跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.136) 您好!臺灣時間:2025/09/20 04:04
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:沈坤叡
研究生(外文):Kun-Jui Shen
論文名稱:使用CMOS製程之20至32Gb/s寬頻有線通訊測試系統
論文名稱(外文):A 20-32Gb/s Transmitter System for Wireline Communication Testing in CMOS Technology
指導教授:李致毅李致毅引用關係
指導教授(外文):Jri Lee
口試日期:2017-07-14
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:電子工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:英文
論文頁數:58
中文關鍵詞:前饋等化器相位調節器鎖相迴路多工器
外文關鍵詞:Feed-forwar equalizerPhase adjusted circuitPhase-locked loopMultiplexers
相關次數:
  • 被引用被引用:0
  • 點閱點閱:341
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文提出一個利用40 奈米互補式金屬氧化半導體製程之寬頻有線通訊發送測試系統,此發送系統可提供接收端測試當今25 Gb/s、28 Gb/s、及32 Gb/s不同的有線通訊傳輸規格,並提供四種不同方式的資料序列:27-1、215-1、223-1及231-1和四種誤碼注入的功能: 10-3、10-6、10-9、及0,其內部具有一組寬頻鎖相迴路(Phase-Lock Loop)以自行產生一組穩定的時脈提供給發送器觸發,最高速度可達32 Gb/s。
此發送系統由多工器、正反器、除頻器、前饋等化器及鎖相迴路所組成,由內建的鎖相迴路產生一組半速率的時脈來觸發輸出全速率的資料序列,並透過結合輸出級之前饋等化器,補償高速資料序列在通道傳遞時所造成的損失。此外,藉由內建自動相位調節器調整資料與時脈之間的相位關係,使取樣點在不同頻率下皆在最佳位置。量測時,最高量測至32 Gb/s的資料序列輸出,在前饋等化器開啟下,雙端差動擺幅為700 mV,功率消耗為755 mW。不同的資料序列、誤碼注入及前饋等化器的增加量皆可透過可程式化開發板進行控制選擇,並在位元錯誤偵測器下進行20 Gb/s ~ 32 Gb/s資料序列的比對驗證,資料序列及誤碼注入皆為正確。除了透過接合導線(Wire-bonding)的方式進行晶片的量測之外,最後此晶片並透過四方平面無引腳封裝(Quad Flat No leads)使晶片更加完整。
This thesis presents a wide-rage wireline transmitter system in 40 nm CMOS technology. It can provide the receiver for testing with different standard of wireline communication such as 25 Gb/s、28 Gb/s and 32 Gb/s. It can also generate different types of PRBS data sequence:27-1、215-1、223-1、231-1 and four types of error injection rate to data sequence:10-3, 10-6, 10-9, and 0. With a built-in wide-rage phase-locked Loop, it can regard as a clock source of the system, which can be operated up to 32 Gb/s.
This wireline transmitter system includes multiplexers, flip-flops, dividers, feed-forward equalizer and phase-locked loop. It can be triggered full-rate output data sequence by half-rate clock output from phase-locked loop integrated in the chip. Also, the channel loss can be compensated by the driver with feed-forward equalizer while transmitting data sequence. Also, the clock sample the data at the best sampling point under different frequency by the auto phase adjusted circuit. The measurement output data rate is up to 32 Gb/s and the output swing is 700mV in differential when feed-forward equalizer is ON. The whole system consumes 755mW. It can be selected different types of PRBS pattern, error injection and boosting amount of feed-forward equalizer by controlling the field programmable gate array (FPGA). The data sequence and error injection are confirmed in the operating range 20 Gb/s ~ 32 Gb/s under the bit-error-rate tester (BERT). Besides measuring the chip by bonding wire, the whole system is also packaged in QFN (Quad Flat No leads) to make the whole chip more complete.
口試委員會審定書 #
誌謝 i
ABSTRACT iii
LIST OF FIGURES vi
LIST OF TABLES ix
Chapter 1 Introduction 1
1.1 Motivation 1
1.2 Organization of the thesis 3
Chapter 2 Background 4
2.1 Pseudo Random Binary Sequence 4
2.1.1 Function of the Pseudo Random Binary Sequence 4
2.1.2 Principle of the Pseudo Random Binary Sequence 5
2.2 Serial-Link Transmitter Basics 6
2.2.1 Basic Transmitter Architecture 6
2.2.2 Performance metrics of Transmitter 7
2.3 Serialization and Channel Equalization in Transmitter 10
2.3.1 Serialization 10
2.3.2 Channel Equalization 13
2.4 Design Challenges for wide-range operation 18
2.5.1 Timing Constraints 18
2.5.2 Limited Bandwidth and Bandwidth extension technique 20
2.5.3 Architecture Comparison 21
Chapter 3 A 20-32 Gb/s Transmitter System for Wireline Communication Testiing in 40 nm CMOS technology 24
3.1 Architecture 24
3.2 The Digital Part and Low Speed MUX 25
3.2.1 The Digital Part 26
3.2.2 64:16 MUX 27
3.2.3 16:4 MUX 29
3.2.4 4:2 MUX 31
3.3 The 2:1 MUX with Half-Rate Feed-Forward Equalizer 32
3.2.1 Structure 32
3.2.2 Latch and Selector 33
3.2.3 Pre-Driver and Output Driver 36
3.4 Auto-Phase Adjusted Circuit 38
3.4.1 Timing Issue 38
3.4.2 Structure 40
3.4.3 Loop Behavior 41
3.4.4 Building Blocks 42
3.4.5 Simulation Result 44
3.5 Integrated with Wide-Range Phase-Locked Loop 45
Chapter 4 Measurement Result 47
4.1 Environment Setup 47
4.2 Measurement Result 49
Chapter 5 Conclusions 54
REFERENCE 55
[1]Common electrical I/O (CEI)-Electrical and jitter interoperability agreements for 6 G+bps, 11 G+bps and 25 G+bps I/O, Optical Internetworking Forum, Sep. 2011 [Online]. Available:
http://www.oiforum.com/public/documents/OIF_CEI_03.0.pdf
[2]Fiber Channel Solutions Guide Book 2010. Fiber Channel Industry Association (FCIA), 2010 [Online]. Available: http://www.fibrechannel. org/documents
[3]B. Razavi, Design of Integrated Circuits for Optical Communications. New York, NY, USA: McGraw-Hill, 2002.
