跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.213) 您好!臺灣時間:2025/11/07 21:30
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:王威皓
研究生(外文):Wei-Hao Wang
論文名稱:鞘芯型聚二甲基矽氧烷複合纖維膜製備與其在自摺疊之應用
論文名稱(外文):Development of sheath-core PDMS nanofibers for self-folding application
指導教授:楊大毅楊大毅引用關係
指導教授(外文):Ta-I Yang
學位類別:碩士
校院名稱:中原大學
系所名稱:化學工程研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:99
中文關鍵詞:磁性熱療法光熱治療法同軸靜電紡絲普魯士藍聚二甲基矽氧烷
外文關鍵詞:Magnetic hyperthermiaphotothermal therapyCo-axial ElectrospinningPrussian bluePolydimethylsiloxane
相關次數:
  • 被引用被引用:0
  • 點閱點閱:152
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
癌症為人類死亡主因之一,對於癌症治療的問題,學術界積極尋找新的治療技術,期望能減少病患痛苦,並降低副作用。磁性熱治療與光熱治療是目前最具潛力的癌症治療技術。有鑑於此,本研究以具有良好生物相容性之聚己內酯(PCL),包覆氧化鐵(Fe3O4)奈米粒子、普魯士藍(Prussian blue)奈米粒子,結合具有良好延展性之聚二甲基矽氧烷 (PDMS),發展出同軸靜電紡絲磁性複合纖維材料,使其可應用於癌症磁性熱治療與光熱治療技術。
本實驗包含: 1. 利用水熱法合成出磁性氧化鐵奈米粒子(Fe3O4),並利用界面活性劑聚乙烯吡咯烷酮(PVP),控制磁性氧化鐵奈米粒子的粒徑大小,增強其在溶液中分散性。接著探討聚己內酯(PCL)、聚二甲基矽氧烷 (PDMS)同軸靜電紡絲型態,製備出磁性奈米纖維複合材料,並在高頻率交流磁場下,探討磁性複合纖維膜對加熱效果之影響及型態變化; 2.合成普魯士藍奈米粒子,並結合聚己內酯、聚二甲基矽氧烷成為同軸靜電紡絲型態,製備出奈米纖維複合材料。再利用其吸收700 nm區間紅光之特性,研究不同波長與激光功率,對材料升溫效果之影響。預期本研究之實驗成果,將有助於癌症熱治療及光熱治療之應用。
Cancer is one of the main causes of human death. Many academic researchers are actively looking for new therapeutic technologies that can help to reduce the pains of patients and the side effects. Currently, magnetic hyperthermia and photothermal therapy are the most potent cancer treatment technology. Therefore, this study utilizes biocompatible polycaprolactone (PCL), iron oxide (Fe3O4) nanoparticles, Prussian blue (PB) nanoparticles and ductile polydimethylsiloxane (PDMS) to develop co-axial electrospun composite fibers that can be applied on the magnetic hyperthermia and photothermal therapy cancer treatment.
This study synthesized magnetic Fe3O4 nanoparticles using a hydrothermal method. Polyvinylpyrrolidone (PVP) was introduced to control the particle size and to improve the dispersibility of nanoparticles in solution. Next, the morphology of the electrospun Fe3O4/PCL/PDMS composite fibers were systematically investigated and their heating performance was evaluated under alternating electromagnetic field. Furthermore, electrospun PB/PCL/PDMS composite fibers were also developed and their heating performance was studied by exposing to visible red light with a wavelength near 700nm. These results are expected to contribute the advance of hyperthermia and photothermal therapy.
