跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.14) 您好!臺灣時間:2025/11/30 02:27
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:何柏慶
研究生(外文):Po-Ching Ho
論文名稱:衰逝全反射架構之電光調變侷域性表面電漿共振生化檢測系統
論文名稱(外文):Localized Surface-Plasmon-Resonance Biosensing System by Electro-Optical Modulation in the ATR Configuration
指導教授:王子建
口試委員:陳學禮李君浩王維新
口試日期:2009-07-24
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:光電工程系研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:99
中文關鍵詞:鈮酸鋰表面電漿共振生化感測器奈米金粒衰逝全反射
外文關鍵詞:lithium niobatelocalized surface plasmon resonancebiosensornanoparticleattenuated-total-reflection
相關次數:
  • 被引用被引用:0
  • 點閱點閱:144
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文提出使用衰逝全反射架構之應用電光調變侷域性表面電漿共振進行生化檢測之系統,所使用的感測元件製作於具有良好電光效應的鈮酸鋰晶片上,其元件結構是由脊形結構、電極、與感測區所構成。在外加電壓下,可在鈮酸鋰材料內部產生電場,用以改變材料的折射率,進而調變表面電漿共振特性。感測區中所使用的表面電漿激發層為鍵結於金膜上奈米金粒所構成。感測區中的生化感測層是利用自組裝薄膜技術,將人血清球蛋白鍵結於表面電漿激發層上,可與治療冠狀心臟疾病之藥物-乙型阻斷劑產生鍵結,利用蛋白質與藥物的鍵結可即時檢測出乙型阻斷劑之濃度。量測系統架構包含光強度與相位移架構。系統操作上,在不同藥物濃度下,可量測電光調變表面電漿共振所產生的反射光強度與相位移角度隨外加電壓變化的關係,以檢測乙型阻斷劑濃度變化的情形。相較於傳統的強度檢測方式,所提出的生化感測器具有:準確性高、敏感度高、操作容易等優點。在未來應用上,所提出的生化檢測系統還可量測藥物分子與人血清球蛋白之交互作用之強度,以了解藥物在人體內作用的機制。
In this dissertation, we present an electro-optically modulated localized surface plasmon resonance biosensing system in the attenuated-total-reflection configuration, which can be used to measure the concentration of biochemical material. The sensing chip consists of a sensing region and one pair of electrodes on the ridge structure. When the voltage is applied on the electrodes, the electric field produced in lithium niobate electro-optically modulates the refraction index and changes the wave vector of the incidence lightwave. In this study, we use two kinds of measurement configurations, including optical intensity and phase shift configuration. Excited layer of surface plasmon formed by gold nanoparticle on gold film is adopted in the sensor. Human serum albumin (HSA) produced by the self-assembling method is used as the sensing layer to real-time sense the concentration of beta-blocker, which is a kind of medicine for heart disease. During the sensing measurement, the concentration of beta-blocker can be determined by the relation between the reflection intensity (or the phase shift) and the voltage. In comparison with the conventional SPR sensing, the proposed SPR sensing system has many advantages, such as: high accuracy, high sensitivity, and easy operation. In the future application, the presented biosensing system can be utilized to measure the interaction between HSA and medicines molecule for understanding the interaction mechanism of medicine in the human body.
