1.F. Bray , J. Ferlay , et al. , Global cancer statistics 2018:GLOBOCAN estimates of incidence and mortality worldwide for 36 cancer in 185 countries, CA Cancer J Clin ,2018.68(6):p.394.
2.S. Mornet , S. Vasseur , F.Grasset , E.Duguet , Magnetic nanoparticle design for medical diagnosis and therapy, Angew. Chem. Int. Ed. Engl. ,2004.14:p.2161.
3.C.Cheng , Radiotherapy for Hepatocellular Carcinoma, J.Chinese Oncol, 2008.5:p318.
4.B.SALTZ, Adjuvant Chemotherapy of Colorectal Cancer , The Oncologist 1,1996:p22.
5.H. Bert , P. Wust , T. Kerner ,The cellular and molecular basis of hyperthermia, Critical Reviews in Oncology/Hematology , 2002.43:p33.
6.H.Norouzi , K.Khoshgard , F.Akbarzadeh , In vitro outlook of gold nanoparticles in photo-thermal therapy:a literature review , Lasers Med Sci,2018.33(4):p917.
7.M.Johannsen ,U.Gneveckow , L.Eckelt, A.Feussner,et al., Clinical hyperthermia of prostate cancer using magnetic nanoparticles:Presentation of a new interstitial technique, International Journal of Hyperthermia,2009.21(7):p637.
8.R.Hergt ,S.Dutz , M.Roder , Effects of size distribution on hysteresis losses of magnetic nanoparticles for hyperthermia ,J Phys Condens Matter,2008.20(38)
9.M.J.Sailor, J.H.Park, Hybrid nanoparticles for detection and treatment of cancer, Adv. Mater,2012.24:p3779.
10.N.T.K.Thanh , Magnetic Nanoparticles:From Fabrication to Clinical Applications, CRC Press,Boca Raton,FL,USA.2012.
11.X.Huang , M.A.El-Sayed , Plasmonic photo-thermal therapy (PPTT),Alexandria Journal of Medicine,2011.47(1):p1.
12.J.Liu , H.Liang , M. Li , Z. Luo, et al.,Tumor acidity activating multifunctional nanoplatform for NIR-mediated multiple enhanced photodynamic and photothermal tumor therapy,Biomaterials,2018.157:p107.
13.S.M.J.M.BRUNETAUD , V.MAUNOURY , C.BEACCO , Invited Review Non-PDT Uses of Lasers in Oncology,Lasers in Medical Science,1995.10:p3.
14.Hussain , S.M., et al.,In vitro toxicity of nanoparticles in BRL 3A rat liver cells,Toxicol In Vitro,2005,19(7):p975.
15.G.Yang, J.Wang, Y.Wang, L.Li,X.Guo, and S.Zhou, An Implantable Active-Targeting Micelle-in-Nanofiber Device for Efficient and Safe Cancer Therapy,ACS Nano,2015,9:p1161.
16.P. Kaur, M.L. Aliru, A.S. Chadha, A. Asea, S. Krishnan,Hyperthermia using nanoparticles--Promises and pitfalls, Int J Hyperthermia,2016,32(1)p:76.
17.V. I. Shubayev, T. R. P. II, and S. Jin, Magnetic Nanoparticles For Theragnostics, Adv Drug Deliv Rev,2009,61:p467.
18.P. K. Sharma, R. K. Dutta, and A. C. Pandey, Advances In Multifunctional Magnetic Nanoparticles,Advanced Materials Letters,2011,2,p:246.
19.A. K. Gupta and M. Gupta, Synthesis And Surface Engineering Of Iron Oxide Nanoparticles For Biomedical Applications, Biomaterials,2005,26:p3995.
20.Kam N.W.S, O.Connell M,Wisdom J.A, Dai H,Proc. Natl.Acad.Sci,2005,102(33):p11600.
21.Zhang C, Fu Y.Y, Zhang X, Yu C.Zhao Y., Sun S.K.,Dalton Trans,2015,44(29):p13112.