目錄
摘要 I
Abstract II
目錄 III
圖目錄 VII
表目錄 X
第一章 緒論 1
1.1. 前言 1
1.2. 研究動機及目的 4
第二章 文獻回顧 7
2.1. 磁性奈米粒子 7
2.1.1. 磁性理論 7
2.1.2 磁滯曲線 12
2.1.3 超順磁 13
2.1.4 磁性與粒徑的關係 13
2.1.5 磁性粒子升溫機制 15
2.2. 靜電紡絲 (Electrospinning) 19
2.2.1. 靜電紡絲理論 19
2.2.2. 影響靜電紡絲的因素 21
2.2.3. 同軸靜電紡絲製程 29
2.2.4. 靜電紡絲複合材料之應用 31
2.2.5. 聚乙烯吡咯烷酮 (polyvinyl pyrrolidone,PVP) 33
2.2.6. 聚己內酯 (Polycaprolactone,PCL) 33
2.2.7. 聚二甲基矽氧烷 (Polydimethylsiloxane,PDMS) 34
2.2.8. 普魯士藍 (Prussian blue) 34
2.3. 熱療 (Hyperthermia) 36
2.3.1. 熱療的歷史 36
2.3.2. 熱療的機制 36
2.3.3. 熱療文獻 37
第三章 實驗 39
3.1. 實驗藥品 39
3.2. 實驗儀器 42
3.3. 實驗步驟 44
3.3.1. 磁性氧化鐵粒子製備 44
3.3.2. 普魯士藍粒子製備 45
3.3.3. 靜電紡絲溶液配製 45
3.3.4. 單軸/同軸靜電紡絲實驗 45
3.3.5. 加熱實驗 46
3.3.6. 照光實驗 46
第四章 結果與討論 47
4.1. 合成 Fe3O4@PVP奈米粒子之性質研究 47
4.1.1. 物性分析 47
4.1.2. PVP分子量的影響 49
4.1.3. PVP濃度的影響 50
4.1.4. TGA分析 53
4.1.5. FTIR分析 55
4.1.6. SQUID分析 56
4.2. 紡絲溶液設計 58
4.2.1. PVP電紡絲纖維表面型態研究 58
4.2.2. PCL電紡絲纖維表面型態研究 60
4.2.3. 紡絲溶液選擇分析 62
4.3. 靜電紡絲製備Fe3O4奈米粒子與其高分子複合纖維 63
4.3.1. PVP與PDMS同軸電紡複合纖維研究 63
4.3.2. PCL與PDMS同軸電紡複合纖維研究 66
4.3.3. PCL/PDMS與Fe3O4奈米粒子同軸電紡複合纖維研究 69
4.3.4. 同軸電紡複合纖維之鑑定與分析 73
4.4. 靜電紡絲製備普魯士藍與其高分子複合纖維 80
4.4.1. PCL/PDMS/普魯士藍同軸複合纖維研究 80
4.4.2. 可見光加熱實驗研究 82
第五章 結論 84
參考文獻 85


圖目錄
圖2.1- 1相鄰磁區間磁化方向變化情形 8
圖2.1- 2不同磁性表現之磁矩分布 11
圖2.1- 3 (a)磁性物質之磁滯曲線,其中Mr為殘留磁化量、Hc為矯頑力、Ms磁化強度 (b)超順磁的磁化量與外加磁場之曲線 12
圖2.1- 4超順磁粒子示意圖 13
圖2.1- 5磁性粒子磁區構造圖 14
圖2.1- 6奈米粒子矯頑力與粒徑的關係 14
圖2.1- 7摩擦損耗示意圖 18
圖2.2- 1 典型電紡裝置示意圖 20
圖2.2- 2 泰勒錐形成示意圖 20
圖2.2- 3 同軸靜電紡絲裝置示意圖 30
圖2.2- 4 同軸奈米纖維之TEM圖 30
圖2.2- 5 同軸電紡複合液滴流動模式 31
圖2.2- 6 電紡絲纖維應用示意圖 32
圖2.2- 7 普魯士藍應用示意圖 35
圖3.3- 1 氧化鐵奈米粒子製備示意圖 44
圖4.1- 1 合成之氧化鐵奈米粒子形貌圖 48
圖4.1- 2 不同PVP分子量下合成Fe3O4奈米粒子TEM影像圖 49
圖4.1- 3 添加不同濃度PVP之TEM形貌圖 52
圖4.1- 4 添加不同莫耳比率的PVP之粒徑分布圖 53