中文摘要 i
英文摘要 ii
致謝 iii
目錄 iv
表目錄 vi
圖目錄 vii

第一章 緒論 1
1.1 前言 1
1.2文獻回顧 3
1.3研究動機 8
1.4章節內容 9

第二章 表面電漿共振理論與外差干涉儀原理 10
2.1 表面電漿共振簡介 10
2.2 表面電漿波之激發原理 12
2.3 光學激發表面電漿共振 20
2.4 外差干涉術簡介 24
2.5 鎖相放大器簡介 27
2.6 表面電漿共振量測方法與生化檢測原理 29

第三章 衰逝全反射架構之電光調變表面電漿共振檢測原理與檢測系統 31
3.1 鈮酸鋰材料特性 31
3.2電光調變表面電漿共振生化檢測技術之操作原理 39
3.3電光調變表面電漿共振生化感測器之元件設計 40
3.4生化檢測系統之架設 42

第四章 電光調變表面電漿共振生化感測元件之製作與量測 47
4.1 電光調變表面電漿共振生化感測元件之製程方法 47
4.2 電光調變表面電漿共振生化感測元件之製程步驟 51
4.3 奈米金粒之合成與選區固定 56
4.3.1奈米金粒合成 57
4.3.2奈米金粒選區固定 58
4.4 人血清球蛋白自組裝薄膜技術 63
4.5 乙型阻斷劑調配 66

第五章 結果與討論 67
5.1衰逝全反射架構 67
5.2電光調變表面電漿共振生化感測元件之光強度量測 69
5.2.1晶片脊形寬度為500μm、高度5μm之量測結果 69
5.2.2晶片脊形寬度為800μm、高度5μm之量測結果 71
5.2.3晶片脊形寬度為500μm、高度6μm之量測結果 73
5.2.4晶片脊形寬度為800μm、高度6μm之量測結果 75
5.2.5參數比較: 脊形寬度、脊形高度與入射光角度 77
5.3電光調變表面電漿共振生化感測元件之相位移量測 81
5.3.1晶片脊形寬度為500μm、高度5μm之量測結果 82
5.3.2晶片脊形寬度為800μm、高度5μm之量測結果 83
5.3.3晶片脊形寬度為500μm、高度6μm之量測結果 84
5.3.4晶片脊形寬度為800μm、高度6μm之量測結果 86
5.3.5參數比較: 脊形寬度、脊形高度與入射光角度 87
第六章 結論 92
參考文獻 94
中英文名詞對照表 98
[1]R.W. Wood, “On a remarkable case of uneven distribution of light in a diffraction grating spectrum,” Phil. Mag., vol. 4, pp. 396-402, 1902.
[2]吳寶同, 吳見明, 吳孟奇, ”突破光學半波長干涉限制之間隙測量方法”, 物理雙月刊, 29卷, 第四期, 2007年8月 pp. 832-835.
[3]Y. Zhang, Y. Zhang, R. H. Terrill, andP. W. Bohn, “Coupled second-harmonic generation, surface plasmon resonance and AC impedance studies of full and partial monolayers in (Au,Ag)-alkanethiolate electrolyte systems”, Thin Solid Films, vol. 335, pp. 178-185, 1998.
[4]J.W. Choi, D.Y. Kang, Y.H. Jang, H.H. Kim,J. Min, and B.K. Oh,”Ultra-sensitive surface plasmon resonance based immunosensor for prostate-specific antigen using gold nanoparticle–antibody complex”, Colloids and Surfaces A: Physicochem. Eng. Aspects, vol. 313-314, pp. 655–659, 2008.
[5]J.S. Mitchell, T.E. Lowe, ”Ultrasensitive detection of testosterone using conjugate linker technology in a nanoparticle-enhanced surface plasmon resonance biosensor”, Biosens. Bioelectron., vol. 24, pp. 2177–2183, 2009.
[6]R. Shankaran, D. Matsumoto, K. Toko, K. Miura, and Norio, “Performance evaluation and comparison of four SPR immunoassays for rapid and label-free detection of TNT”, Electrochemistry, vol.74, pp 141-144,2006.
[7]T. Kawaguchi, D.R. Shankaran, S.J. Kim,K. Matsumoto, K. Toko, and N. Miura” Surface plasmon resonance immunosensor using Au nanoparticle for detection of TNT”, Sensors and Actuators B, vol. 133, pp. 467-472, 2008.
[8]T. Abdallah, S. Abdalla, S. Negm,and H. Talaat, ”Surface plasmons resonance technique for the detection of nicotine in cigarette smoke”, Sens. Actuators A, vol. 102, pp. 234–239, 2003.
[9]J. N. Wilde, J. Nagel, and M. C. Petty, “Optical sensing of aromatic hydrocarbons using Langmuir–Blodgett films of a Schiff base co-ordination polymer”, Thin Solid Films, vol. 726, pp. 327-329, 1998.