22.趙俊榮,磁性奈米粒子團聯共聚物複合材料的製備與特性研究,國立成功大學化學工程學系,碩士論文,2009.23.M. Colombo, S. Carregal-Romero, M.F. Casula, L. Gutierrez, M.P. Morales, I.B. Bohm, J.T. Heverhagen, D. Prosperi, W.J. Parak, Biological applications of magnetic nanoparticles, Chem Soc Rev,2012.41(11):p4306.
24.莊萬發,超微粒子理論應用,復漢出版社,1995,台灣.
25.D.L.Huber, Synthesis,properties,and applications of iron nanoparticles,Small,2005,1:p482.
26.S.Dutz, R.Hergt,J.Mürbe, R.Müller, M.Zeisberger, W.Andrä, J.Töpfer, M.E. Bellemann,Hysteresis losses of magnetic nanoparticle powders in the single domain size range, Journal of Magnetism and Magnetic Materials,2007,308(2) :p305.
27.R.Hergt, S.Dutz, M.Roder, Effects of size distribution on hysteresis losses of magnetic nanoparticles for hyperthermia,J Phys Condens Matter,2008,20(38):p 385214.
28.S. Dutz, R. Hergt,Magnetic nanoparticle heating and heat transfer on a microscale: Basic principles,realities and physical limitations of hyperthermia for tumour therapy,Int J Hyperthermia,2013,29(8):p790.
29.Z. Li, M. Kawashita, N. Araki, M. Mitsumori, M. Hiraoka, M. Doi, Magnetite nanoparticles with high heating efficiencies for application in the hyperthermia of cancer, Materials Science and Engineering: C,2010,30(7):p990.
30.A.E.Deatsch, B.A.Evans, Heating efficiency in magnetic nanoparticle hyperthermia, Journal of Magnetism and Magnetic Materials,2014,354:p163.
31.R.E. Rosensweig, Heating magnetic fluid with alternating magnetic field, Journal of Magnetism and Magnetic Materials,2002,252:p370.
32.W.A.Rudolf Hergt, Carl G.d’Ambly, Ingrid Hilger, U.R. Werner A. Kaiser, and Hans-Georg Schmidt, Physical Limits of Hyperthermia. Using Magnetite Fine Particles, IEEE TRANSACTIONS ON MAGNETICS,1998,34.
33.A.Greiner, J.H.Wendorff, Electrospinning: a fascinating method for preparation of ultrathin fibers, Angewandte Chemie International Edition,2007,46:p2.
34.Taylor, G.I.,The satability of a horizontal fluid interface in a vertical electric field,Journal of Fliud Mechanics,1965.
35.周千筑 , The Fabrication of Nanomechanical Parts by Electrospinning , 國立交通大學機械工程學系,碩士論文, 2008.
36.X.Zong, X.Yuan, L.Wu, Y.Han, J.Sheng,C.Zhang, et al.,Study on morphology of electrospun poly(vinyl alcohol)mats,European polymer journal,2005,41:p423.
37.S.Megelski, J.S.Stephens, D.B.Chase,Micro and Nanostructured Surface Morphology on Electrospun Polymer Fibers,Macromolecules,2002,35:p8456.
38.A.L.Yarin, E.Zussman, J.H.Wendorff and A.Greiner,J.Mater.Chem., 2007,17:p2585-2599.
39.Greiner, A.Wendorff,J.H.Angew,Chem.-Int. Edit,2007,46:p5670.
40.葉孟考,複合材料力學近況簡介 ,國立清華大學, 動力機械工程學系,碩士論文,2013.
41.Haslauer, C.M.,et al., Collagen-PCL sheath-core bicomponent electrospun scaffolds increase osteogenic differentiation and calcium accretion of human adipose-derived stem cells,J Biomater Sci PolymEd,2011.22(13):p695.
42.Ghosal,K.,et al.,Structural and Surface Compatibility Study of Modified Electrospun Poly(eosilon-caprolactone)(PCL)Composites for Skin Tissue Engineering,AAPS PharmSciTech,2017.18(1):p72.
43.Persin,Z., et al.,Bio-nanofibrous mats as potential delivering systems of natural substances,Textile Research Journal,2017.87(4):p444.
44.M.Swart and P.E.Mallon,Hydrophobicity recovery of corona-modified superhydrophobic surfaces produced by the electrospinning of poly(methylmethacrylate)-graft-poly(dimethylsiloxane)hybrid copolymers,Pure and applied chemistry,2009,81(3):p495.