圖4.1- 5 熱重分析後氧化為Fe2O3 54
圖4.1- 6 磁性氧化鐵粒子之TGA分析圖 54
圖4.1- 7 Fe3O4@PVP奈米粒子之FTIR圖 55
圖4.1- 8 不同PVP添加量下奈米粒子磁化強度與施加磁場關係圖 57
圖4.2- 1 PVP (Mw=29,000)纖維之SEM圖 59
圖4.2- 2 PCL 10 wt %纖維之SEM圖 61
圖4.3- 1 PVP/PDMS在不同濃度下複合纖維之SEM圖 64
圖4.3- 2 PVP/PDMS複合纖維之TEM圖 65
圖4.3- 3 PCL/PDMS在不同濃度下複合纖維之SEM圖 67
圖4.3- 4 PCL/PDMS複合纖維之TEM圖 68
圖4.3- 5 PVP/PDMS同軸複合纖維之外觀與型態 70
圖4.3- 6 PCL/PDMS/Fe3O4同軸複合纖維TEM圖 72
圖4.3- 7 PDMS纖維結構SEM圖 74
圖4.3- 8 PDMS纖維結構EDS分析 75
圖4.3- 9 複合纖維膜加熱前後形貌變化圖 76
圖4.3- 10 不同濃度之PDMS複合纖維在頻率磁場對持溫效果的影響 78
圖4.3- 11 PCL/PDMS/ Fe3O4奈米粒子同軸複合纖維之應力-應變曲線 79
圖4.3- 12 普魯士藍粒子形貌圖 80
圖4.3- 13 普魯士藍UV-vis鑑定曲線圖 80
圖4.3- 14 PCL/PDMS/普魯士藍同軸複合纖維形貌與SEM圖 81
圖4.3- 15 PCL/PDMS/普魯士藍同軸複合纖維TEM圖 81
圖4.3- 16 不同激發之光源照射之溫度隨時間曲線圖 83
圖4.3- 17 不同激光功率照射之溫度隨時間曲線圖 83

表目錄
表2.2- 1 電紡常用溶劑之導電度 24
表4.1- 1 各種氧化鐵的物理性質 48
表4.1- 2 改變PVP濃度之實驗條件參數 50
表4.1- 3 添加不同莫耳比率的PVP之平均粒徑 53
表4.2- 1 PVP 電紡絲實驗參數 58
表4.2- 2 PCL 10 wt% 電紡絲參數 60
表4.3- 1 PVP / PDMS複合纖維參數 63
表4.3- 2 PCL / PDMS複合纖維參數 66
表4.3- 3 PCL/PDMS與Fe3O4奈米粒子同軸複合纖維實驗條件 71
表4.3- 4 複合纖維之應力與應變 79
1.F. Bray , J. Ferlay , et al. , Global cancer statistics 2018:GLOBOCAN estimates of incidence and mortality worldwide for 36 cancer in 185 countries, CA Cancer J Clin ,2018.68(6):p.394.
2.S. Mornet , S. Vasseur , F.Grasset , E.Duguet , Magnetic nanoparticle design for medical diagnosis and therapy, Angew. Chem. Int. Ed. Engl. ,2004.14:p.2161.
3.C.Cheng , Radiotherapy for Hepatocellular Carcinoma, J.Chinese Oncol, 2008.5:p318.
4.B.SALTZ, Adjuvant Chemotherapy of Colorectal Cancer , The Oncologist 1,1996:p22.
5.H. Bert , P. Wust , T. Kerner ,The cellular and molecular basis of hyperthermia, Critical Reviews in Oncology/Hematology , 2002.43:p33.