[10]M. Piliarik, L. Parova, and J. Homola, “High-throughput SPR sensor for food safety”, Biosens. Bioelectron., vol. 24, pp. 1399-1404, 2009.
[11]S. Ko, T.J. Park, H.S. Kim, J. H. Kim, and Y.J. Cho, “Directed self-assembly of gold binding polypeptide-protein A fusion proteins for develop-
ment of gold nanoparticle-based SPR immunosensors”, Biosens. Bioelectron., vol. 24, pp. 2592-2597, 2009.
[12]Y. Lei, H. Chen, H. Dai , Z. Zeng, Y. Lin , F. Zhou , and D. Pang, “Electroless-plated gold films for sensitive surface plasmon resonance detection of white spot syndrome virus”, Biosens. Bioelectron. , vol. 23, pp. 1200–1207, 2008.
[13]J. Melendez, R. Carr, D. Barthelomew, H. Taneja, S. Yee, C. Jung, and C. Furlong, “Development of a surface plasmon resonance sensor for commercial applications,” Sens. Actuators B, vol. 39, pp. 375–379, 1997.
[14]B. Chadwick, M. Gal, “An optical temperature sensor using surface plasmons,” Jpn. J. Appl. Phys., vol. 32, pp. 2716–2717, 1993.
[15]B.J. Luff, J.S. Wilkinson, J. Piehler, and U. Hollenbach, “Integrated optical Mach-Zehnder biosensor,” J. Lightwave Tech., vol. 16, no. 4, pp. 583-592, 1998.
[16]Z.Qi, N. Matsuda, K. Itoh, M. Murabayashi, and C. R. Lavers, “A design for improving the sensitivity of a Mach-Zehnder interferometer to chemical and biological measurands,” Sens. Actuators B, vol. 81, pp. 254-258, 2002.
[17]D. Hah, E. Yoon, and S. Hong, “An opto-mechanical pressure sensor using multimode interference couplers with polymer waveguides on a thin p+-Si membrane,” Sens. Actuators A, vol. 79, pp. 204-210, 2000.
[18]K.S. Johnston, S.R. Karlson, C. Jung, and S.S. Yee, “New analytical technique for characterization of thin films using surface plasmon resonance,” Mater. Chem. Phys., vol. 42, pp. 242-246, 1995.
[19]U. Fano, “The theory of anomalous diffraction gratings and of quasi-stationary waves on metallic surfaces (Sommerfeld′s waves) ,” J. Opt. Soc. Am., vol. 31, pp. 213-222, 1941.
[20]R.H. Ritchie, “Plasma losses by fast electrons in thin films,” Phys. Rev., vol. 106, pp. 874, 1957.
[21]C.J. Powell , J.B. Swan, “Effect of oxidation on the characteristics loss spectra of aluminum and magnesium,” Phys. Rev., vol. 118, pp. 640, 1960.
[22]C. Nylander, B. Liedberg, and T. Lind, “Gas detection by means of surface plasmons resonance,” Sens. Actuators B, vol. 3, pp. 79-88, 1982.
[23]B. Liedberg, C. Nylander, and I. Lundsr, “Surface plasmon resonance for gas detection and biosensing,” Sens. Actuators B, vol. 4,pp. 299-304, 1983.
[24]W. Hickel, D. Kamp, and W. Knoll, “Surface-Plasmon Microscopy”, Nature London, vol. 339, pp. 186, 1989.
[25]A. Otto, “Excitation of surface plasma waves in silver by the method of frustrated total reflection,” Z. Phys., vol. 216, pp. 398-410, 1968.
[26]E. Kretschmann and H. Raether, “Radiative decay of non-radiative surface plasmons excited by light,” Z. Naturforsch, vol. 23A,pp. 2135-2136, 1968.
[27]R. C. Jorgenson and S. S. Yee, “A fiber-optic chemical sensor based on surface plasmon resonance,” Sens. Actuators B, vol. 12, pp. 213-220, 1993.
[28]R. Slavik, J. Homola, and J. Čryroký, “Miniaturization of fiber optic surface plasmon resonance sensor”, Sens. Actuators B, vol. 51, pp. 311-315, 1998.
