|
[1] J. H. Barry, M. Khatun, and T. Tanaka. Exact solutions for Ising-model even-number correlations on planar lattices. Phys. Rev. B, 37:5193–5204, Apr 1988. [2] O. Benton. Quantum origins of moment fragmentation in Nd2Zr2O7. Phys. Rev. B, 94:104430, Sep 2016. [3] O. Benton, O. Sikora, and N. Shannon. Seeing the light: Experimental signatures of emergent electromagnetism in a quantum spin ice. Phys. Rev. B, 86:075154, Aug 2012. [4] D. L. Bergman, R. Shindou, G. A. Fiete, and L. Balents. Degenerate perturbation theory of quantum fluctuations in a pyrochlore antiferromagnet. Phys. Rev. B, 75:094403, Mar 2007. [5] D. L. Bergman, R. Shindou, G. A. Fiete, and L. Balents. Effective Hamiltonians for some highly frustrated magnets. Journal of Physics: Condensed Matter, 19(14):145204, 2007. [6] J. G. Brankov, D. M. Danchev, and N. S. Tonchev. Theory of critical phenomena in finite-size systems: scaling and quantum effects, volume 9. World Scientific, 2000. [7] S. Burkhardt. Efficiency of parallel tempering for Ising systems. M.S. Thesis, 2010. [8] J. Carrasquilla, Z. Hao, and R. G. Melko. A two-dimensional spin liquid in quantum kagome ice. Nature communications, 6:7421, 2015. [9] J. I. Cirac, D. Poilblanc, N. Schuch, and F. Verstraete. Entanglement spectrum and boundary theories with projected entangled-pair states. Phys. Rev. B, 83:245134, Jun 2011. [10] K. Damle and T. Senthil. Spin nematics and magnetization plateau transition in anisotropic kagome magnets. Phys. Rev. Lett., 97:067202, Aug 2006. [11] A. Dorneich and M. Troyer. Accessing the dynamics of large many-particle systems using the stochastic series expansion. Phys. Rev. E, 64:066701, Nov 2001. [12] D. J. Earl and M. W. Deem. Parallel tempering: Theory, applications, and new perspectives. Phys. Chem. Chem. Phys., 7:3910–3916, 2005. [13] M. E. Fisher and A. N. Berker. Scaling for first-order phase transitions in thermodynamic and finite systems. Phys. Rev. B, 26:2507–2513, Sep 1982. [14] D. Garanin and P. Kladko, K.and Fulde. Quasiclassical Hamiltonians for large-spin systems. The European Physical Journal B - Condensed Matter and Complex Systems, 14(2):293, Mar 2000. [15] M. J. Gingras and P. A. McClarty. Quantum spin ice: a search for gapless quantum spin liquids in pyrochlore magnets. Reports on Progress in Physics, 77(5):056501, 2014. [16] J. Helmes, L. E. Hayward Sierens, A. Chandran, W. Witczak-Krempa, and R. G. Melko. Universal corner entanglement of dirac fermions and gapless bosons from the continuum to the lattice. Phys. Rev. B, 94:125142, Sep 2016. [17] M. Hermele, M. P. A. Fisher, and L. Balents. Pyrochlore photons: The U(1) spin liquid in a S=1/2 three-dimensional frustrated magnet. Phys. Rev. B, 69:064404, Feb 2004. [18] R. Higashinaka, H. Fukazawa, and Y. Maeno. Anisotropic release of the residual zero-point entropy in the spin ice compound Dy 2 Ti 2 O 7 : Kagome ice behavior. Phys. Rev. B, 68:014415, Jul 2003. [19] Y.-P. Huang, G. Chen, and M. Hermele. Quantum spin ices and topological phases from dipolar-octupolar doublets on the pyrochlore lattice. Phys. Rev. Lett., 112:167203, Apr 2014. [20] Y.-P. Huang and M. Hermele. Theory of quantum kagome ice and vison zero modes. Phys. Rev. B, 95:075130, Feb 2017. [21] S. V. Isakov, S. Wessel, R. G. Melko, K. Sengupta, and Y. B. Kim. Hard-core bosons on the kagome lattice: Valence-bond solids and their quantum melting. Phys. Rev. Lett., 97:147202, Oct 2006. [22] K. Kanô and S. Naya. Antiferromagnetism. the kagomé ising net. Progress of Theoretical Physics, 10(2):158–172, 1953. [23] A. Kitaev and J. Preskill. Topological entanglement entropy. Phys. Rev. Lett., 96:110404, Mar 2006. [24] J. Knolle and R. Moessner. A field guide to spin liquids. arXiv preprint arXiv:1804.02037, 2018. [25] S. Lee, S. Onoda, and L. Balents. Generic quantum spin ice. Phys. Rev. B, 86:104412, Sep 2012. [26] M. Levin and X.-G. Wen. Detecting topological order in a ground state wave function. Phys. Rev. Lett., 96:110405, Mar 2006. [27] E. Lhotel, S. Petit, M. C. Hatnean, J. Ollivier, H. Mutka, E. Ressouche, M. R. Lees, and G. Balakrishnan. Dynamic quantum kagome ice, 2017. [28] C.