45.Ren,L.-F., et al,Experimental investigation of the effect of electrospinning parameters on properties of superhydrophobic PDMS/PMMA membrane and its application in membrane distillation,Desalination,2017.404:p155.
46.Huajian Chen, Yan Ma, Xianwen Wang, Xiaoyi Wu, Facile synthesis of Prussian blue nanoparticles as pH-responsive drug carriers for combined pHotothermal-chemo treatment of cancer,2017,7:p248.
47.張書鵬,程友星,任磊,文凱,呂曉林,不同形貌普魯士藍奈米粒子的合成及光熱性能,2018,39:p359.
48.W. B. COLEY, The treatment of malignant tumors by repeated inoculations of erysipelas with a report of ten original cases,American Journal of the Medical Sciences,1893,105:p487.
49.F. Westermark, Ueber die Behandlung des ulcerirenden Cervixcarcinomas,mittel konstanter warme, Zentralbl Gynaekol,1898,22:p1335.
50.E. Vidal, Travaux de la Deuxieme Conference Internationale pour l''Etude du Cancer,ed: Paris,1911.
51.J. F. Percy,Heat in the treatment of carcinomas of the uterus, Surg Gynecol Obstet, 1916,22:p77.
52.T.-C.Lin, F.-H.Lin, andJ.-C.Lin,In vitro feasibility study of the use of a magnetic electrospun chitosan nanofiber composite for hyperthermia treatment of tumor cells,Acta Biomaterialia,2012,8:p2704.
53.C.Huang, S.J.Soenen, J.Rejman, J.Trekker, L.Chengxun, L.Lagae,et al.,Magnetic electrospun fibers for cancer therapy,Advanced Functional Materials,2012,22:p2479.
54.A.Amarjargal, L.D.Tijing, C.-H.Park, I.-T.Im,and C.S.Kim,Controlled assembly of superparamagnetic iron oxide nanoparticles on electrospun PU nanofiberous membrane:A novel heat-generating substrate for magnetic hyperthermia application,European Polymer Journal,2013,49:p3796.
55.Y.Zhong, V.Leung, L.Yuqin Wan, S.Dutz, F.K.Ko and U.O.Hafeli,Electrospun magnetic nanofibere mats-A new bondable biomaterial using remotely activated magnetic heating,Journal of Magnetism and Magnetic Materials,2015,380:p330.
56.J. Xian, Q.Hua, Z.Jiang, Y.Ma, W.Huang,Size-dependent interaction of the poly(N-vinyl-2-pyrrolidone) capping ligand with Pd nanocrystals, Langmuir,2012.17(17):p6767.
57.鄭景軒,磁性奈米微粒之二氧化矽被覆技術之研究,國立成功大學機械系,碩士論文,2003.58.Isao Washio, Yujie Xiong, Yadong Yin, and Younan Xia, Reduction by the 63 end groups of poly(vinyl pyrrolidone): A new and versatile route to the kinetically controlled synthesis of Ag triangular nanoplates, Adv. Mater.,2006.18:p745.
59.Hyeon Suk Shin, Hyun Jung Yang, Seung Bin Kim, and Mu Sang Lee,Mechanism of growth of colloidal silver nanoparticles stabilized by polyvinyl pyrrolidone in γ-irradiated silver nitrate solution,Journal of Colloid and Interface Science,2004.274:p89.
60.吳凱第,謝宗雍,奈米銀粒子與光硬化環氧樹脂-銀 奈米複合材料之製備及性質研究,國立交通大學,碩士論文,2008。61.Y.K.Du, P.Yang, Z.G.Mou, N.P.Hua, L.Jiang,Thermal Decomposition Behaviors of PVP Coated on Platinum Nanoparticles, Wiley InterScience,2006.99:p23.
62.S.Peng, C.Wang, J.Xie,and S.Sun,Synthesis and Stabilization of Monodisperse Fe Nanoparticles,Journal of the American Chemical Society,2006.128:p10676.
63.Zuo W.,et al.,Experiment study on relationship between jet instability and formation of beaded fibers during electrospinning,Polymer Engineering&Science,2005.45(5):p704