[29]R. Slavík, J. Homola, and J. Čryroký, “Single-mode optical fiber surface plasmon resonance sensor,” Sens. Actuators B, vol. 54, pp. 74-79, 1999.
[30]R. Slavik, J. Homola, J., Čryroký, and E. Brynda, “Novel spectral fiber optic sensor based on surface plasmon resonance”, Sens. Actuators B, vol.74, pp. 106-111, 2001.
[31]A.J.C. Tubb, F.P. Payne, R. Millington, and C.R. Lowe, “Single mode optical fiber surface plasma wave chemical sensor,” Electron. Lett., vol. 31, pp. 1770-1771, 1995.
[32]A.J.C. Tubb, F.P. Payne, R. Millington, and C. R. Lowe, “Single-mode optical fibre surface plasma wave chemical sensor,” Sens. Actuators B, vol. 41, pp. 71-79, 1997.
[33]M.N. Weiss, R. Sriiastava, and H. Groger, “Experimental investigation of a surface plasmon-based integrated-optic humidity sensor,” Electron. Lett., vol. 32, pp. 842-843, 1996.
[34]M.N. Weiss, R. Sriiastava, H. Groger, P. Lo, and S.F. Luo, ”A theoretical investigation of environmental monitoring using surface plasmon resonance waveguide sensors” Sens. Actuators A, vol. 51, pp. 211-217, 1996.
[35]吳民耀, 劉威志, ”表面電漿子理論與模擬”, 物理雙月刊, 28卷, 第二期, 2006年4月 pp. 486-496.
[36]M. Yamamoto, ” Surface Plasmon Resonance (SPR) Theory: Tutorial” Rev. Polarogr., vol. 48, pp. 209-236, 2002.
[37]邱國斌 ,蔡定平, ”金屬表面電漿簡介”, 物理雙月刊, 28卷, 第二期, 2006年4月 pp. 472-485.
[38]J. Čryroký, J. Homola, P.V. Lambeck, S. Musa, H.J.W.M. Hoekstra, R.D. Harris, J.S. Wilkinson, B. Usievich, and N.M. Lyndin, “Theory and modeling of optical waveguide sensors utilizing surface plasmon resonance,” Sens. Actuators B, vol. 54, pp. 66-73, 1999.
[39]J. C. Suits, “Magneto-optical rotation and ellipticity measurements with a spinning analyzer,” Rev. Sci. Instrum, vol. 42, pp. 19-22, 1971.
[40]M. P. Kothiyal and C. Delisle, “Optical frequency shifter for heterodyne interferometry using counterrotating wave plates,” Opt. Lett., vol. 9, pp. 319-321, 1984.
[41]W. H. Stevenson, ”Optical frequency shifting by means of a rotating diffraction grating,” Appl. Opt., vol. 9, pp. 649-652, 1970.
[42]M. G. Gazalet, M. Raveg, F. Haine, C. Bruneel, and E. Bridoux, ”Acousto-optic low frequency shifter,” Appl. Opt., vol. 33, pp. 1293-1298, 1994.
[43]J. C. Kemp, “Piezo-optical birefringence modulators: new use for a long known effect,” J. Opt. Sci. Am, vol. 59, pp. 950-954, 1969.
[44]H. Takasaki, N. Umeda, and M. Tsukiji, “Stabilized transverse Zeeman laser as a new light source for optical measurement,” Appl. Opt., vol. 19, pp. 435-441, 1980.
[45]D. C. Su, M. H. Chiu, and C. D. Chen, ”Simple two frequency laser,” Prec. Eng, vol. 18, pp. 161-163, 1996.
[46]Y. C. Cheng, W. K. Su, and J. H. Lion, “Application of a liquid sensor based on surface plasma wave excitation to distinguish methyl alcohol from ethyl alcohol” Opt. Eng., vol. 39, pp. 311-314, 2000.
[47]W. Lu and W. M. Worek, “Two-wavelength interferometric technique for measuring the refractive index of salt-water solution,” Appl. Opt., vol. 32, pp. 3992-4002, 1993.
[48]http://www.thinksrs.com/downloads/man.htm
[49]Reviews of lithium niobate data, http://www.crystaltechnology.com
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top