-W. Liu, A. Polkovnikov, and A. W. Sandvik. Quasi-adiabatic quantum Monte Carlo algorithm for quantum evolution in imaginary time. Phys. Rev. B, 87:174302, May 2013. [29] G.-H. Liu, R.-Y. Li, and G.-S. Tian. Quantum entanglement and criticality of the antiferromagnetic Heisenberg model in an external field. Journal of Physics: Condensed Matter, 24(25):256002, 2012. [30] R. G. Melko. Simulations of quantum XXZ models on two-dimensional frustrated lattices. Journal of Physics: Condensed Matter, 19(14):145203, 2007. [31] R. G. Melko, A. B. Kallin, and M. B. Hastings. Finite-size scaling of mutual information in monte carlo simulations: Application to the spin- 2 1 XXZ model. Phys. Rev. B, 82:100409, Sep 2010. [32] S. Miyashita and H. Kawamura. Phase transitions of anisotropic Heisenberg antiferromagnets on the triangular lattice. J. Phys. Soc. Jpn., 54:3385, 1985. [33] R. Moessner and S. L. Sondhi. Ising models of quantum frustration. Phys. Rev. B, 63:224401, May 2001. [34] T. Neupert, L. Santos, C. Chamon, and C. Mudry. Fractional quantum hall states at zero magnetic field. Phys. Rev. Lett., 106:236804, Jun 2011. [35] P. Nikolić and T. Senthil. Theory of the kagome lattice ising antiferromagnet in weak transverse fields. Phys. Rev. B, 71:024401, Jan 2005. [36] S. A. Owerre, A. A. Burkov, and R. G. Melko. Linear spin-wave study of a quantum kagome ice. Phys. Rev. B, 93:144402, Apr 2016. [37] M. Powalski, K. Coester, R. Moessner, and K. P. Schmidt. Disorder by disorder and flat bands in the kagome transverse field ising model. Phys. Rev. B, 87:054404, Feb 2013. [38] R. E. Prange and S. M. Girvin. The Quantum Hall effect. Springer-Verlag, New York, 2nd ed. edition, 1990. [39] V. Privman. Finite Size Scaling and Numerical Simulation of Statistical Systems, chapter 1, pages 1–98. World Scientific, 2014. [40] J. Rehn, A. Sen, and R. Moessner. Fractionalized Z2 classical Heisenberg spin liquids. Phys. Rev. Lett., 118:047201, Jan 2017. [41] K. A. Ross, L. Savary, B. D. Gaulin, and L. Balents. Quantum excitations in quantum spin ice. Phys. Rev. X, 1:021002, Oct 2011. [42] E. Rowell, R. Stong, and Z. Wang. On classification of modular tensor categories. Communications in Mathematical Physics, 292(2):343–389, Dec 2009. [43] A. W. Sandvik. A generalization of handscomb’s quantum monte carlo scheme application to the 1D hubbard model. Journal of Physics A: Mathematical and General, 25(13):3667, 1992. [44] A. W. Sandvik. Finite-size scaling of the ground-state parameters of the two-dimensional Heisenberg model. Phys. Rev. B, 56:11678–11690, Nov 1997. [45] L. Savary and L. Balents. Coulombic quantum liquids in spin-1/2 pyrochlores. Phys. Rev. Lett., 108:037202, Jan 2012. [46] L. Savary and L. Balents. Quantum spin liquids: a review. Reports on Progress in Physics, 80(1):016502, 2016. [47] L. Savary and L. Balents. Disorder-induced quantum spin liquid in spin ice pyrochlores. Phys. Rev. Lett., 118:087203, Feb 2017. [48] P. Sengupta, A. W. Sandvik, and D. K. Campbell. Bond-order-wave phase and quantum phase transitions in the one-dimensional extended hubbard model. Phys. Rev. B, 65:155113, Apr 2002. [49] M. B. H. . R. G. M. Sergei V. Isakov. Topological entanglement entropy of a Bose-Hubbard spin liquid. Nature, 7:772, July 2011. [50] K. Sun, Z. Gu, H. Katsura, and S. Das Sarma. Nearly flatbands with nontrivial topology. Phys. Rev. Lett., 106:236803, Jun 2011. [51] O. F. Syljuåsen and A. W. Sandvik. Quantum Monte Carlo with directed loops. Phys. Rev. E, 66:046701, Oct 2002. [52] E. Tang, J.-W. Mei, and X.-G. Wen. High-temperature fractional quantum Hall states. Phys. Rev. Lett., 106:236802, Jun 2011. [53] X.-G. Wen. Colloquium: Zoo of quantum-topological phases of matter. Rev. Mod. Phys., 89:041004, Dec 2017. [54] S. Wenzel and W. Janke. Monte Carlo simulations of the directional-ordering transition in the two-dimensional classical and quantum compass model. Phys. Rev. B, 78:064402, Aug 2008. [55] M.-C. Wu. Exact finite-size scaling functions for the interfacial tensions of the Ising model on planar lattices. Physical Review E, 73(4):046135, 2006.
|