6.H.Norouzi , K.Khoshgard , F.Akbarzadeh , In vitro outlook of gold nanoparticles in photo-thermal therapy:a literature review , Lasers Med Sci,2018.33(4):p917.
7.M.Johannsen ,U.Gneveckow , L.Eckelt, A.Feussner,et al., Clinical hyperthermia of prostate cancer using magnetic nanoparticles:Presentation of a new interstitial technique, International Journal of Hyperthermia,2009.21(7):p637.
8.R.Hergt ,S.Dutz , M.Roder , Effects of size distribution on hysteresis losses of magnetic nanoparticles for hyperthermia ,J Phys Condens Matter,2008.20(38)
9.M.J.Sailor, J.H.Park, Hybrid nanoparticles for detection and treatment of cancer, Adv. Mater,2012.24:p3779.
10.N.T.K.Thanh , Magnetic Nanoparticles:From Fabrication to Clinical Applications, CRC Press,Boca Raton,FL,USA.2012.
11.X.Huang , M.A.El-Sayed , Plasmonic photo-thermal therapy (PPTT),Alexandria Journal of Medicine,2011.47(1):p1.
12.J.Liu , H.Liang , M. Li , Z. Luo, et al.,Tumor acidity activating multifunctional nanoplatform for NIR-mediated multiple enhanced photodynamic and photothermal tumor therapy,Biomaterials,2018.157:p107.
13.S.M.J.M.BRUNETAUD , V.MAUNOURY , C.BEACCO , Invited Review Non-PDT Uses of Lasers in Oncology,Lasers in Medical Science,1995.10:p3.

14.Hussain , S.M., et al.,In vitro toxicity of nanoparticles in BRL 3A rat liver cells,Toxicol In Vitro,2005,19(7):p975.
15.G.Yang, J.Wang, Y.Wang, L.Li,X.Guo, and S.Zhou, An Implantable Active-Targeting Micelle-in-Nanofiber Device for Efficient and Safe Cancer Therapy,ACS Nano,2015,9:p1161.
16.P. Kaur, M.L. Aliru, A.S. Chadha, A. Asea, S. Krishnan,Hyperthermia using nanoparticles--Promises and pitfalls, Int J Hyperthermia,2016,32(1)p:76.
17.V. I. Shubayev, T. R. P. II, and S. Jin, Magnetic Nanoparticles For Theragnostics, Adv Drug Deliv Rev,2009,61:p467.
18.P. K. Sharma, R. K. Dutta, and A. C. Pandey, Advances In Multifunctional Magnetic Nanoparticles,Advanced Materials Letters,2011,2,p:246.
19.A. K. Gupta and M. Gupta, Synthesis And Surface Engineering Of Iron Oxide Nanoparticles For Biomedical Applications, Biomaterials,2005,26:p3995.
20.Kam N.W.S, O.Connell M,Wisdom J.A, Dai H,Proc. Natl.Acad.Sci,2005,102(33):p11600.
21.Zhang C, Fu Y.Y, Zhang X, Yu C.Zhao Y., Sun S.K.,Dalton Trans,2015,44(29):p13112.
22.趙俊榮,磁性奈米粒子團聯共聚物複合材料的製備與特性研究,國立成功大學化學工程學系,碩士論文,2009.
23.M. Colombo, S. Carregal-Romero, M.F. Casula, L. Gutierrez, M.P. Morales, I.B. Bohm, J.T. Heverhagen, D. Prosperi, W.J. Parak, Biological applications of magnetic nanoparticles, Chem Soc Rev,2012.41(11):p4306.
24.莊萬發,超微粒子理論應用,復漢出版社,1995,台灣.
25.D.L.Huber, Synthesis,properties,and applications of iron nanoparticles,Small,2005,1:p482.
26.S.Dutz, R.Hergt,J.Mürbe, R.Müller, M.Zeisberger, W.Andrä, J.Töpfer, M.E. Bellemann,Hysteresis losses of magnetic nanoparticle powders in the single domain size range, Journal of Magnetism and Magnetic Materials,2007,308(2) :p305.
