michalewicz, Z., Janikow, C. Z., & Krawczyk, J. B. (1992). A modified genetic algorithm for optimal control problems. Computers & Mathematics with Applications, 23(12), 83-94.

Mitchell, M. (1998). An introduction to genetic algorithms: MIT press.


Panda, D. P., & Trivedi, P. (2016). Macroeconomic Determinants of India's Foreign Exchange Reserves: An Empirical Analysis. IUP Journal of Applied Economics, 15(4), 31-47.

Shin, K. S., & Lee, Y. J. (2002). A genetic algorithm application in bankruptcy prediction modeling. Expert Systems with Applications, 23(3), 321-328.

Schölkopf, B., & Smola, A. J. (2002). Learning with kernels: support vector machines, regularization, optimization, and beyond. MIT press.


Lee, T. S., Lu, C. J. & Liu, Y. C.(2012) Integrating Independent Component Analysis Feature Extraction with Support Vector Regression for Exchange Rate Forecasting. 清雲學報, 32(2), 15-38.

Tawadros, G. B. (2001). The predictive power of the monetary model of exchange rate determination. Applied Financial Economics, 11(3), 279-286.

Viner, J. (1979). Canada's balance of international indebtedness, 1900-1913 (No. 86). McGill-Queen's Press-MQUP.

Wu, C. H., Tzeng, G. H., Goo, Y. J., & Fang, W. C. (2007). A real-valued genetic algorithm to optimize the parameters of support vector machine for predicting bankruptcy. Expert Systems with Applications, 32(2), 397-408.

Zhou, J., Yu, X., Guang, F., & Li, W. (2018). Analyzing and Predicting CO 2 Emissions in China Based on the LMDI and GA-SVM Model. Polish Journal of Environmental Studies, 27(2).
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