[4]H. Knapp, et al., “100-Gb/s 27-1 and 54-Gb/s 211-1 PRBS Generators in SiGe Bipolar Technology, ” IEEE J. Solid-State Circuits, Oct. 2005, pp. 2118-2125.
[5]Chen, Ming-Shuan, and Chih-Kong Ken Yang. “A low-power highly multiplexed parallel PRBS generator.” Custom Integrated Circuits Conference (CICC), 2012 IEEE. IEEE, 2012.
[6]H. Wang and J. Lee, “A 21 Gb/s 87-mW transceiver with FFE/DFE/ analog equalizer in 65 nm CMOS technology,” IEEE J. Solid-State Circuits, vol. 45, no. 4, pp. 909–820, Apr. 2010
[7]B. Raghavan et al., “A Sub-2W 39.8-to-44.6 Gb/s transmitter and receiver chipset with SFI-5.2 interface in 40 nm CMOS,” in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, 2013, pp. 32–33.
[8]Jri Lee, P. Chiang, P. Peng, L. Chen, and C. Weng, "Design of 56 Gb/s NRZ and PAM4 SerDes Transceivers in CMOS Technologies," IEEE Journal of Solid-State Circuits, vol. 50, pp. 2061-2073, Sep. 2015. A. Momtaz et al, “An 80 mW 40 Gb/s 7-Tap T/2-Spaced Feed-Forward Equalizer in 65nm CMOS”, IEEE J. Solid-State Circuits, vol. 45, no. 3, pp. 629-639, Mar. 2010.
[9]Data Sheet of HMC6545 32 Gbps, Dual Channel, Advanced Linear Equalizer
http://www.analog.com/media/en/technical-documentation/data-sheets/HMC6545.pdf
[10]P. Heydari and R. Mohanavelu, “Design of ultra-high-speed low volatage CMOS CML buffers and latches,” IEEE Trans. Very Large Scale Integr. (VLSI)Syst., vol.12, no. 10, pp. 1081-1093, Oct. 2004
[11]Jri Lee, "High-Speed Circuit Designs for Transmitters in Broadband Data Links," IEEE Journal of Solid-State Circuits, vol. 41, pp. 1004-1015, May 2006.
[12]J. Lee, M. Liu, and H. Wang, “A 75 GHz phase-locked loop in 90 nm CMOS technology,” IEEE J. Solid-State Circuits, vol. 43, no. 6, pp. 1414–1426, Jun. 2008.
[13]R. Stephens, "All about the Acronyms: RJ, DJ, DDJ, ISI, DCD, PJ, SJ,…"
http://ransomsnotes.com/index_htm_files/RansomStephensJitter360Pt3AllAboutTheAcronyms.pdf
[14]M.-S. Chen et al., "A 50-64 Gb/s Serializing Transmitter with a 4-tap, LC-ladder-filter based FFE in 65-nm CMOS," in Proc. IEEE Custom Integrated Circuits Conf. (CICC''14), pp. 1-4,
[15]Jri Lee, "A 20-Gb/s Adaptive Equalizer in 0.13-μm CMOS Technology," IEEE Journal of Solid-State Circuits, vol. 41, pp. 2058-2066, Sept. 2006.
[16]P. Peng, J. Li, L. Chen, and Jri Lee, "A 56Gb/s PAM-4/NRZ Transceiver in 40nm CMOS," Digest of International Solid-State Circuits Conference, pp.110-111, Feb. 2017.
[17]H. Won et al., “A 0.87 W transceiver IC for 100 gigabit Ethernet in 40 nm CMOS,” IEEE J. Solid-State Circuits, vol. 50, no. 2, pp. 399–413, Feb. 2015.
[18]U. Singh et al., “A 780 mW 4 28 Gb/s transceiver for 100 GbE gearbox PHY in 40 nm CMOS,” in IEEE ISSCC Dig. Tech. Papers, 2014, pp. 40–41.
[19]G. Chen, C. Wu, C. Lin, H. Hung and Jri Lee, "Fully-integrated 40-Gb/s Pulse Pattern Generator and Bit-Error-Rate Tester Chipsets in 65-nm CMOS technology," Digest of Asian Solid-State Circuits Conference, pp. 109-112, Nov. 2014.
[20]P. Chiang, J. Jiang, H. Hung, C. Wu, G. Chen, and Jri Lee, "4×25 Gb/s Transceiver With Optical Front-end for 100 GbE System in 65 nm CMOS Technology," IEEE Journal of Solid-State Circuits, vol. 50, pp. 573-585, Feb. 2015
[21]Adel S. Sedra , Kenneth C. Smith, Microelectronic Circuits Revised Edition, Oxford University Press, Inc., New York, NY, 2007
[22]K. Kanda et al., “A single-40Gb/s dual-20Gb/s serializer IC with SFI-5.2 interface in 65nm CMOS,” in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, 2009, pp. 360–361
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top