27.R.Hergt, S.Dutz, M.Roder, Effects of size distribution on hysteresis losses of magnetic nanoparticles for hyperthermia,J Phys Condens Matter,2008,20(38):p 385214.
28.S. Dutz, R. Hergt,Magnetic nanoparticle heating and heat transfer on a microscale: Basic principles,realities and physical limitations of hyperthermia for tumour therapy,Int J Hyperthermia,2013,29(8):p790.
29.Z. Li, M. Kawashita, N. Araki, M. Mitsumori, M. Hiraoka, M. Doi, Magnetite nanoparticles with high heating efficiencies for application in the hyperthermia of cancer, Materials Science and Engineering: C,2010,30(7):p990.
30.A.E.Deatsch, B.A.Evans, Heating efficiency in magnetic nanoparticle hyperthermia, Journal of Magnetism and Magnetic Materials,2014,354:p163.
31.R.E. Rosensweig, Heating magnetic fluid with alternating magnetic field, Journal of Magnetism and Magnetic Materials,2002,252:p370.
32.W.A.Rudolf Hergt, Carl G.d’Ambly, Ingrid Hilger, U.R. Werner A. Kaiser, and Hans-Georg Schmidt, Physical Limits of Hyperthermia. Using Magnetite Fine Particles, IEEE TRANSACTIONS ON MAGNETICS,1998,34.
33.A.Greiner, J.H.Wendorff, Electrospinning: a fascinating method for preparation of ultrathin fibers, Angewandte Chemie International Edition,2007,46:p2.
34.Taylor, G.I.,The satability of a horizontal fluid interface in a vertical electric field,Journal of Fliud Mechanics,1965.
35.周千筑 , The Fabrication of Nanomechanical Parts by Electrospinning , 國立交通大學機械工程學系,碩士論文, 2008.
36.X.Zong, X.Yuan, L.Wu, Y.Han, J.Sheng,C.Zhang, et al.,Study on morphology of electrospun poly(vinyl alcohol)mats,European polymer journal,2005,41:p423.
37.S.Megelski, J.S.Stephens, D.B.Chase,Micro and Nanostructured Surface Morphology on Electrospun Polymer Fibers,Macromolecules,2002,35:p8456.
38.A.L.Yarin, E.Zussman, J.H.Wendorff and A.Greiner,J.Mater.Chem., 2007,17:p2585-2599.
39.Greiner, A.Wendorff,J.H.Angew,Chem.-Int. Edit,2007,46:p5670.
40.葉孟考,複合材料力學近況簡介 ,國立清華大學, 動力機械工程學系,碩士論文,2013.
41.Haslauer, C.M.,et al., Collagen-PCL sheath-core bicomponent electrospun scaffolds increase osteogenic differentiation and calcium accretion of human adipose-derived stem cells,J Biomater Sci PolymEd,2011.22(13):p695.
42.Ghosal,K.,et al.,Structural and Surface Compatibility Study of Modified Electrospun Poly(eosilon-caprolactone)(PCL)Composites for Skin Tissue Engineering,AAPS PharmSciTech,2017.18(1):p72.
43.Persin,Z., et al.,Bio-nanofibrous mats as potential delivering systems of natural substances,Textile Research Journal,2017.87(4):p444.
44.M.Swart and P.E.Mallon,Hydrophobicity recovery of corona-modified superhydrophobic surfaces produced by the electrospinning of poly(methylmethacrylate)-graft-poly(dimethylsiloxane)hybrid copolymers,Pure and applied chemistry,2009,81(3):p495.
45.Ren,L.-F., et al,Experimental investigation of the effect of electrospinning parameters on properties of superhydrophobic PDMS/PMMA membrane and its application in membrane distillation,Desalination,2017.404:p155.
46.Huajian Chen, Yan Ma, Xianwen Wang, Xiaoyi Wu, Facile synthesis of Prussian blue nanoparticles as pH-responsive drug carriers for combined pHotothermal-chemo treatment of cancer,2017,7:p248.
47.張書鵬,程友星,任磊,文凱,呂曉林,不同形貌普魯士藍奈米粒子的合成及光熱性能,2018,39:p359.
48.W. B. COLEY, The treatment of malignant tumors by repeated inoculations of erysipelas with a report of ten original cases,American Journal of the Medical Sciences,1893,105:p487.
49.F. Westermark, Ueber die Behandlung des ulcerirenden Cervixcarcinomas,mittel konstanter warme, Zentralbl Gynaekol,1898,22:p1335.
50.E. Vidal, Travaux de la Deuxieme Conference Internationale pour l''Etude du Cancer,ed: Paris,1911.
51.J. F. Percy,Heat in the treatment of carcinomas of the uterus, Surg Gynecol Obstet, 1916,22:p77.
52.T.-C.Lin, F.-H.Lin, andJ.-C.Lin,In vitro feasibility study of the use of a magnetic electrospun chitosan nanofiber composite for hyperthermia treatment of tumor cells,Acta Biomaterialia,2012,8:p2704.
53.C.Huang, S.J.Soenen, J.Rejman, J.Trekker, L.Chengxun, L.Lagae,et al.,Magnetic electrospun fibers for cancer therapy,Advanced Functional Materials,2012,22:p2479.


54.A.Amarjargal, L.D.Tijing, C.-H.Park, I.-T.Im,and C.S.Kim,Controlled assembly of superparamagnetic iron oxide nanoparticles on electrospun PU nanofiberous membrane:A novel heat-generating substrate for magnetic hyperthermia application,European Polymer Journal,2013,49:p3796.
55.Y.Zhong, V.Leung, L.Yuqin Wan, S.Dutz, F.K.Ko and U.O.Hafeli,Electrospun magnetic nanofibere mats-A new bondable biomaterial using remotely activated magnetic heating,Journal of Magnetism and Magnetic Materials,2015,380:p330.
56.J. Xian, Q.Hua, Z.Jiang, Y.Ma, W.Huang,Size-dependent interaction of the poly(N-vinyl-2-pyrrolidone) capping ligand with Pd nanocrystals, Langmuir,2012.17(17):p6767.
57.鄭景軒,磁性奈米微粒之二氧化矽被覆技術之研究,國立成功大學機械系,碩士論文,2003.
58.Isao Washio, Yujie Xiong, Yadong Yin, and Younan Xia, Reduction by the 63 end groups of poly(vinyl pyrrolidone): A new and versatile route to the kinetically controlled synthesis of Ag triangular nanoplates, Adv. Mater.,2006.18:p745.
59.Hyeon Suk Shin, Hyun Jung Yang, Seung Bin Kim, and Mu Sang Lee,Mechanism of growth of colloidal silver nanoparticles stabilized by polyvinyl pyrrolidone in γ-irradiated silver nitrate solution,Journal of Colloid and Interface Science,2004.274:p89.
60.吳凱第,謝宗雍,奈米銀粒子與光硬化環氧樹脂-銀 奈米複合材料之製備及性質研究,國立交通大學,碩士論文,2008。
61.Y.K.Du, P.Yang, Z.G.Mou, N.P.Hua, L.Jiang,Thermal Decomposition Behaviors of PVP Coated on Platinum Nanoparticles, Wiley InterScience,2006.99:p23.
62.S.Peng, C.Wang, J.Xie,and S.Sun,Synthesis and Stabilization of Monodisperse Fe Nanoparticles,Journal of the American Chemical Society,2006.128:p10676.
63.Zuo W.,et al.,Experiment study on relationship between jet instability and formation of beaded fibers during electrospinning,Polymer Engineering&Science,2005.45(5):p704
電子全文 電子全文(本篇電子全文限研究生所屬學校校內系統及IP範圍內開放)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